JPH0620527A - Heat-resistive insulated electric wire - Google Patents

Heat-resistive insulated electric wire

Info

Publication number
JPH0620527A
JPH0620527A JP4178389A JP17838992A JPH0620527A JP H0620527 A JPH0620527 A JP H0620527A JP 4178389 A JP4178389 A JP 4178389A JP 17838992 A JP17838992 A JP 17838992A JP H0620527 A JPH0620527 A JP H0620527A
Authority
JP
Japan
Prior art keywords
particle size
heat
coating
magnesium oxide
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4178389A
Other languages
Japanese (ja)
Inventor
Kenzo Takeuchi
健三 武内
Masanobu Yoda
正信 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP4178389A priority Critical patent/JPH0620527A/en
Publication of JPH0620527A publication Critical patent/JPH0620527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a heat-resistive insulated electric wire which can be used under a temperature environment at 400 deg.C or higher without deterioration of the initial excellent dielectric breakdown voltage due to baking after coiling. CONSTITUTION:An applied-and-baked layer of a paint comprising 100 parts by weight of a bolosiloxane resin solution (N-methyl-2-pyroridon 62.5 weight percent solution of a bolosiloxane resin) and 16 parts by weight of magnesium oxide, which is mixed and dispersed in such a way that the particle size distribution curve of the magnesium oxide has two major peaks at 0.7-1.0mum particle size and at 2.5-4.0mum particle size, is provided on a conductor. An applied-and- baked layer of a polyester resin varnish is provided thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無機ポリマーに無機充
填剤を混合分散してなる無機ポリマー系塗料を導体上に
塗布焼付けてなる耐熱性絶縁電線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant insulated electric wire obtained by coating and baking an inorganic polymer-based coating material obtained by mixing and dispersing an inorganic filler with an inorganic polymer.

【0002】[0002]

【従来の技術】従来より、耐熱性絶縁電線として知られ
ているものに、ポリイミド線、ポリアミドイミド線、ポ
リエステルイミド線などの耐熱エナメル線がある。
2. Description of the Related Art Conventionally known heat-resistant insulated wires include heat-resistant enameled wires such as polyimide wires, polyamide-imide wires and polyester-imide wires.

【0003】しかしながら、これらはいずれも絶縁被膜
が有機物からなるため、 400℃前後の温度で分解してし
まい、常用可能な温度は最も高いポリイミド線でもたか
だか240℃前後であった。
However, in all of these, since the insulating coating is made of an organic substance, it decomposes at a temperature of about 400 ° C., and the highest usable temperature is about 240 ° C. even for the highest polyimide wire.

【0004】これに対し、近年開発された、ボロシロキ
サン樹脂を用いた塗料を導体上に塗布し高温で焼付けて
塗膜形成した絶縁電線は、 400℃以上の温度でも塗膜が
剥離することがなく使用可能であることから注目されて
いる。
On the other hand, in the case of an insulated wire which has been developed in recent years and has a coating film formed by applying a coating material using a borosiloxane resin on a conductor and baking it at a high temperature, the coating film may peel even at a temperature of 400 ° C. or higher. It is attracting attention because it can be used without using it.

【0005】しかしながら、この絶縁電線は、コイル巻
き後焼成した場合に、塗膜が非常にポーラスになり、絶
縁破壊電圧が初期値より低下するという問題があった。
However, this insulated wire has a problem in that when it is fired after coiling, the coating film becomes very porous and the dielectric breakdown voltage drops below the initial value.

【0006】[0006]

【発明が解決しようとする課題】このように近年開発さ
れたボロシロキサン樹脂を用いた塗料を導体上に塗布焼
付けた絶縁電線は、 400℃以上の温度環境下でも使用可
能であるが、コイル巻き後の焼成によって絶縁破壊電圧
が初期値より低下するという問題があった。
Thus, the insulated wire in which the paint using the borosiloxane resin developed in recent years is applied and baked on the conductor can be used even in a temperature environment of 400 ° C. or higher. There was a problem that the dielectric breakdown voltage was lowered from the initial value by the subsequent firing.

