JPH06204067A - Manufacture of bonded magnet - Google Patents
Manufacture of bonded magnetInfo
- Publication number
- JPH06204067A JPH06204067A JP5000225A JP22593A JPH06204067A JP H06204067 A JPH06204067 A JP H06204067A JP 5000225 A JP5000225 A JP 5000225A JP 22593 A JP22593 A JP 22593A JP H06204067 A JPH06204067 A JP H06204067A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- magnet
- bonded magnet
- molding
- liquid substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/083—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,ボンド磁石の製造方法
に関し,詳しくは,圧縮成形型ボンド磁石の製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonded magnet manufacturing method, and more particularly to a compression molded bond magnet manufacturing method.
【0002】[0002]
【従来の技術】永久磁石は,各種の電気製品から小型精
密機器,各アクチュエータまで幅広い分野で使用されて
おり,重要な電気,電子材料のひとつに挙げられる。近
年の機器の小型化,高効率化の要求から高特性の永久磁
石が求められている。これらの要求に対応して,高特性
を有する永久磁石の需要がここ数年急速に伸びている。
ここで永久磁石は大別すると,焼結磁石とボンド磁石に
分けられ,ボンド磁石は次に挙げるような焼結磁石では
得られない利点を有しており,最近各種アクチュエータ
での需要が急増している。その利点とは次の通りであ
る。 (1)薄肉形状のものが容易に得られる。 (2)焼結磁石に比較して欠けにくい。 (3)量産性に優れる。2. Description of the Related Art Permanent magnets are used in a wide range of fields from various electrical products to small precision equipment and actuators, and are one of the important electrical and electronic materials. Due to the recent demand for miniaturization and high efficiency of equipment, high-performance permanent magnets are required. In response to these demands, the demand for permanent magnets with high characteristics has grown rapidly over the last few years.
Permanent magnets are roughly classified into sintered magnets and bonded magnets. Bonded magnets have the advantage that sintered magnets such as those listed below cannot be obtained. Recently, the demand for various actuators has rapidly increased. ing. The advantages are as follows. (1) A thin shape can be easily obtained. (2) Less likely to be chipped as compared to a sintered magnet. (3) Excellent mass productivity.
【0003】このような利点を有するボンド磁石を成形
方法でさらに大別すると,圧縮成形法,射出成形法,及
び押出成形法に分類される。このうち圧縮成形法は他の
成形法に比較して成形体中の磁石粉末の充填量が多いた
め,高い磁気特性のボンド磁石が得られる。従来,圧縮
成形法によるボンド磁石の製造方法は,永久磁石粉末と
してフェライト系,SmCo系,NdFeB系磁石粉末
を使用し,バインダーとして熱硬化性樹脂をその永久磁
石粉末に混合したのち,その混合粉末を金型充填の後た
だちに圧縮成形する方法であった。ここで圧縮成形を磁
場中で行えば,異方性を有するボンド磁石を製造でき
る。The bonded magnets having such advantages can be roughly classified into molding methods, compression molding methods, injection molding methods, and extrusion molding methods. Among them, the compression molding method has a larger filling amount of the magnet powder in the molded body as compared with the other molding methods, so that a bonded magnet having high magnetic characteristics can be obtained. Conventionally, a method of manufacturing a bonded magnet by compression molding uses ferrite-based, SmCo-based, and NdFeB-based magnet powders as permanent magnet powders, mixes a thermosetting resin as a binder with the permanent magnet powders, and then mixes the mixed powders. It was a method of compression molding immediately after filling the mold with a mold. If compression molding is performed in a magnetic field, a bonded magnet having anisotropy can be manufactured.
【0004】[0004]
【発明が解決しようとする課題】しかし,前述の圧縮成
形によるボンド磁石の製造方法では,成形体中の磁性粉
末の充填率を充分高くできず,またとりわけ成形時に磁
場を印加する異方性磁石の場合は粉末の磁場配向性が悪
いこともあり,低い磁石特性値を有する圧縮成形ボンド
磁石しか得られなかった。However, in the above-mentioned method for producing a bonded magnet by compression molding, the filling rate of the magnetic powder in the molded body cannot be increased sufficiently, and in particular, an anisotropic magnet for applying a magnetic field during molding is used. In this case, since the magnetic field orientation of the powder was poor, only compression-molded bonded magnets with low magnet characteristic values could be obtained.
【0005】また,上記欠点を解決するために,ステア
リン酸等の固体潤滑剤を混合粉末中に添加する方法も提
案されているが,概して圧縮成形磁石の機械強度を著し
く低下させる。そのためステアリン酸等の固体潤滑剤を
添加する方法は,好ましい方法とはいえなかった。Further, in order to solve the above-mentioned drawbacks, a method of adding a solid lubricant such as stearic acid to the mixed powder has been proposed, but generally, the mechanical strength of the compression molded magnet is remarkably lowered. Therefore, the method of adding a solid lubricant such as stearic acid was not a preferable method.
【0006】そこで,本発明の技術的課題は,優れた磁
石特性を有するボンド磁石を機械強度を損なわず容易か
つ安価に製造できるボンド磁石の製造方法を提供するこ
とにある。[0006] Therefore, a technical object of the present invention is to provide a method of manufacturing a bond magnet which can easily and inexpensively manufacture a bond magnet having excellent magnet characteristics without impairing mechanical strength.
【0007】[0007]
【課題を解決するための手段】本発明者らは,優れた磁
石特性を有する圧縮成形ボンド磁石を得るために,原料
粉末を加温し,次いで常温で液体の物質を添加したのち
成形することにより,ボンド磁石の磁石特性が向上する
ことを見いだし,本発明をなすに至ったものである。In order to obtain a compression-molded bonded magnet having excellent magnet characteristics, the inventors of the present invention heat a raw material powder, then add a liquid substance at room temperature and then mold it. As a result, they have found that the magnet characteristics of the bonded magnet are improved, and the present invention has been completed.
【0008】本発明によれば,ボンド磁石を製造する方
法において,磁性粉末と熱硬化樹脂との混合物からなる
原料粉末を加温した後,液状物質を添加する液体添加工
程と,前記液状物質の添加された混合粉末を成形して成
形体を得る成形工程とを有することを特徴とするボンド
の製造方法が得られる。ここで,本発明において,磁性
粉末としてSmCo系磁石粉末,NdFeB磁石粉末等
の希土類磁石粉末を使用することができる。According to the present invention, in a method for producing a bonded magnet, a liquid adding step of adding a liquid substance after heating a raw material powder consisting of a mixture of magnetic powder and a thermosetting resin, and a step of adding the liquid substance. And a molding step of molding the added mixed powder to obtain a molded body. Here, in the present invention, rare earth magnet powder such as SmCo-based magnet powder and NdFeB magnet powder can be used as the magnetic powder.
【0009】また,本発明において,原料粉末に添加さ
れる液状物質は,炭化水素,アルコール類,エステル
類,エーテル類,ハロゲン化物及びケトン類のうち少な
くとも1種であり,かつ原料粉末を加温することにより
著しく磁気特性が向上する。これは加温し,かつ液状物
質を添加することにより,磁性粉末と磁性粉末との間,
磁性粉末と熱硬化性樹脂との間,または熱硬化性樹脂と
熱硬化性樹脂との間の摩擦抵抗が減少するためである。In the present invention, the liquid substance added to the raw material powder is at least one of hydrocarbons, alcohols, esters, ethers, halides and ketones, and the raw material powder is heated. By doing so, the magnetic properties are remarkably improved. This is done by heating and adding a liquid substance between the magnetic powder and the magnetic powder,
This is because the frictional resistance between the magnetic powder and the thermosetting resin or between the thermosetting resin and the thermosetting resin decreases.
