JPH06204572A - Manufacture of thermal generator element - Google Patents

Manufacture of thermal generator element

Info

Publication number
JPH06204572A
JPH06204572A JP4348962A JP34896292A JPH06204572A JP H06204572 A JPH06204572 A JP H06204572A JP 4348962 A JP4348962 A JP 4348962A JP 34896292 A JP34896292 A JP 34896292A JP H06204572 A JPH06204572 A JP H06204572A
Authority
JP
Japan
Prior art keywords
particles
type
type semiconductor
cuo
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4348962A
Other languages
Japanese (ja)
Other versions
JP3185429B2 (en
Inventor
Yuichiro Hara
裕一郎 原
Toshikazu Takeda
敏和 竹田
Masayuki Kato
雅之 加藤
Shigeo Takita
茂生 瀧田
Eiji Okumura
英二 奥村
Yutaka Matsumi
裕 松見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP34896292A priority Critical patent/JP3185429B2/en
Publication of JPH06204572A publication Critical patent/JPH06204572A/en
Application granted granted Critical
Publication of JP3185429B2 publication Critical patent/JP3185429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for manufacturing a thermal generator element by which a thermal generator element having an excellent junction strength can be made regardless what material a p-type and an n-type semiconductors are made of. CONSTITUTION:CuO child particles 15 are attached around a mother particle 13 which is formed of material powder of a p-type semiconductor, to form a p-type capsule particle 16. On the other hand, CuO child particles 15 are attached around a mother particle 14 which is made of material powder 12 of an n-type semiconductor. The p-type capsule particles 16 and the n-type capsule particles 17 are separately put into one and the same molding die and then are baked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱電対等に用いられる熱
発電素子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric generator used for a thermocouple or the like.

【0002】[0002]

【従来の技術】熱発電素子は周知の通り、熱電効果を利
用して熱エネルギーから電気エネルギーに、或いはその
反対に変換する素子であり、代表的なものとして、熱電
対や電子冷凍素子(ペルチェ素子)等が挙げられる。こ
の熱電対は二種の金属線を接続して閉回路を作り、二つ
の接点を異なる温度に保つと、これら接点間に熱起電力
が生ずるというゼーベック効果を利用したもので、両端
の電圧を測定して温度を測るものである。一方、電子冷
凍素子は、異種の導体や半導体の接触面を通して電流が
流れるとき、その接触面でジュール熱以外の熱の発生、
吸収が起こるペルチェ効果を利用したものであり、マイ
ナス20℃〜プラス70℃程度の範囲で精密に温度制御
が必要な場合等に良く使用されている。
2. Description of the Related Art As is well known, a thermoelectric power generation element is an element that converts thermal energy into electrical energy by utilizing the thermoelectric effect or vice versa. Typical examples are thermocouples and electronic refrigeration elements (Peltier elements). Element) and the like. This thermocouple uses the Seebeck effect in which two types of metal wires are connected to form a closed circuit, and when two contacts are kept at different temperatures, a thermoelectromotive force is generated between these contacts. It measures and measures the temperature. On the other hand, the electronic refrigeration element generates heat other than Joule heat at the contact surface when a current flows through the contact surface between different kinds of conductors or semiconductors.
It utilizes the Peltier effect in which absorption occurs, and is often used when precise temperature control is required in the range of -20 ° C to + 70 ° C.

【0003】この熱発電素子は、熱電材料からなるp型
半導体とn型半導体とによって形成されている。具体的
には、図5(a)に示すように、p型半導体1とn型半
導体2とを所定の成形型内で焼結成形し、これらを互い
に直接接合してp−n接合部3を有する直接接合型の熱
発電素子4を形成していた。
This thermoelectric generator is formed of a p-type semiconductor and an n-type semiconductor made of a thermoelectric material. Specifically, as shown in FIG. 5A, the p-type semiconductor 1 and the n-type semiconductor 2 are sinter-molded in a predetermined molding die, and these are directly joined to each other to form the pn junction 3 The direct-junction type thermoelectric generator 4 having the above was formed.

【0004】また、図5(b)に示すように、p型半導
体1とn型半導体2とを別個に焼結成形し、これらを導
電性を有する金属板5で間接接合して間接接合型の熱発
電素子6を形成していた。上記金属板5には熱歪み緩和
部5aが形成されており、該金属板5と各半導体1,2
とはロウ付け7によって接合されていた。
Further, as shown in FIG. 5 (b), the p-type semiconductor 1 and the n-type semiconductor 2 are separately sintered and formed, and these are indirectly joined by a conductive metal plate 5 to form an indirect joint type. Was formed. The metal plate 5 is provided with a thermal strain relaxation portion 5a, and the metal plate 5 and the semiconductors 1 and 2 are formed.
And were joined by brazing 7.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来の技術
には、以下のような問題があった。即ち、直接接合型の
熱発電素子4に使用できるp型半導体1及びn型半導体
2は、例えば、SiGeやFeSi2 等のように構造が
同じ材料で、熱膨脹率の差の少ない材料に限定されると
いう問題があった。
By the way, the conventional techniques have the following problems. That is, the p-type semiconductor 1 and the n-type semiconductor 2 that can be used for the direct-junction type thermoelectric generator 4 are limited to materials having the same structure such as SiGe and FeSi 2 and having a small difference in thermal expansion coefficient. There was a problem that

【0006】また、間接接合型の熱発電素子6は、p型
半導体1及びn型半導体2を構成する材料を選ばない
が、上記金属板5の耐熱性やその接合強度に劣るという
問題があった。
The material for the p-type semiconductor 1 and the n-type semiconductor 2 is not selected for the indirect junction type thermoelectric generator 6, but there is a problem in that the heat resistance of the metal plate 5 and its joint strength are poor. It was

【0007】本発明の目的は、上記課題に鑑み、p型半
導体及びn型半導体を構成する材料を選ばず、接合強度
に優れた熱発電素子を得ることができる熱発電素子の製
造方法を提供することにある。
In view of the above problems, an object of the present invention is to provide a method for manufacturing a thermoelectric power generation element, which can obtain a thermoelectric power generation element excellent in bonding strength, regardless of the materials forming the p-type semiconductor and the n-type semiconductor. To do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成すべく、
本発明に係る熱発電素子の製造方法は、p型半導体の原
料粉末からなる母粒子の周囲にCuOの子粒子を付着さ
せてp型カプセル粒子を形成すると共に、n型半導体の
原料粉末からなる母粒子の周囲にCuOの子粒子を付着
させてn型カプセル粒子を形成し、一の成形型内に上記
p型カプセル粒子とn型カプセル粒子とを分割して装入
後、焼結成形してp型半導体とn型半導体とを直接接合
するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object,
In the method for manufacturing a thermoelectric generator according to the present invention, CuO child particles are attached to the periphery of mother particles made of p-type semiconductor raw material powder to form p-type capsule particles, and at the same time, made of n-type semiconductor raw material powder. CuO child particles are attached to the periphery of the mother particles to form n-type capsule particles, and the p-type capsule particles and the n-type capsule particles are separately charged into one molding die and then sintered and molded. The p-type semiconductor and the n-type semiconductor are directly joined to each other.

【0009】[0009]

【作用】上記構成によれば、p型カプセル粒子は、p型
半導体の原料粉末からなる母粒子の周囲にCuOの子粒
子を付着させて形成されている。一方、n型カプセル粒
子は、n型半導体の原料粉末からなる母粒子の周囲にC
uOの子粒子を付着させて形成されている。
According to the above construction, the p-type capsule particles are formed by adhering CuO child particles around the mother particles made of the p-type semiconductor raw material powder. On the other hand, the n-type capsule particles have C particles around the mother particles made of the n-type semiconductor raw material powder.
It is formed by attaching child particles of uO.

【0010】従って、これらp型カプセル粒子とn型カ
プセル粒子とを一の成形型内に分割して装入した後、焼
結成形すると、上記p型半導体とn型半導体とは直接接
合されるが、実際には、そのp−n接合部にはCuOが
介在して、CuO同士が接合された状態になる。
Therefore, when the p-type capsule particles and the n-type capsule particles are separately charged into one molding die and then sintered and molded, the p-type semiconductor and the n-type semiconductor are directly bonded. However, in reality, CuO intervenes in the pn junction and CuOs are joined together.

【0011】このように上記カプセル粒子の子粒子とし
てCuOを用いるのは、当該CuOが滑り性、通電性に
優れているからである。即ち、子粒子としてCuOを使
用すると、母粒子の粒界に均一に分散したCuOが焼結
時の滑り性を向上させると共に、焼結密度を向上させ、
これにより優れた接合強度を示すものである。
The reason why CuO is used as the child particles of the capsule particles is that the CuO has excellent slipperiness and electrical conductivity. That is, when CuO is used as the child particles, CuO uniformly dispersed in the grain boundaries of the mother particles improves the slidability during sintering and improves the sintering density,
This shows excellent bonding strength.

【0012】また、CuOの通電性により、例えば、焼
結法としてプラズマ焼結法を用いる場合、母粒子の粒界
に均一に分散したCuOによって局部通電が防止される
ものである。
Further, due to the conductivity of CuO, for example, when a plasma sintering method is used as a sintering method, CuO uniformly dispersed in the grain boundaries of the mother particles prevents local conduction.

【0013】[0013]

【実施例】以下、本発明に係る熱発電素子の製造方法の
好適一実施例を添付図面に基づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a method for manufacturing a thermoelectric generator according to the present invention will be described in detail below with reference to the accompanying drawings.

【0014】図1に示すように、先ず、FeとSiの粉
末中に、微量のMnを添加し、これをルツボに入れて高
周波加熱により溶融させてp型合金溶液と、同じく微量
のCoを添加して溶融させたn型合金溶液とを製造し
た。この時、混合するSiの量は、Feに対して約50
wt%程度が好ましい。尚、溶融温度は1300℃〜1
600℃の範囲とする。
As shown in FIG. 1, first, a small amount of Mn is added to Fe and Si powders, and this is put in a crucible and melted by high frequency heating to produce a p-type alloy solution and a small amount of Co. An n-type alloy solution added and melted was produced. At this time, the amount of Si mixed is about 50 with respect to Fe.
About wt% is preferable. The melting temperature is 1300 ° C to 1
It shall be in the range of 600 ° C.

【0015】次に、これらp型合金溶液及びn型合金溶
液をそれぞれ図2に示すようなガスアトマイズ装置を用
いてα−FeSi2 のp型半導体の原料粉末及びn型半
導体の原料粉末を形成する。これらの粉末粒径は、例え
ば、1〜10μm程度に形成する。
Next, the p-type alloy solution and the n-type alloy solution are respectively used as a raw material powder for p-type semiconductor and a raw material powder for n-type semiconductor of α-FeSi 2 by using a gas atomizing apparatus as shown in FIG. . The particle size of these powders is, for example, about 1 to 10 μm.

【0016】そして、図3に示すように、上記p型半導
体の原料粉末11とn型半導体の原料粉末12とを母粒
子13,14とし、これら母粒子13,14の周囲にC
uOからなる子粒子15を、静電付着法,機械的衝撃法
等の周知技術を用いてカプセル化し、p型カプセル粒子
16及びn型カプセル粒子17を形成する。尚、これら
カプセル粒子16,17中のCuOの混合割合は3wt
%とした。また、子粒子15の粒径は、母粒子13,1
4の粒径に対して、例えば、十分の一から二十分の一程
度に小さく設定することが望ましい。
As shown in FIG. 3, the p-type semiconductor raw material powder 11 and the n-type semiconductor raw material powder 12 are used as mother particles 13 and 14, and C around the mother particles 13 and 14.
The child particles 15 made of uO are encapsulated by a well-known technique such as an electrostatic adhesion method or a mechanical impact method to form p-type capsule particles 16 and n-type capsule particles 17. The mixing ratio of CuO in these capsule particles 16 and 17 is 3 wt.
%. In addition, the particle size of the child particles 15 is
For example, it is desirable to set the particle size of 4 to as small as about 1/10 to 1/20.

【0017】次に、上記p型カプセル粒子16とn型カ
プセル粒子17とをプラズマ焼結装置の一の成形型内に
分割して装入した。即ち、この成形型は、例えば、U字
状に形成されており、その屈曲部で上記p型カプセル粒
子16とn型カプセル粒子17とが接触するように分割
して装入した。
Next, the p-type capsule particles 16 and the n-type capsule particles 17 were separately charged into one mold of the plasma sintering apparatus. That is, this molding die is formed, for example, in a U shape, and the mold is divided and charged so that the p-type capsule particles 16 and the n-type capsule particles 17 are in contact with each other at the bent portion.

【0018】この装入後、上記プラズマ焼結装置によ
り、真空雰囲気下で約650℃で焼結し、α−FeSi
2 の金属相からβ−FeSi2 の半導体相へと相転移さ
せた。ここで、この相転移について説明すると、α相は
正方晶の金属であるが、β相は斜方晶の真性半導体であ
る。β−FeSi2 はα−FeSi2 とFeSi2 との
包析反応によって形成されるが、通常、この過程を相転
移と呼んでいる。
After this charging, the above-mentioned plasma sintering apparatus was used to sinter at about 650 ° C. in a vacuum atmosphere to obtain α-FeSi.
2 metal phase to beta-FeSi 2 semiconductor phases were phase transition. Explaining this phase transition, the α phase is a tetragonal metal, while the β phase is an orthorhombic intrinsic semiconductor. β-FeSi 2 is formed by the encapsulation reaction between α-FeSi 2 and FeSi 2, and this process is usually called a phase transition.

【0019】このようにしてp型半導体とn型半導体と
が直接接合された熱発電素子が製造されるものである。
Thus, the thermoelectric generator in which the p-type semiconductor and the n-type semiconductor are directly joined is manufactured.

【0020】次に、上記実施例における作用を述べる。Next, the operation of the above embodiment will be described.

【0021】本実施例の熱発電素子が製造方法によれ
ば、上記p型カプセル粒子16は、p型半導体の原料粉
末11からなる母粒子13の周囲にCuOの子粒子15
を付着させて形成されている。一方、上記n型カプセル
粒子17は、n型半導体の原料粉末12からなる母粒子
14の周囲にCuOの子粒子15を付着させて形成され
ている。これらカプセル粒子16,17はU字状の一の
成形型内にその屈曲部でこれらが接触するように分割し
て装入された後、プラズマ焼結装置により焼結成形され
る。
According to the method of manufacturing the thermoelectric generator of this embodiment, the p-type capsule particles 16 have CuO child particles 15 around the mother particles 13 made of the p-type semiconductor raw material powder 11.
Are formed by adhering. On the other hand, the n-type capsule particles 17 are formed by adhering CuO child particles 15 around the mother particles 14 made of the n-type semiconductor raw material powder 12. These capsule particles 16 and 17 are separately charged into a single U-shaped mold so that they come into contact with each other at their bent portions, and then sintered and molded by a plasma sintering device.

【0022】このように焼結成形されると、上述のよう
にβ−FeSi2 の半導体相へと相転移したp型半導体
及びn型半導体が形成され、これら半導体は直接接合さ
れて熱発電素子が形成されることになる。
When sintered and formed in this manner, a p-type semiconductor and an n-type semiconductor that have undergone a phase transition to the β-FeSi 2 semiconductor phase as described above are formed, and these semiconductors are directly bonded to each other to form a thermoelectric generator. Will be formed.

【0023】ところが実際には、図4に示すように、こ
の熱発電素子18のp−n接合部18aには上記子粒子
15としてのCuOが介在しており、該CuO同士が接
合された状態になっている。
Actually, however, as shown in FIG. 4, CuO as the child particles 15 is present in the pn junction 18a of the thermoelectric generator 18, and the CuOs are joined together. It has become.

【0024】本実施例のように上記カプセル粒子16,
17の子粒子15としてCuOを用いるのは、プラズマ
焼結時の滑り性、通電性を考慮したものである。即ち、
CuOは微粉末を得るのが容易である。これに対しCu
は、微粉末化すると酸化し易く、Cu自体としては微粉
末を得るのが難しい。このようにCuOが微粉末である
ため、粉末粒界に均一に分散し、焼結時の滑り性の向上
と焼結密度を向上が期待され、これにより優れた接合強
度を得ることができるものである。また、プラズマ焼結
法における通電性も、粉末粒界に均一に分散したCuO
のために局部通電が起き難い。さらに、実験よりCuO
でカプセル化したα−FeSi2 はβ−FeSi2 へ相
転移し易いことが判っている。
As in this embodiment, the capsule particles 16,
The reason why CuO is used as the child particles 15 of No. 17 is that the slidability and electric conductivity during plasma sintering are taken into consideration. That is,
CuO is easy to obtain a fine powder. On the other hand, Cu
Is easily oxidized when made into fine powder, and it is difficult to obtain fine powder as Cu itself. As described above, since CuO is a fine powder, it is expected to be uniformly dispersed in the powder grain boundaries to improve the slidability at the time of sintering and the sintering density, whereby excellent bonding strength can be obtained. Is. In addition, the electric conductivity in the plasma sintering method also shows that CuO dispersed uniformly in the powder grain boundaries.
Because of this, local energization is hard to occur. Furthermore, from the experiment, CuO
It is known that the α-FeSi 2 encapsulated in (3) easily undergoes a phase transition to β-FeSi 2 .

【0025】また、FeSi2 にCuOを大量に添加す
るとFeSi2 の性能低下を招くが、下記表1に示すよ
うに、数wt%の範囲であれば無添加の場合とその物性
値は近似し、熱発電素子18の性能上問題とならない。
Further, although leading to large amounts performance degradation of the FeSi 2 The addition of CuO into FeSi 2, as shown in Table 1, if the range of a few wt% case of no addition and its physical properties are similar Therefore, there is no problem in the performance of the thermoelectric generator 18.

【0026】[0026]

【表1】 [Table 1]

【0027】このように本実施例によって製造された熱
発電素子18は優れた熱電特性を示しながらも、p−n
接合部18aの機械的特性に優れているので、特に自動
車等の振動の多い場所での使用に適し、さらに長寿命化
を図ることができるものである。
As described above, the thermoelectric generator 18 manufactured according to the present embodiment exhibits excellent thermoelectric characteristics, but pn
Since the joining portion 18a has excellent mechanical characteristics, it is suitable for use particularly in a place where there is a lot of vibration such as an automobile, and can have a longer life.

【0028】[0028]

【発明の効果】以上述べたように、本発明に係る熱発電
素子の製造方法によれば、p型半導体及びn型半導体を
構成する材料を選ばず、接合強度に優れた熱発電素子を
得ることができるという優れた効果を発揮する。
As described above, according to the method of manufacturing a thermoelectric power generation element of the present invention, a thermoelectric power generation element having excellent bonding strength can be obtained regardless of the materials forming the p-type semiconductor and the n-type semiconductor. It has the excellent effect of being able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱発電素子の製造方法の一実施例
におけるp型半導体及びn型半導体の原料粉末の製造工
程を示す工程図である。
FIG. 1 is a process chart showing a manufacturing process of raw material powders of a p-type semiconductor and an n-type semiconductor in an embodiment of a method for manufacturing a thermoelectric generator according to the present invention.

【図2】本実施例に採用するガスアトマイズ装置の一例
を示す断面図である。
FIG. 2 is a cross-sectional view showing an example of a gas atomizing apparatus used in this embodiment.

【図3】本実施例におけるp型カプセル粒子及びn型カ
プセル粒子を示す概略図である。
FIG. 3 is a schematic view showing p-type capsule particles and n-type capsule particles in this example.

【図4】本実施例により製造された熱発電素子のp−n
接合状態を示す概略図である。
FIG. 4 shows a pn of the thermoelectric generator manufactured by this example.
It is a schematic diagram showing a joined state.

【図5】従来の熱発電素子を示す概略図である。FIG. 5 is a schematic view showing a conventional thermoelectric generator.

【符号の説明】 11 p型半導体の原料粉末 12 n型半導体の原料粉末 13,14 母粒子 15 子粒子 16 p型カプセル粒子 17 n型カプセル粒子 18 熱発電素子[Explanation of Codes] 11 p-type semiconductor raw material powder 12 n-type semiconductor raw material powder 13,14 mother particle 15 child particle 16 p-type capsule particle 17 n-type capsule particle 18 thermoelectric power generation element

フロントページの続き (72)発明者 瀧田 茂生 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 奥村 英二 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 松見 裕 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内Front page continuation (72) Inventor Shigeo Takita 8 Tsutana, Fujisawa City Kanagawa Prefecture, Isuzu Central Research Institute Co., Ltd. (72) Inventor Eiji Okumura 8th, Tsunatan Fujisawa City Kanagawa Prefecture, Isuzu Central Research Center Co., Ltd. (72 ) Inventor Hiroshi Matsumi 8 Tsutana, Fujisawa City, Kanagawa Prefecture Isuzu Central Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 p型半導体の原料粉末からなる母粒子の
周囲にCuOの子粒子を付着させてp型カプセル粒子を
形成すると共に、n型半導体の原料粉末からなる母粒子
の周囲にCuOの子粒子を付着させてn型カプセル粒子
を形成し、一の成形型内に上記p型カプセル粒子とn型
カプセル粒子とを分割して装入後、焼結成形してp型半
導体とn型半導体とを直接接合するようにしたことを特
徴とする熱発電素子の製造方法。
1. A p-type capsule particle is formed by adhering CuO child particles around mother particles made of p-type semiconductor raw material powder, and CuO particles are made around the mother particles made of n-type semiconductor raw material powder. Sub-particles are attached to form n-type capsule particles, and the p-type capsule particles and the n-type capsule particles are separately charged into one molding die, and then sintered and molded to form a p-type semiconductor and an n-type capsule particle. A method for manufacturing a thermoelectric generator, characterized in that it is directly joined to a semiconductor.
JP34896292A 1992-12-28 1992-12-28 Manufacturing method of thermoelectric generator Expired - Fee Related JP3185429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34896292A JP3185429B2 (en) 1992-12-28 1992-12-28 Manufacturing method of thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34896292A JP3185429B2 (en) 1992-12-28 1992-12-28 Manufacturing method of thermoelectric generator

Publications (2)

Publication Number Publication Date
JPH06204572A true JPH06204572A (en) 1994-07-22
JP3185429B2 JP3185429B2 (en) 2001-07-09

Family

ID=18400568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34896292A Expired - Fee Related JP3185429B2 (en) 1992-12-28 1992-12-28 Manufacturing method of thermoelectric generator

Country Status (1)

Country Link
JP (1) JP3185429B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190843A (en) * 2005-01-06 2006-07-20 Ricoh Co Ltd Thermoelectric conversion material precursor, thermoelectric conversion material powder and thermoelectric conversion material
JP2012523121A (en) * 2009-04-06 2012-09-27 スリーエム イノベイティブ プロパティズ カンパニー Composite thermoelectric material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190843A (en) * 2005-01-06 2006-07-20 Ricoh Co Ltd Thermoelectric conversion material precursor, thermoelectric conversion material powder and thermoelectric conversion material
JP2012523121A (en) * 2009-04-06 2012-09-27 スリーエム イノベイティブ プロパティズ カンパニー Composite thermoelectric material and method for producing the same

Also Published As

Publication number Publication date
JP3185429B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
JPH10510677A (en) High performance thermoelectric material and its preparation method
GB952678A (en) Composite thermoelectric elements and devices
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
KR100341669B1 (en) Thermoelectric conversion element
US3182391A (en) Process of preparing thermoelectric elements
US3086068A (en) Process for the preparation of thermo-electric elements
KR20100053893A (en) Thermoelectric materials
US3256702A (en) Thermoelectric unit and process of using to interconvert heat and electrical energy
CN105702847B (en) A kind of method of raising BiTeSe base N-type semiconductor pyroelectric material performances
KR101872598B1 (en) Method for fabricating thermoelectric module by using liquid spray process
JP3185429B2 (en) Manufacturing method of thermoelectric generator
US3256699A (en) Thermoelectric unit and process of using to interconvert heat and electrical energy
US3285019A (en) Two-phase thermoelectric body comprising a lead-tellurium matrix
US3434888A (en) Incased graphite segmented thermoelement
JP2001135865A (en) Thermoelectric conversion material and manufacturing method for it
JPH06204571A (en) Manufacture of composite thermoelectric material
JP3476343B2 (en) Thermoelectric conversion material
JPH0856020A (en) Thermoelectric material and thermionic element
US3285018A (en) Two-phase thermoelectric body comprising a silicon-carbon matrix
JP4253878B2 (en) Silicon-germanium-based thermoelectric material and method for producing the same
JP3404804B2 (en) Manufacturing method of thermoelectric material
JP2510158B2 (en) Thermoelectric element and manufacturing method thereof
US3256697A (en) Thermoelectric unit and process of using to interconvert heat and electrical energy
US3256698A (en) Thermoelectric unit and process of using to interconvert heat and electrical energy
US3256701A (en) Thermoelectric unit and process of using to interconvert heat and electrical energy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees