JP2709593B2 - Heat-resistant insulated wire - Google Patents
Heat-resistant insulated wireInfo
- Publication number
- JP2709593B2 JP2709593B2 JP62054481A JP5448187A JP2709593B2 JP 2709593 B2 JP2709593 B2 JP 2709593B2 JP 62054481 A JP62054481 A JP 62054481A JP 5448187 A JP5448187 A JP 5448187A JP 2709593 B2 JP2709593 B2 JP 2709593B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- heat
- weight
- polytitanocarbosilane
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
- Organic Insulating Materials (AREA)
- Insulated Conductors (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、電気機器の巻線として特に好適に用いられ
る耐熱絶縁電線に関するものである。
従来の技術
従来、耐熱絶縁電線としては、ポリイミド線、ポリア
ミドイミド線などが知られているが、これらは絶縁層の
構成材が有機物であるために耐熱性に自ずから限界があ
り、その最高使用温度は通常250℃程度までとされてい
る。最近、原子力発電、地熱発電、その他特殊な環境下
での使用を目的として300℃以上の高温に耐える巻線の
要求がある。この要求に対して種々の無機物含有塗料を
絶縁層構成材として用いる検討がなされているが、得ら
れた無機質絶縁電線は一般的に硬くて脆いために、可撓
性が悪くコイル巻き加工時に皮膜ワレが生じたり皮膜が
剥離したりする。
解決を要すべき問題点
ところで、最近開発されたポリチタノカルボシラン樹
脂は高温雰囲気下で徐々にセラミック化していく性質を
有しており、このため該樹脂からなる塗料の焼付皮膜は
長期にわたって優れた耐熱性を持続する長所を有する。
しかしながら該焼付皮膜は、脆くて可撓性が悪い欠点が
ある。
本発明は、ポリチタノカルボシラン樹脂焼付皮膜の上
記した問題を解決し、高温雰囲気下でも皮膜保持性の優
れた耐熱絶縁電線を提供しようとするものである。
問題点を解決するための手段
上記の問題点を解決するために、本発明においては、
ポリチタノカルボシラン樹脂、セラミック化し得るシリ
コーン樹脂、および無機質充填剤とからなる塗料を導体
上に塗布・焼付してなることを特徴とする耐熱絶縁電線
を提案する。
作用並びに効果
本発明において用いるセラミック化し得るシリコーン
樹脂は、高温度下において硬化してセラミック化する性
質を有するものであるが、通常のエナメル線製造におけ
る焼付時の温度、時間条件程度で硬化した場合には硬化
後においても良好な可撓性を示すものである。セラミッ
ク化し得るシリコーン樹脂のこの性質と無機質充填剤の
有する耐熱性向上効果との協調作用により、ポリチタノ
カルボシラン樹脂の優れた耐熱性を損なうことなくその
可撓性が改善される。したがって、本発明の耐熱絶縁電
線は、前記した原子力発電、地熱発電その他特殊な高温
環境下での使用の要求に応えることができる。
本発明において用いるポリチタノカルボシラン樹脂
は、たとえばジメチルジクロロシランの脱塩素重縮合反
応により合成されるポリジメチルシランに、ジフェニル
ジクロロシランと硼酸との重縮合により得られるポリボ
ロジフェニルシロキサンおよびチタン化合物とを添加し
て加熱縮合して得られる。該樹脂の塗料の市販品として
は、たとえば宇部興産社製のチラノコート(濃度50重量
%)がある。
本発明において用いるセラミック化し得るシリコン樹
脂(以下においては、簡単にシリコン樹脂と略す。)と
しては、たとえば下記の(1)〜(5)の5成分からな
る組成物を例示し得る。かかる組成物の市販品例とし
て、トーレシリコン社製の商品名AY49−208(濃度85重
量%)がある。
(1)1分子中に少なくとも2個のオレフィン性不飽和
結合含有基および1分子中に少なくとも2個のアルコキ
シ基を有するシリコーン共重合体、
(2)1分子中に少なくとも2個のオレフィン性不飽和
結合含有基を有するオルガノポリシロキサン、
(3)1分子中に少なくとも2個のけい素原子結合水素
原子を有するオルガノポリシロキサン、
(4)セラミック物質、たとえばタルク、酸化アルミニ
ウム、タルク、雲母、酸化硼酸、粘土鉱物(ガラス、ア
スベスト、カオリナイト、モンモリロナイトなど)、酸
化ジルコニウム、酸化鉛、酸化亜鉛、酸化マグネシウ
ム、タングステン、チタニウムカーバイド、モリブデン
カーバイド、シリコーンカーバイド、ジルコニアチタ
ン、ニトロホウ素、窒化ホウ素、アルミン酸ナトリウ
ム、チタン酸カリウム、ケイ酸カリウム、ケイ酸アルミ
ニウム、ケイ酸マグネシウム、ケイ酸亜鉛、ケイ酸ジル
コニウム、ケイ酸チタニウム、ケイ酸カルシウムアルミ
ニウム、ケイ酸リチウムアルミニウムなど、
(5)付加反応触媒、(該付加反応触媒としては、オレ
フィン性不飽和含有基ケイ素原子に結合した水素原子の
付加反応に有効な各種の触媒、たとえば微粉砕元素状白
金、炭素粉末上に分散させた微粉砕白金、塩化白金酸、
塩化白金酸とオレフィン類の配位化合物、塩化白金酸と
ビニルシロキサンの配位化合物、テトラキス(トリフェ
ニルホスフィン)パラジウム、パラジウム黒とトリフェ
ニルホスフィンの混合物、ロジウム触媒などが例示され
る。)
無機質充填剤としては、酸化アルミニウム、タルク、
雲母、酸化硼酸、粘土鉱物(ガラス、アスベスト、カオ
リナイトなど)あるいはその他上記のセラミック物質と
して例示したもの、あるいはそれらの数種の金属酸化物
を混合溶融したセラミックフリットなどが例示される。
これらは単独で使用してもよく、また2種以上を混合使
用してもよい。またこれらは天然産物でも合成品でもよ
いが、いずれであっても平均粒径が50μm以下、特に10
μm以下の微粉末が望ましい。
本発明において、ポリチタノカルボシラン樹脂とシリ
コーン樹脂との配合比は、ポリチタノカルボシラン樹脂
100重量部あたりシリコーン樹脂10〜500重量部、好まし
くは15〜400重量部である。また無機質充填剤の使用量
は、ポリチタノカルボシラン樹脂とシリコーン樹脂との
合計量100重量部あたり10〜250重量部、好ましくは15〜
200重量部の範囲がよい。
シリコーン樹脂の配合量が、ポリチタノカルボシラン
樹脂100重量部あたり10重量部未満であると、焼付塗膜
の可撓性、コイル巻加工性が悪くなり、逆に500重量部
を越えると、無機質充填剤の共存下であっても焼付塗膜
が軟らかくなってコイル巻加工性が悪くなる。一方無機
質充填剤の配合量が、ポリチタノカルボシラン樹脂とシ
リコーン樹脂との合計量100重量部あたり10重量部未満
であると、加熱減量が大きくなり逆に300重量部を越え
ると塗膜の可撓性、コイル巻加工性が低下する。
ポリチタノカルボシラン樹脂、シリコーン樹脂および
無機質充填剤は、たとえば上記に示す比率で適当な有機
溶剤に溶解又は分散して、あるいは有機溶剤を使用する
ことなくそれら成分同士を均一に混合して塗料とするこ
とができ、また本発明の耐熱絶縁電線は、かくして得た
塗料を銅線、アルミニウム線、好ましくはNiメッキ銅
線、Agメッキ銅線、ステンレスクラッド銅線などのメッ
キ銅線に通常の方法で塗布焼付けて製造することができ
る。
上記の有機溶剤としては、たとえばトルエン、キシレ
ンなどの芳香族炭化水素系溶剤、フェノール系溶剤、N
−メチル−2−ピロリドンなどの極性溶剤などが用いら
れる。またポリチタノカルボシラン樹脂、シリコーン樹
脂および無機質充填剤からなる塗料には、必要に応じて
シリコーン樹脂の硬化促進剤、着色顔料、焼付硬化触
媒、あるいはその他の添加剤を添加してもよい。
本発明においては、ポリチタノカルボシラン樹脂、シ
リコーン樹脂および無機質充填剤からなる塗料を塗布焼
付けて形成した層の上にさらに有機樹脂からなる絶縁層
を設けることが好ましく、かくすると少なくとも常温に
おける電線の可撓性やコイル巻き加工性が一層改善され
る。
上記の有機樹脂としては、勿論耐熱性のもの程好まし
く、たとえばポリエステル、ポリエステルイミド、ポリ
イミド、ポリアミドイミドなどである。それら耐熱性有
機樹脂の塗料の市販品としては、日東電工社製のDE220G
T1(濃度45重量%)、日蝕スケネクタディ社製のIsomid
40VH(濃度42重量%)、東レ社製のトレニース#3000
(濃度22重量%)、日立化成社製のHI405−30(濃度30
重量%)などが例示される。この容器樹脂絶縁層の高さ
は、1〜30μm程度好ましく、1μm未満であると上記
した一層の可撓性、コイル巻き加工性の改善効果が期待
できず、一方30μmより厚いと本発明の絶縁電線の耐熱
性に悪影響を及ぼす可能性があり、また電線のスペース
ファクターが低下する。
実施例
以下実施例並びに比較例により、本発明を一層詳細に
説明する。
実施例1
ポリチタノカルボシラン樹脂(宇部興産社製、商品名
チラノコート、濃度50重量%)500g、シリコーン樹脂
(トーレシリコーン社製、商品名AY49−208、濃度50重
量%)500g及び酸化アルミニウム(日軽化工社製、商品
名LS23)400gと均一に混合して得た塗料を外径1.0mmの
ニッケルメッキ(メッキ厚1.0μm)銅線上に焼付温度4
00℃、焼付速度3.5m/minで6回塗布焼付けて焼付層厚40
μmの耐熱電線を得た。
実施例2
ポリチタノカルボシラン樹脂(宇部興産社製、商品名
チラノコート、濃度50重量%)500gと、シリコーン樹脂
(トーレシリコーン社製、商品名AY49−208、濃度85
%)400gおよび酸化マグネシウム350gとを均一に混合し
て得た塗料を外径1.0mmのニッケルメッキ(メッキ厚1.0
μm)銅線上に焼付温度400℃、焼付速度3.5m/minで6
回塗布焼付けて焼付層厚40μmの耐熱電線を得た。
実施例3
実施例1で得た耐熱電線の上にポリイミド樹脂(トー
レ社製、トレニース#3000、濃度22重量%)を焼付温度
400℃、焼付速度3.5m/minの条件で2回塗布焼付けし、
全皮膜厚45μmの耐熱電線を得た。
実施例4
実施例2で得た耐熱電線の上にポリアミドイミド樹脂
(日立化成社製、HI405−30、濃度30重量%)を焼付温
度400℃、焼付速度3.5m/minの条件で2回塗布焼付け
し、全皮膜厚48uの耐熱電線を得た。
比較例1
ポリチタノカルボシラン樹脂(宇部興産社製、商品名
チラノコート、濃度50重量%)を直径1.0mmのニッケル
メッキ(メッキ厚1.0μm)銅線上に焼付温度400℃、焼
付速度3.5m/minの条件で6回塗布焼付けて、焼付層厚40
μmの耐熱銅線を得た。
比較例2
比較例1で得られた耐熱電線の上にポリイミド樹脂
(トーレ社製、トレニース#3000、濃度22重量%)を焼
付温度400℃、焼付速度3.5m/minの条件で2回塗布焼付
けし、全皮膜厚45μmの耐熱電線を得た。
比較例3
シリコーン樹脂(トーレシリコーン社製、商品名AY49
−208、濃度85重量%)を直径1.0mmのニッケルミッキ
(メッキ厚1.0μm)銅線上に焼付温度400℃、焼付速度
3.5m/minの条件で6回塗布焼付けて、焼付層厚40μmの
耐熱電線を得た。
比較例4
比較例3で得られた耐熱電線の上にポリイミド樹脂
(トーレ社製、トレニース#3000、濃度22重量%)を焼
付温度400℃、焼付速度3.5m/minの条件で2回塗布焼付
けし、全皮膜厚45μmの耐熱電線を得た。
実施例1〜4および比較例1〜4の各絶縁電線の特性
を下表に示す。 Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant insulated wire particularly suitably used as a winding of an electric device. 2. Description of the Related Art Hitherto, as heat-resistant insulated wires, polyimide wires, polyamide-imide wires, and the like are known, but since the constituent material of the insulating layer is an organic material, there is a natural limit to heat resistance. Is usually up to about 250 ° C. Recently, there is a demand for a winding capable of withstanding a high temperature of 300 ° C. or more for use in nuclear power, geothermal power, and other special environments. In response to this requirement, various inorganic-containing paints have been studied for use as a constituent material of the insulating layer. However, since the obtained inorganic insulated wires are generally hard and brittle, they have poor flexibility and thus have poor flexibility during coil winding. Cracks occur or the film peels. Problems to be Solved By the way, recently developed polytitanocarbosilane resins have the property of gradually becoming ceramic under a high-temperature atmosphere. It has the advantage of maintaining excellent heat resistance.