【0010】また,本発明において用いられる液状物質
とステアリン酸等の固体潤滑剤とを比較すると,液状物
質は液体であるがゆえに,キュア後には成形体中に残存
せず,製造される磁石にはなんら悪影響を及ぼさないと
いう利点を有する。Further, when comparing the liquid substance used in the present invention with a solid lubricant such as stearic acid, since the liquid substance is a liquid, it does not remain in the molded body after curing, and it is Has the advantage that it has no adverse effect.
【0011】ここで本発明において,原料粉末に添加す
る液状物質の量は,任意であるが,余り多すぎると経済
的に不利になり,好ましくは当該原料粉末に対して0〜
100重量%(但し0は含まず)である。In the present invention, the amount of the liquid substance added to the raw material powder is arbitrary, but if it is too much, it is economically disadvantageous, and preferably 0 to the raw material powder.
It is 100% by weight (excluding 0).
【0012】[0012]
【実施例】次に実施例により本発明をさらに詳細に説明
する。EXAMPLES The present invention will be described in more detail with reference to examples.
【0013】(実施例1)磁性粉末としては粒径が25
0μm以下のSmCo系合金粉末を使用した。また熱硬
化性樹脂として常温で100μm以下の粒径を有する粉
末状のエポキシ樹脂を使用した。この磁性粉末とエポキ
シ樹脂とを97:3の重量比で混合した。混合はできる
限り均一にするために,初めにエポキシ樹脂をアセトン
に溶解させ,アセトン溶液とし,その溶液にこの磁性粉
末を入れ充分に撹拌した後,常温で乾燥させ,次にこの
混合粉末を250μm以下に解砕した。次いで,この解
砕粉末を金型に充填した。金型寸法は1.2cm×1.2
cm×Lである。充填量は10.0gであった。次に金型
内で粉末を100℃まで加温した後,この粉末に対して
0,25,50,100,150,200重量%のアセ
トンを加えた。その後,約1.6MA/m(20kO
e)の磁界中で,5.0トン/cm2 の圧力で成形した。
それら成形体を150℃で1時間保持し,エポキシ樹脂
を硬化させた。Example 1 A magnetic powder having a particle size of 25
SmCo-based alloy powder of 0 μm or less was used. Further, as the thermosetting resin, a powdery epoxy resin having a particle size of 100 μm or less at room temperature was used. The magnetic powder and the epoxy resin were mixed at a weight ratio of 97: 3. In order to make the mixing as uniform as possible, first dissolve the epoxy resin in acetone to form an acetone solution, add this magnetic powder to the solution, stir thoroughly, and dry at room temperature, then mix this mixed powder with 250 μm. It was crushed as follows. Then, this crushed powder was filled in a mold. Mold size is 1.2cm × 1.2
cm × L. The filling amount was 10.0 g. Next, after heating the powder to 100 ° C. in the mold, acetone of 0, 25, 50, 100, 150, 200 wt% was added to the powder. After that, about 1.6 MA / m (20 kO
Molding was carried out in the magnetic field of e) at a pressure of 5.0 ton / cm 2 .
The molded bodies were held at 150 ° C. for 1 hour to cure the epoxy resin.
【0014】その時のボンド磁石の磁気特性とアセトン
添加量の関係を図1に示す。なお比較例はアセトン無添
加の条件である。The relationship between the magnetic properties of the bonded magnet and the amount of acetone added at that time is shown in FIG. The comparative example is under the condition that acetone is not added.
【0015】図1から,原料粉末に対してアセトンを添
加することにより磁気特性が向上することが判明した。
しかし,原料粉末に対して,添加量が100重量%で磁
石特性は15.7MGOe(125.0kJ/m3 )で
飽和することも判明した。From FIG. 1, it was found that the magnetic characteristics were improved by adding acetone to the raw material powder.
However, it was also found that the magnet characteristics were saturated at 15.7 MGOe (125.0 kJ / m 3 ) with 100% by weight of the raw material powder.
【0016】次に,実施例1で得られたボンド磁石の曲
げ強度を調査した。それらのボンド磁石の曲げ強度とア
セトン添加量との関係を次の表1に示す。Next, the bending strength of the bonded magnet obtained in Example 1 was investigated. The relationship between the bending strength of these bonded magnets and the amount of acetone added is shown in Table 1 below.
【0017】[0017]
【表1】 [Table 1]
【0018】表1で示すように,曲げ強度は,アセトン
の添加量(重量%)で100%以上になると強度が弱く
なるが,それ以内であると,充分な曲げ強度を有するこ
とが判明した。As shown in Table 1, it was found that the bending strength was weakened when the amount of acetone added (% by weight) was 100% or more, but was less than that, the bending strength was sufficient. .
【0019】(実施例2)実施例1と全く同じ磁性粉末
とエポキシ樹脂とを使用して,実施例1と全く同じ混合
粉末を作製,解砕し試料粉末とした。次に,この試料粉
末10.0gを30℃,60℃,100℃まで加温し,
それぞれに0(無添加),25,50,100,15
0,200重量%,のイソプロパノールを加えた後,約
1.6MA/m(20kOe)の磁界中5.0トン/cm
2 の圧力で成形した。それら成形体を150℃で1時間
保持し,エポキシ樹脂を硬化させボンド磁石とした。得
られたボンド磁石の磁気特性とイソプロパノール添加量
の関係を図2に示す。(Example 2) Using the same magnetic powder and epoxy resin as in Example 1, the same mixed powder as in Example 1 was prepared and crushed to obtain a sample powder. Next, 10.0 g of this sample powder is heated to 30 ° C, 60 ° C, 100 ° C,
0 (no addition), 25, 50, 100, 15 for each
After adding 0,200% by weight of isopropanol, 5.0 ton / cm in a magnetic field of about 1.6 MA / m (20 kOe).
Molded at a pressure of 2 . The molded bodies were held at 150 ° C. for 1 hour to cure the epoxy resin to obtain bonded magnets. The relationship between the magnetic properties of the obtained bonded magnet and the amount of isopropanol added is shown in FIG.
【0020】図2から,混合粉末を加温してイソプロパ
ノールを添加することにより磁気特性が向上することが
認められる。From FIG. 2, it is recognized that the magnetic characteristics are improved by heating the mixed powder and adding isopropanol.
【0021】(実施例3)実施例1と全く同じ磁性粉末
とエポキシ樹脂を使用して,実施例1と全く同じ混合粉
末を作成,解砕し試料粉末とした。次に,この試料粉末
10.0gを100℃まで加温しこれに対して各々次に
挙げる10種類の液体を粉末の100重量%添加して圧
縮成形した。その液体の種類はシリコンオイル,パラフ
ィンオイル,ヘキサン,メタノール,酢酸メチル,エチ
ルエーテル,四塩化炭素,クロロホルム(ヘキサン):
(メタノール)=1:1(ヘキサン):(アセトン)=
1:1の混合溶液であった。また圧縮成形条件は約1.
6MA/m(20kOe)の磁界中5.0トン/cm2 で
あった。それらの成形体を150℃で1時間保持し,エ
ポキシ樹脂を硬化させボンド磁石とした。それらボンド
磁石の曲げ強度及び磁石特性を下表2に示す。(Example 3) Using the same magnetic powder and epoxy resin as in Example 1, the same mixed powder as in Example 1 was prepared and crushed to obtain a sample powder. Next, 10.0 g of this sample powder was heated to 100 ° C., and the following 10 kinds of liquids were added to each 100% by weight of the powder to perform compression molding. The types of liquid are silicone oil, paraffin oil, hexane, methanol, methyl acetate, ethyl ether, carbon tetrachloride, chloroform (hexane):
(Methanol) = 1: 1 (hexane) :( acetone) =
It was a 1: 1 mixed solution. The compression molding condition is about 1.
It was 5.0 tons / cm 2 in a magnetic field of 6 MA / m (20 kOe). These molded bodies were held at 150 ° C. for 1 hour to cure the epoxy resin to obtain bonded magnets. The bending strength and magnet characteristics of these bonded magnets are shown in Table 2 below.
【0022】[0022]
【表2】 [Table 2]
【0023】上記した表2から炭化水素類,アルコール
類,エステル類,エーテル類,ケトン類,ハロゲン化物
の少なくとも1種を粉末に添加して圧縮成形することに
より,磁石特性が著しく向上することが判明した。尚,
上記した表2には液体の組み合わせが2種までのものを
示したが,3種以上でも同様な効果が得られることは容
易に推察できる。From Table 2 above, by adding at least one of hydrocarbons, alcohols, esters, ethers, ketones and halides to the powder and compression molding, the magnetic properties can be remarkably improved. found. still,
Although the above-mentioned Table 2 shows combinations of up to two kinds of liquids, it can be easily inferred that similar effects can be obtained even if three kinds or more.
【0024】(実施例4)ネオジ,鉄,ホウ素(Nd−
Fe−B)系磁性粉末,(GM社製MO−1)98重量
部にエポキシ樹脂2重量部を添加し,充分混合分散させ
た。得られた混合物を外径20mm×内径17mm×Lの金
型を用い圧力6t/cm2 にて下表3に示す条件で圧縮成
形を行った。成形品は150℃で1時間加熱硬化処理を
行った。比較例(ロ)として,成形時に加熱処理を行わ
ない以外は,実施例4と同様な処理をしたものと,比較
例(ハ)として加熱処理及び液体添加を行わないもの
も,実施例4と同様な処理をしたものについても,実施
例4と同様に諸特性の測定を行った。その結果を下表3
に示したが,本発明の実施例4による方法が成形品密度
が最も高く,又,磁気特性にも優れている事が分る。(Example 4) Neodymium, iron, boron (Nd-
2 parts by weight of an epoxy resin was added to 98 parts by weight of (Fe-B) based magnetic powder (MO-1 manufactured by GM), and they were sufficiently mixed and dispersed. The resulting mixture was compression molded under the conditions shown in Table 3 below at a pressure of 6 t / cm 2 using a mold having an outer diameter of 20 mm × an inner diameter of 17 mm × L. The molded product was heat-cured at 150 ° C. for 1 hour. As Comparative Example (b), the same treatment as in Example 4 except that the heat treatment was not performed at the time of molding, and Comparative Example (c) in which the heat treatment and the liquid addition were not performed were also performed as in Example 4. With respect to the same treatment, various characteristics were measured in the same manner as in Example 4. The results are shown in Table 3 below.
It is understood that the method according to Example 4 of the present invention has the highest molded product density and is excellent in magnetic characteristics.
【0025】[0025]
【表3】 [Table 3]
【0026】[0026]
【発明の効果】以上,述べた如く本発明によれば,機械
強度を損なわずに高磁石特性のボンド磁石が容易かつ安
価に提供することが可能となり工業上きわめて有益であ
る。As described above, according to the present invention, a bonded magnet having high magnet characteristics can be provided easily and inexpensively without impairing the mechanical strength, which is extremely useful in industry.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の実施例1に係るボンド磁石の原料粉末
を100℃まで加温し,アセトン添加し成形した成形体
の磁石特性と添加するアセトンの添加量との関係を示す
図である。FIG. 1 is a diagram showing a relationship between a magnet characteristic of a molded body obtained by heating a raw material powder of a bonded magnet according to Example 1 of the present invention to 100 ° C. and adding acetone, and an addition amount of acetone to be added. .
【図2】本発明の実施例2に係るボンド磁石の原料粉末
を30℃,60℃,100℃に加温し,イソプロピルア
ルコールを添加し成形した成形体の磁石特性と添加する
イソプロピルアルコールの添加量との関係を示す図であ
る。FIG. 2 is a graph showing the magnet characteristics of a molded body formed by heating raw material powder of a bonded magnet according to Example 2 of the present invention to 30 ° C., 60 ° C., and 100 ° C., and adding isopropyl alcohol to the molded body. It is a figure which shows the relationship with quantity.
Claims (4)
性粉末と熱硬化性樹脂との混合物から成る原料粉末を加
温した後,液状物質を添加する液体添加工程と,前記液
状物質の添加された混合粉末を成形して成形体を得る成
形工程とを有することを特徴とするボンド磁石の製造方
法。1. A method for producing a bonded magnet, comprising a step of adding a liquid substance after heating a raw material powder made of a mixture of magnetic powder and a thermosetting resin, and adding the liquid substance. And a molding step of molding a mixed powder to obtain a molded body.
おいて,前記液状物質は炭化水素,アルコール類,エス
テル類,エーテル類,ハロゲン化物及びケトン類のうち
の少なくとも一種であることを特徴とするボンド磁石の
製造方法。2. The method for manufacturing a bonded magnet according to claim 1, wherein the liquid substance is at least one of hydrocarbons, alcohols, esters, ethers, halides and ketones. A method for manufacturing a bonded magnet.
おいて,前記液状物質の量は当該原料粉末の重量に対し
て0〜100重量%(0は含まず)であることを特徴と
するボンド磁石の製造方法。3. The bond magnet manufacturing method according to claim 1, wherein the amount of the liquid substance is 0 to 100% by weight (not including 0) with respect to the weight of the raw material powder. Magnet manufacturing method.
おいて,当該原料粉末の加温温度は30〜150℃の範
囲内であることを特徴とするボンド磁石の製造方法。4. The method for producing a bonded magnet according to claim 1, wherein the heating temperature of the raw material powder is in the range of 30 to 150 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5000225A JPH06204067A (en) | 1993-01-05 | 1993-01-05 | Manufacture of bonded magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5000225A JPH06204067A (en) | 1993-01-05 | 1993-01-05 | Manufacture of bonded magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06204067A true JPH06204067A (en) | 1994-07-22 |
Family
ID=11468026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5000225A Withdrawn JPH06204067A (en) | 1993-01-05 | 1993-01-05 | Manufacture of bonded magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06204067A (en) |
-
1993
- 1993-01-05 JP JP5000225A patent/JPH06204067A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113764148B (en) | Anisotropic bonded magnet and preparation method thereof | |
JPH06204067A (en) | Manufacture of bonded magnet | |
US4321222A (en) | Method of manufacturing plastic-bonded anisotropic permanent magnets | |
JPS61184804A (en) | Manufacture of bond magnet | |
JP7461852B2 (en) | Bonded magnet manufacturing method | |
WO2024028989A1 (en) | Preform, preforming method, and method of producing compression-bonded magnet | |
JPH0774012A (en) | Manufacture of bonded permanent magnet and raw material powder therefor | |
JP2757040B2 (en) | Method for producing Nd-Fe-B bonded magnet | |
CN113744946B (en) | Anisotropic bonded magnet and preparation method thereof | |
JP2000077220A (en) | Granulated powder of rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet | |
JPH10199717A (en) | Anisotropic magnet and its manufacturing method | |
JP3312255B2 (en) | Manufacturing method of bonded magnet | |
JPH02116104A (en) | Manufacture of resin-bonded permanent magnet | |
JP2000173810A (en) | Magnetic anisotropic bond magnet and its manufacture | |
JPH05159914A (en) | Manufacture of anisotropic bond magnet | |
JPS63306603A (en) | Material composition of permanent magnet | |
JPH0450725B2 (en) | ||
JPS63308904A (en) | Manufacture of bond magnet | |
JPH06302418A (en) | Bond-type permanent magnet and its manufacture | |
JPS63147302A (en) | Composite material for permanent magnet and its manufacture | |
JP2024043466A (en) | Bond rare earth permanent magnet having high space packing rate, and manufacturing method of the same | |
JPH0786070A (en) | Manufacture of bond magnet | |
JP2006147830A (en) | Resin composite for anisotropic bond magnet and anisotropic bond magnet, and motor | |
JPH0715124B2 (en) | Method for producing magnetic composite material having excellent magnetic properties | |
JPH0628213B2 (en) | Bonded magnet manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000307 |