【0007】本発明はこのような従来の問題を解決する
ためになされたもので、 400℃以上の温度環境下で使用
可能で、かつコイル巻き後の焼成によっても初期の優れ
た絶縁破壊電圧が低下することのない耐熱性絶縁電線を
提供することを目的とする。
The present invention has been made in order to solve such a conventional problem. It can be used in a temperature environment of 400 ° C. or higher, and the initial excellent dielectric breakdown voltage can be obtained by firing after coil winding. An object is to provide a heat resistant insulated wire that does not deteriorate.

【0008】[0008]

【課題を解決するための手段】本発明の耐熱性絶縁電線
は、導体上に、無機ポリマーに無機充填剤を、その粒度
分布曲線が粒度 0.7〜1.0 μmと粒度 2.5〜4.0 μmに
2大ピークを有する曲線となるように混合分散してなる
無機ポリマー系塗料の塗布焼付層を具備してなることを
特徴としている。
The heat-resistant insulated wire of the present invention has an inorganic polymer and an inorganic filler on the conductor, and the particle size distribution curve has two major peaks at a particle size of 0.7 to 1.0 μm and a particle size of 2.5 to 4.0 μm. It is characterized by being provided with a coating and baking layer of an inorganic polymer coating material which is mixed and dispersed so as to form a curve having

【0009】本発明の使用される無機ポリマー系塗料
は、無機ポリマーと、粒径が 1〜10μm程度の粒子状無
機充填剤の総添加量の10〜40重量%と、有機溶剤とを、
サンドミルやアトライターのようなメディア式分散機で
通常 3〜10時間攪拌混合し、次いで、この混合物と、粒
子状無機充填剤の残分とを、ミキサーやディゾルバーの
ような高速回転式分散機で通常 0.5〜1 時間攪拌混合す
ることにより得ることができる。図1は、このようにし
て得られた無機ポリマー系塗料中における無機充填剤の
粒度分布曲線の一例を示したものである。なお、無機充
填剤の総添加量としては、ポリマー成分 100重量部あた
り30〜75重量部の範囲が好ましい。
The inorganic polymer coating used in the present invention comprises an inorganic polymer, 10 to 40% by weight of the total amount of the particulate inorganic filler having a particle size of about 1 to 10 μm, and an organic solvent.
It is usually mixed with a media type disperser such as a sand mill or an attritor for 3 to 10 hours, and then this mixture and the rest of the particulate inorganic filler are mixed with a high speed rotary disperser such as a mixer or a dissolver. Usually, it can be obtained by stirring and mixing for 0.5 to 1 hour. FIG. 1 shows an example of the particle size distribution curve of the inorganic filler in the inorganic polymer coating material thus obtained. The total amount of the inorganic filler added is preferably in the range of 30 to 75 parts by weight per 100 parts by weight of the polymer component.

【0010】ここで、無機ポリマーとしては、ポリボロ
シロキサン、ポリカルボシラン、ポリシラスチレン、ポ
リシラザン、ポリチタノカルボシランなどがあげられ、
なかでもポリボロシロキサンの使用が好ましい。なお、
ポリシロキサン(シリコーン樹脂)も無機ポリマーの 1
種であるが、他の無機ポリマーに比べて耐熱性に劣るた
め、使用する場合は、他の無機ポリマーとの併用が好ま
しい。
Here, examples of the inorganic polymer include polyborosiloxane, polycarbosilane, polysilastyrene, polysilazane, and polytitanocarbosilane.
Of these, use of polyborosiloxane is preferable. In addition,
Polysiloxane (silicone resin) is also an inorganic polymer 1
Although it is a species, it is inferior in heat resistance to other inorganic polymers, so that when used, it is preferably used in combination with other inorganic polymers.

【0011】無機充填剤としては、酸化マグネシウム、
酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸
化クロム、酸化ホウ素、酸化トリウム、酸化ケイ素、チ
タン酸カリウム、マイカ、タルク、炭化ケイ素、炭化チ
タン、炭化ジルコニウム、窒化チタン素、窒化アルミニ
ウムなどが上げられる。これらは 1種を単独で使用して
もよく、また 2種以上を混合して使用してもよい。
As the inorganic filler, magnesium oxide,
Examples thereof include aluminum oxide, zirconium oxide, titanium oxide, chromium oxide, boron oxide, thorium oxide, silicon oxide, potassium titanate, mica, talc, silicon carbide, titanium carbide, zirconium carbide, titanium nitride and aluminum nitride. These may be used alone or in combination of two or more.

【0012】有機溶剤としては、キシレン、トルエン、
ベンゼン、エタノ―ル、ブタノ―ル、セロソルブ類、ケ
トン類、N-メチル -2-ピロリドン、ジメチルアセトアミ
ド、ジメチルホルムアミド、ジメチルスルホキシド、フ
ェノ―ル類などがあげられる。また、ポリボロシロキサ
ン樹脂の反応溶剤としてシリコ―ンオイルを使用するこ
ともできる。
As the organic solvent, xylene, toluene,
Examples thereof include benzene, ethanol, butanol, cellosolves, ketones, N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide and phenols. Silicone oil can also be used as a reaction solvent for the polyborosiloxane resin.

【0013】なお、上記各成分の他に、塗膜の可撓性や
耐加水分解性、導体との密着性の向上改善を目的として
本発明の効果を損なわない範囲で、その他の添加剤が通
常の方法で配合されてよい。
In addition to the above-mentioned components, other additives may be added within the range not impairing the effects of the present invention for the purpose of improving and improving the flexibility and hydrolysis resistance of the coating film and the adhesion with the conductor. It may be blended in a conventional manner.

【0014】本発明において、無機充填剤の上記塗料中
における粒度分布曲線が粒度 0.7〜1.0 μmと粒度 2.5
〜4.0 μmに2大ピークを有する曲線とならないもの、
すなわち、いずれか一方のピークでも前記範囲より外れ
ていたり、あるいは、前記範囲から外れたところに第
3、第4、………のピークがあるような場合には、焼成
後の絶縁破壊電圧が低下するようになり、本発明による
効果が十分に得られなくなる。
In the present invention, the particle size distribution curve of the inorganic filler in the above coating composition is 0.7 to 1.0 μm and 2.5.
A curve that does not have two major peaks at ~ 4.0 μm,
That is, if any one of the peaks is out of the above range or there is a third, fourth, ... Peak outside the range, the dielectric breakdown voltage after firing is As a result, the effect of the present invention cannot be sufficiently obtained.

【0015】本発明の耐熱絶縁電線は、上記無機ポリマ
ー系塗料を導体上に塗布し、 400〜600℃程度で焼き付
けることにより得ることができる。この塗布焼付層は10
〜50μm程度が適当である。
The heat-resistant insulated electric wire of the present invention can be obtained by applying the above-mentioned inorganic polymer paint onto a conductor and baking it at about 400 to 600 ° C. This coating baking layer is 10
About 50 μm is suitable.

【0016】本発明においては、この無機ポリマー系塗
料の塗布焼付層上に、可とう性や被膜の機械的強度を高
めるために、耐熱性の良好な有機ポリマー系塗料による
厚さ5〜9 μm程度の塗布焼付層を設けるようにしても
よい。有機ポリマー系耐熱塗料としては、ポリエステ
ル、ポリエステルイミド、ポリイミド、ポリアミドイミ
ド、ポリアミド、ポリイミダゾピロロン、ホルマール、
ポリウレタン、エポキシなどの耐熱性に優れた有機ポリ
マーが単独または混合して配合された塗料を使用するこ
とができる。
In the present invention, in order to enhance flexibility and mechanical strength of the coating on the coating / baking layer of this inorganic polymer coating, a thickness of 5 to 9 μm formed by an organic polymer coating having good heat resistance. You may make it provide a coating baking layer of a certain degree. As the organic polymer heat resistant coating, polyester, polyester imide, polyimide, polyamide imide, polyamide, polyimidazopyrrolone, formal,
A paint in which an organic polymer having excellent heat resistance such as polyurethane or epoxy is blended alone or in a mixture can be used.

【0017】なお、本発明の導体としては、耐熱性の良
好なNi線、Ag線、NiメッキやAgメッキを施した銅線など
が好適に使用される。
As the conductor of the present invention, Ni wire, Ag wire, Ni-plated copper wire or Ag-plated copper wire having good heat resistance are preferably used.

【0018】[0018]

【作用】本発明の耐熱性絶縁電線においては、無機ポリ
マーに無機充填剤を、その粒度分布曲線が粒度 0.7〜1.
0 μmと粒度 2.5〜4.0 μmに2大ピークを有する曲線
となるように混合分散してなる無機ポリマー系塗料の使
用によって、導体上には、非常に緻密な無機ポリマー系
塗料の塗布焼付層が形成される。したがって、400 ℃以
上の高温で使用可能で、しかも焼成後も初期の優れた絶
縁破壊特性を有したものとなる。
In the heat-resistant insulated wire of the present invention, the inorganic polymer is provided with an inorganic filler, and the particle size distribution curve has a particle size of 0.7 to 1.
The use of an inorganic polymer-based paint that is mixed and dispersed so as to form a curve having two major peaks at 0 μm and a particle size of 2.5 to 4.0 μm results in a very dense coating and baking layer of the inorganic polymer-based paint on the conductor. It is formed. Therefore, it can be used at a high temperature of 400 ° C. or higher, and has excellent initial dielectric breakdown characteristics even after firing.

【0019】[0019]

【実施例】次に実施例および比較例について説明する。EXAMPLES Next, examples and comparative examples will be described.

【0020】実施例1 ボロシロキサン樹脂溶液(ボロシロキサン樹脂のN-メチ
ル -2-ピロリドン62.5重量%溶液) 100重量部と、粒径
が 1〜10μmの粒子状酸化マグネシウムの総添加量16重
量部の10%量とを、アトライター(表中、第1分散機と
表記)で 5時間、混合攪拌した後、この混合物をミキサ
ーに投入し、残りの酸化マグネシウムと、 0.5時間、混
合攪拌して、塗料を調整した。この塗料中の酸化マグネ
シウムの粒度分布は表1に示す通りであった。
Example 1 100 parts by weight of a borosiloxane resin solution (62.5% by weight solution of borosiloxane resin in N-methyl-2-pyrrolidone) and a total addition amount of 16 parts by weight of particulate magnesium oxide having a particle size of 1 to 10 μm And 10% of the mixture was mixed and stirred with an attritor (referred to as the first disperser in the table) for 5 hours, and then this mixture was put into a mixer, and the remaining magnesium oxide was mixed and stirred for 0.5 hours. , Adjusted the paint. The particle size distribution of magnesium oxide in this paint was as shown in Table 1.

【0021】次いで、この塗料を、 1.0mmφNiメッキ銅
線(メッキ厚さ 2.5μm)上に、炉長 7mの縦型焼付機
を用いて、焼付温度 450℃、線速 5m/分の条件で塗布
焼付けを繰り返して、35μm厚の焼付塗膜を形成し、さ
らに、この上に、ポリエステル樹脂ワニスを常法により
塗布焼付けて、絶縁厚さ40μmの絶縁電線を得た。得ら
れた絶縁電線の特性を表1に併せ示す。
Next, this paint was applied onto 1.0 mmφ Ni-plated copper wire (plating thickness 2.5 μm) using a vertical baking machine with a furnace length of 7 m at a baking temperature of 450 ° C. and a linear speed of 5 m / min. The baking was repeated to form a baked coating film having a thickness of 35 μm, and a polyester resin varnish was applied and baked on the baked coating film by an ordinary method to obtain an insulated electric wire having an insulation thickness of 40 μm. The characteristics of the obtained insulated wire are also shown in Table 1.

【0022】実施例2、3 アトライターに投入する酸化マグネシウム量を、総添加
量の20%または30%とした以外は、実施例1の場合と同
様にして塗料を調製した。各塗料中の酸化マグネシウム
の粒度分布は表1に示す通りであった。
Examples 2 and 3 A coating material was prepared in the same manner as in Example 1 except that the amount of magnesium oxide charged to the attritor was 20% or 30% of the total amount added. The particle size distribution of magnesium oxide in each paint is shown in Table 1.

【0023】次いで、得られた塗料を、上記実施例1と
同一条件で、 1.0mmφNiメッキ銅線上に塗布焼付けて35
μm厚の焼付塗膜を形成し、さらに、この上に、ポリエ
ステル樹脂ワニスを常法により塗布焼付けて、絶縁厚さ
40μmの絶縁電線を得た。得られた絶縁電線の特性を表
1に併せ示す。
Next, the obtained coating material was applied and baked onto a 1.0 mmφ Ni-plated copper wire under the same conditions as in Example 1 above, and baked.
A baking coating film with a thickness of μm is formed, and a polyester resin varnish is applied and baked on this by an ordinary method to obtain an insulation thickness.
An insulated electric wire of 40 μm was obtained. The characteristics of the obtained insulated wire are also shown in Table 1.

【0024】比較例1 ボロシロキサン樹脂溶液と、酸化マグネシウムとを、ア
トライターを用いず、ミキサーでのみ 0.5時間、混合攪
拌するようにした以外は、実施例1の場合と同様にして
塗料を調製した。塗料中の酸化マグネシウムの粒度分布
は表1に示す通りであった。
Comparative Example 1 A paint was prepared in the same manner as in Example 1 except that the borosiloxane resin solution and magnesium oxide were mixed and stirred for 0.5 hours only in a mixer without using an attritor. did. The particle size distribution of magnesium oxide in the paint is as shown in Table 1.

【0025】次いで、得られた塗料を、上記実施例1と
同一条件で、 1.0mmφNiメッキ銅線上に塗布焼付けて35
μm厚の焼付塗膜を形成し、さらに、この上に、ポリエ
ステル樹脂ワニスを常法により塗布焼付けて、絶縁厚さ
40μmの絶縁電線を得た。得られた絶縁電線の特性を表
1に併せ示す。
Then, the obtained coating material was applied and baked on a 1.0 mmφ Ni-plated copper wire under the same conditions as in Example 1 above, and baked.
A baking coating film with a thickness of μm is formed, and a polyester resin varnish is applied and baked on this by an ordinary method to obtain an insulation thickness.
An insulated electric wire of 40 μm was obtained. The characteristics of the obtained insulated wire are also shown in Table 1.

【0026】比較例2 アトライターに投入する酸化マグネシウム量を、総添加
量の50%とした以外は、実施例1の場合と同様にして塗
料を調製した。塗料中の酸化マグネシウムの粒度分布は
表1に示す通りであった。
Comparative Example 2 A coating material was prepared in the same manner as in Example 1 except that the amount of magnesium oxide added to the attritor was 50% of the total amount added. The particle size distribution of magnesium oxide in the paint is as shown in Table 1.

【0027】次いで、得られた塗料を、上記実施例1と
同一条件で、 1.0mmφNiメッキ銅線上に塗布焼付けて35
μm厚の焼付塗膜を形成し、さらに、この上に、ポリエ
ステル樹脂ワニスを常法により塗布焼付けて、絶縁厚さ
40μmの絶縁電線を得た。得られた絶縁電線の特性を表
1に併せ示す。
Then, the obtained coating material was applied and baked on a 1.0 mmφ Ni-plated copper wire under the same conditions as in Example 1 above.
A baking coating film with a thickness of μm is formed, and a polyester resin varnish is applied and baked on this by an ordinary method to obtain an insulation thickness.
An insulated electric wire of 40 μm was obtained. The characteristics of the obtained insulated wire are also shown in Table 1.

【0028】比較例3 ボロシロキサン樹脂溶液と、酸化マグネシウムとを、ア
トライターでのみ 5時間、混合攪拌するようにした以外
は、実施例1の場合と同様にして塗料を調製した。塗料
中の酸化マグネシウムの粒度分布は表1に示す通りであ
った。
Comparative Example 3 A coating material was prepared in the same manner as in Example 1 except that the borosiloxane resin solution and magnesium oxide were mixed and stirred only with an attritor for 5 hours. The particle size distribution of magnesium oxide in the paint is as shown in Table 1.

【0029】次いで、得られた塗料を、上記実施例1と
同一条件で、 1.0mmφNiメッキ銅線上に塗布焼付けて35
μm厚の焼付塗膜を形成し、さらに、この上に、ポリエ
ステル樹脂ワニスを常法により塗布焼付けて、絶縁厚さ
40μmの絶縁電線を得た。得られた絶縁電線の特性を表
1に併せ示す。
Then, the obtained coating material was applied and baked on a 1.0 mmφ Ni-plated copper wire under the same conditions as in Example 1 above.
A baking coating film with a thickness of μm is formed, and a polyester resin varnish is applied and baked on this by an ordinary method to obtain an insulation thickness.
An insulated electric wire of 40 μm was obtained. The characteristics of the obtained insulated wire are also shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】以上の実施例からも明らかなように、本
発明の耐熱性絶縁電線は、導体上に、その粒度分布曲線
が粒度 0.7〜1.0 μmと粒度 2.5〜4.0 μmに2大ピー
クを有する曲線となるように無機充填剤を混合分散させ
た無機ポリマー系塗料の塗布焼付層を具備した構造とさ
れているので、400 ℃以上の高温で使用可能で、かつ焼
成によって絶縁破壊特性が大きく低下することもない。
しかも、塗料の調製や、その塗布焼付けも容易に行うこ
とができるので、生産性にも優れている。
As is apparent from the above examples, in the heat resistant insulated wire of the present invention, the particle size distribution curve has two major peaks on the conductor at particle sizes of 0.7 to 1.0 μm and 2.5 to 4.0 μm. It has a structure with a coating and baking layer of an inorganic polymer paint in which an inorganic filler is mixed and dispersed so that it has a curved line, so it can be used at a high temperature of 400 ° C or more and has a large dielectric breakdown property by firing. It does not decrease.
Moreover, since the paint can be easily prepared and the coating and baking of the paint can be easily performed, the productivity is excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用される無機ポリマー系塗料中の無
機充填剤の粒度分布曲線の一例を示すグラフ。
FIG. 1 is a graph showing an example of a particle size distribution curve of an inorganic filler in an inorganic polymer coating material used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導体上に、無機ポリマーに無機充填剤
を、その粒度分布曲線が粒度 0.7〜1.0 μmと粒度 2.5
〜4.0 μmに2大ピークを有する曲線となるように混合
分散してなる無機ポリマー系塗料の塗布焼付層を具備し
てなることを特徴とする耐熱性絶縁電線。
1. An inorganic filler is added to an inorganic polymer on a conductor, the particle size distribution curve of which is 0.7 to 1.0 μm and the particle size is 2.5.
A heat-resistant insulated wire comprising a coating / baking layer of an inorganic polymer-based coating material mixed and dispersed so as to form a curve having two major peaks at ˜4.0 μm.
JP4178389A 1992-07-06 1992-07-06 Heat-resistive insulated electric wire Pending JPH0620527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4178389A JPH0620527A (en) 1992-07-06 1992-07-06 Heat-resistive insulated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4178389A JPH0620527A (en) 1992-07-06 1992-07-06 Heat-resistive insulated electric wire

Publications (1)

Publication Number Publication Date
JPH0620527A true JPH0620527A (en) 1994-01-28

Family

ID=16047644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4178389A Pending JPH0620527A (en) 1992-07-06 1992-07-06 Heat-resistive insulated electric wire

Country Status (1)

Country Link
JP (1) JPH0620527A (en)

Similar Documents

Publication Publication Date Title
JP3289581B2 (en) Heat-resistant electric wire and method of manufacturing heat-resistant electric wire
JP2017110184A (en) Method for producing organic-inorganic hybrid porous insulation coating liquid
JPH0620527A (en) Heat-resistive insulated electric wire
JPH11345523A (en) Heat resistant wire, heat resistant insulating material, and manufacture of heat resistant wire
JPH07320553A (en) Heat resisting insulated wire
JP2700632B2 (en) Heat resistant insulated wire
JP2577054Y2 (en) Heat resistant insulated wire
JP3350363B2 (en) Insulation coating paint, inorganic insulated wires and electric coils
JP2709592B2 (en) Heat-resistant insulated wire
JPH06187845A (en) Heat-resistant insulated wire
JPH0750109A (en) Heat-resistant insulated wire
JP2001338531A (en) Heat-resistant insulated cable
JP2709593B2 (en) Heat-resistant insulated wire
JPH0982547A (en) Induction heating coil
JPH09134614A (en) Heat resistant insulated wire
JP3436950B2 (en) Heat-resistant coating materials and heat-resistant insulated wires
JPS63250011A (en) Heat resistant wire
JPS63250012A (en) Heat resisting insulated wire
JP2000011768A (en) Inorganic winding wire
JP3103089B2 (en) Heat resistant coil
JPS6362042B2 (en)
JP2000336307A (en) Heat-resistant insulating coating and heat-resistant insulated wire
JPH07296648A (en) High heat resistant insulated wire
JPH0778519A (en) Insulated electric wire
JPS58212114A (en) Impregnation treatment of coil