However, the baked film has a disadvantage that it is brittle and has poor flexibility. An object of the present invention is to solve the above-mentioned problems of the baked film of polytitanocarbosilane resin and to provide a heat-resistant insulated wire having excellent film retention even in a high-temperature atmosphere. Means for Solving the Problems In order to solve the above problems, in the present invention,
We propose a heat-resistant insulated wire characterized in that a paint composed of a polytitanocarbosilane resin, a silicone resin that can be turned into a ceramic, and an inorganic filler is applied and baked on a conductor. The silicone resin which can be ceramized used in the present invention has the property of being cured at high temperature to be ceramized, but is cured at about the temperature and time conditions at the time of baking in ordinary enamel wire production. Shows good flexibility even after curing. The coordination of this property of the silicone resin which can be ceramicized and the effect of improving the heat resistance of the inorganic filler improves the flexibility of the polytitanocarbosilane resin without impairing its excellent heat resistance. Therefore, the heat-resistant insulated wire of the present invention can meet the requirements for use in nuclear power generation, geothermal power generation, and other special high-temperature environments. The polytitanocarbosilane resin used in the present invention is, for example, polydimethyldisiloxane synthesized by dechlorination polycondensation reaction of dimethyldichlorosilane, polyborodiphenylsiloxane obtained by polycondensation of diphenyldichlorosilane and boric acid, and a titanium compound. And heat condensation. As a commercial product of the resin paint, there is, for example, Tyrannocoat (concentration: 50% by weight) manufactured by Ube Industries. Examples of the silicon resin that can be made into a ceramic (hereinafter simply abbreviated to silicon resin) used in the present invention include, for example, a composition composed of the following five components (1) to (5). An example of a commercially available product of such a composition is AY49-208 (trade name: 85% by weight) manufactured by Toray Silicon Co., Ltd. (1) a silicone copolymer having at least two olefinically unsaturated bond-containing groups in one molecule and at least two alkoxy groups in one molecule; and (2) at least two olefinically unsaturated groups in one molecule. (3) an organopolysiloxane having at least two silicon-bonded hydrogen atoms per molecule; (4) a ceramic material such as talc, aluminum oxide, talc, mica, oxidized Boric acid, clay minerals (glass, asbestos, kaolinite, montmorillonite, etc.), zirconium oxide, lead oxide, zinc oxide, magnesium oxide, tungsten, titanium carbide, molybdenum carbide, silicone carbide, titanium zirconia, nitroboron, boron nitride, aluminate Sodium, titanium Potassium, potassium silicate, aluminum silicate, magnesium silicate, zinc silicate, zirconium silicate, titanium silicate, calcium aluminum silicate, lithium aluminum silicate, etc. (5) Addition reaction catalyst, (as the addition reaction catalyst Are various catalysts effective for the addition reaction of hydrogen atoms bonded to the olefinically unsaturated group-containing silicon atom, for example, finely divided elemental platinum, finely divided platinum dispersed on carbon powder, chloroplatinic acid,
Coordination compounds of chloroplatinic acid and olefins, coordination compounds of chloroplatinic acid and vinylsiloxane, tetrakis (triphenylphosphine) palladium, a mixture of palladium black and triphenylphosphine, and a rhodium catalyst are exemplified. ) Inorganic fillers include aluminum oxide, talc,
Examples thereof include mica, boric acid, clay minerals (glass, asbestos, kaolinite, etc.) or the above-mentioned ceramic substances, or a ceramic frit obtained by mixing and melting several kinds of metal oxides.
These may be used alone or as a mixture of two or more. These may be natural products or synthetic products, but in any case, the average particle size is 50 μm or less, particularly 10 μm or less.
Fine powder having a size of not more than μm is desirable. In the present invention, the compounding ratio of the polytitanocarbosilane resin and the silicone resin is
The silicone resin is used in an amount of 10 to 500 parts by weight, preferably 15 to 400 parts by weight, per 100 parts by weight. The amount of the inorganic filler used is 10 to 250 parts by weight, preferably 15 to 250 parts by weight, per 100 parts by weight of the total amount of the polytitanocarbosilane resin and the silicone resin.
A range of 200 parts by weight is good. If the compounding amount of the silicone resin is less than 10 parts by weight per 100 parts by weight of the polytitanocarbosilane resin, the flexibility of the baked coating film, the coil winding processability deteriorates, and if it exceeds 500 parts by weight, Even in the presence of an inorganic filler, the baked coating film becomes soft and the coil winding processability deteriorates. On the other hand, if the compounding amount of the inorganic filler is less than 10 parts by weight per 100 parts by weight of the total amount of the polytitanocarbosilane resin and the silicone resin, the heating loss increases and conversely, if the amount exceeds 300 parts by weight, Flexibility and coil winding workability decrease. The polytitanocarbosilane resin, the silicone resin and the inorganic filler may be dissolved or dispersed in an appropriate organic solvent in the ratio shown above, for example, or the components may be uniformly mixed without using an organic solvent to form a coating. In addition, the heat-resistant insulated wire of the present invention is obtained by coating the paint thus obtained on a copper wire, an aluminum wire, preferably a Ni-plated copper wire, an Ag-plated copper wire, or a plated copper wire such as a stainless-clad copper wire. It can be manufactured by coating and baking. Examples of the organic solvent include aromatic hydrocarbon solvents such as toluene and xylene, phenol solvents, N
A polar solvent such as -methyl-2-pyrrolidone is used. If necessary, a curing agent for the silicone resin, a coloring pigment, a baking curing catalyst, or other additives may be added to the coating composed of the polytitanocarbosilane resin, the silicone resin and the inorganic filler. In the present invention, it is preferable to further provide an insulating layer made of an organic resin on a layer formed by applying and baking a coating made of a polytitanocarbosilane resin, a silicone resin, and an inorganic filler, and thus, at least the electric wire at room temperature. And the coil winding processability are further improved. Of course, the above organic resin is preferably as heat resistant as possible, and examples thereof include polyester, polyesterimide, polyimide, and polyamideimide. Commercial products of these heat-resistant organic resin paints include DE220G manufactured by Nitto Denko Corporation.
T1 (45% by weight), Isomid manufactured by Eclipse Schenectady
40VH (concentration 42% by weight), Toray's Treenice # 3000
(Concentration 22% by weight), Hitachi Chemical HI405-30 (concentration 30
% By weight). The height of the resin insulating layer of the container is preferably about 1 to 30 μm, and if it is less than 1 μm, the above-mentioned effect of improving the flexibility and coil winding property cannot be expected. The heat resistance of the wire may be adversely affected, and the space factor of the wire decreases. Examples Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. Example 1 500 g of a polytitanocarbosilane resin (manufactured by Ube Industries, trade name Tyrannocoat, concentration 50% by weight), 500 g of a silicone resin (manufactured by Toray Silicone Co., trade name AY49-208, concentration 50% by weight) Nikkei Kakosha Co., Ltd., product name LS23) 400 g of the paint obtained by uniformly mixing the mixture onto a nickel-plated (1.0 mm thick plating) copper wire with an outer diameter of 1.0 mm.
Apply and bake six times at 00 ° C and a baking speed of 3.5 m / min.
A μm heat-resistant electric wire was obtained. Example 2 500 g of polytitanocarbosilane resin (manufactured by Ube Industries, trade name: Tyrannocoat, concentration: 50% by weight) and silicone resin (manufactured by Toray Silicone Co., trade name: AY49-208, concentration: 85)
%) 400 g of magnesium oxide and 350 g of magnesium oxide are uniformly mixed, and the resulting coating is nickel-plated with an outer diameter of 1.0 mm (plating thickness 1.0 mm).
μm) 6 on a copper wire at a baking temperature of 400 ° C and a baking speed of 3.5 m / min.
The coating was baked twice to obtain a heat-resistant electric wire having a baked layer thickness of 40 μm. Example 3 A baking temperature of a polyimide resin (Trenice # 3000, concentration 22% by weight, manufactured by Toray Co., Ltd.) on the heat-resistant electric wire obtained in Example 1.
Baking twice at 400 ° C and baking speed of 3.5m / min.
A heat-resistant electric wire having a total film thickness of 45 μm was obtained. Example 4 A polyamideimide resin (HI405-30, manufactured by Hitachi Chemical Co., Ltd., concentration: 30% by weight) was applied twice on the heat-resistant electric wire obtained in Example 2 at a baking temperature of 400 ° C. and a baking speed of 3.5 m / min. It was baked to obtain a heat-resistant electric wire having a total film thickness of 48u. Comparative Example 1 A polytitanocarbosilane resin (trade name: Tyrancoat, manufactured by Ube Industries, concentration: 50% by weight) was baked onto a nickel-plated (1.0 mm thick plating) copper wire having a diameter of 1.0 mm at a baking temperature of 400 ° C. and a baking speed of 3.5 m / Apply and bake 6 times under min condition, baking layer thickness 40
A μm heat-resistant copper wire was obtained. COMPARATIVE EXAMPLE 2 A polyimide resin (Trenice # 3000, concentration: 22% by weight) was applied onto the heat-resistant electric wire obtained in Comparative Example 1 twice at a baking temperature of 400 ° C. and a baking speed of 3.5 m / min. Thus, a heat-resistant electric wire having a total film thickness of 45 μm was obtained. Comparative Example 3 Silicone resin (trade name: AY49, manufactured by Toray Silicone Co., Ltd.)
-208, concentration 85% by weight) Nickel Micke (plating thickness 1.0μm) copper wire with a diameter of 1.0mm, baking temperature 400 ° C, baking speed
The coating was baked six times under the condition of 3.5 m / min to obtain a heat-resistant electric wire having a baked layer thickness of 40 μm. Comparative Example 4 A polyimide resin (Trenice # 3000, concentration 22% by weight, manufactured by Toray Industries Co., Ltd.) was applied and baked twice on the heat-resistant wire obtained in Comparative Example 3 at a baking temperature of 400 ° C. and a baking speed of 3.5 m / min. Thus, a heat-resistant electric wire having a total film thickness of 45 μm was obtained. The characteristics of the insulated wires of Examples 1 to 4 and Comparative Examples 1 to 4 are shown in the table below.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−12672(JP,A) 特開 昭60−120755(JP,A) 特開 昭62−138574(JP,A) 特開 昭62−48773(JP,A) 特開 昭58−4209(JP,A) 特開 昭59−16210(JP,A) 特開 昭62−227981(JP,A) 特開 昭62−168376(JP,A) 特開 昭62−219486(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-63-12672 (JP, A) JP-A-60-120755 (JP, A) JP-A-62-138574 (JP, A) JP-A-62-48773 (JP, A) JP-A-58-4209 (JP, A) JP-A-59-16210 (JP, A) JP-A-62-29781 (JP, A) JP-A-62-168376 (JP, A) JP-A-62-219486 (JP, A)
Claims (1)
シリコーン樹脂、および無機質充填剤とからなる塗料を
導体上に塗布焼付してなることを特徴とする耐熱絶縁電
線。 2.ポリチタノカルボシラン樹脂100重量部あたりのセ
ラミック化し得るシリコーン樹脂の量が10〜500重量部
であり、ポリチタノカルボシラン樹脂とセラミック化し
得るシリコーン樹脂との合計量100重量部あたりの無機
充填剤の使用量が10〜250重量部である特許請求の範囲
第1項記載の耐熱絶縁電線。 3.ポリチタノカルボシラン樹脂、セラミック化し得る
シリコーン樹脂、および無機質充填剤とからなる塗料の
塗布焼付層の上に有機樹脂からなる絶縁層を有する特許
請求の範囲第1項または第2項に記載の耐熱絶縁電線。(57) [Claims] A heat-resistant insulated wire, characterized in that a paint comprising a polytitanocarbosilane resin, a silicone resin that can be turned into a ceramic, and an inorganic filler is applied and baked on a conductor. 2. The amount of the silicone resin that can be ceramized per 100 parts by weight of the polytitanocarbosilane resin is 10 to 500 parts by weight, and the inorganic filler per 100 parts by weight of the total amount of the polytitanocarbosilane resin and the silicone resin that can be ceramized 2. The heat-resistant insulated wire according to claim 1, wherein the amount of the agent used is 10 to 250 parts by weight. 3. 3. The method according to claim 1, wherein an insulating layer made of an organic resin is provided on an applied and baked layer of a paint made of a polytitanocarbosilane resin, a silicone resin capable of being ceramized, and an inorganic filler. Heat-resistant insulated wires.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62054481A JP2709593B2 (en) | 1987-03-10 | 1987-03-10 | Heat-resistant insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62054481A JP2709593B2 (en) | 1987-03-10 | 1987-03-10 | Heat-resistant insulated wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63221509A JPS63221509A (en) | 1988-09-14 |
JP2709593B2 true JP2709593B2 (en) | 1998-02-04 |
Family
ID=12971849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62054481A Expired - Fee Related JP2709593B2 (en) | 1987-03-10 | 1987-03-10 | Heat-resistant insulated wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2709593B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2698883B2 (en) * | 1989-12-05 | 1998-01-19 | 三菱電線工業株式会社 | Insulated wire |
JP2560680B2 (en) * | 1991-05-07 | 1996-12-04 | 日立電線株式会社 | Heat-resistant insulated wire and method of manufacturing the same, and method of manufacturing heat-resistant insulating material |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS584209A (en) * | 1981-06-30 | 1983-01-11 | 昭和電線電纜株式会社 | Heat resistant insulated wire |
JPS62168376A (en) * | 1986-01-20 | 1987-07-24 | 松下電器産業株式会社 | Panel heater |
JPS62219486A (en) * | 1986-03-20 | 1987-09-26 | 松下電器産業株式会社 | Panel heating element |
-
1987
- 1987-03-10 JP JP62054481A patent/JP2709593B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63221509A (en) | 1988-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1133649A (en) | Silicone compositions which are ceramified at high temperatures | |
US6991751B2 (en) | Electroconductive silicone pressure-sensitive adhesive composition | |
JPS6254826B2 (en) | ||
CN101954766A (en) | The heat-conducting silicon rubber composite sheet | |
TW200415013A (en) | Heat conductive silicone rubber composite sheet | |
GB2101147A (en) | Polyborosiloxane composition for insulation of electric conductors | |
JP2709593B2 (en) | Heat-resistant insulated wire | |
JP2709592B2 (en) | Heat-resistant insulated wire | |
JPH0616937A (en) | Flame-retardant silicone gel composition and its cured material | |
JPH05239359A (en) | Silicone resin composition and heat-resistant electrically insulated electric wire | |
JPS6139692B2 (en) | ||
JPS639326B2 (en) | ||
JPH061847A (en) | Silicone resin composition and heat-resistant insulated wire | |
JPH04323264A (en) | Silicone resin composition and heat-resistant insulated wire | |
JPH0423362B2 (en) | ||
JP2859904B2 (en) | Heat resistant coil | |
JPH04288381A (en) | Heat-resistant coating material | |
JP3086466B2 (en) | Heat resistant wire | |
JP3103089B2 (en) | Heat resistant coil | |
JPH0393107A (en) | Heat resistant insulating electric wire and manufacture thereof | |
JP2909768B2 (en) | Heat-resistant insulated wire and method of manufacturing heat-resistant insulated wire | |
JP2700632B2 (en) | Heat resistant insulated wire | |
JP2751189B2 (en) | Heat and radiation resistant insulated wire manufacturing method | |
JPH09134614A (en) | Heat resistant insulated wire | |
JPH07296648A (en) | High heat resistant insulated wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |