JPH0620130B2 - MIS transistor and manufacturing method thereof - Google Patents

MIS transistor and manufacturing method thereof

Info

Publication number
JPH0620130B2
JPH0620130B2 JP58023944A JP2394483A JPH0620130B2 JP H0620130 B2 JPH0620130 B2 JP H0620130B2 JP 58023944 A JP58023944 A JP 58023944A JP 2394483 A JP2394483 A JP 2394483A JP H0620130 B2 JPH0620130 B2 JP H0620130B2
Authority
JP
Japan
Prior art keywords
film
insulating film
conductivity type
semiconductor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58023944A
Other languages
Japanese (ja)
Other versions
JPS59149059A (en
Inventor
雅夫 福間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58023944A priority Critical patent/JPH0620130B2/en
Publication of JPS59149059A publication Critical patent/JPS59149059A/en
Publication of JPH0620130B2 publication Critical patent/JPH0620130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Description

【発明の詳細な説明】 本発明はMISトランジスタ及びその製造方法に関す
る。
The present invention relates to a MIS transistor and a manufacturing method thereof.

MISトランジスタの微細化の指標としていわゆるスケ
ーリング則が有名である。スケーリング則はサイズの微
細化と共に動作電圧の低下と不純物濃度の上昇を要求す
る。動作電圧の低下は内部電界を一定に保つための措置
であり、不純物濃度の上昇は空乏層巾の減少を図るもの
であるが、半導体のバンドギャップに起因する拡散電位
のために前記2項目のスケーリングは必ずしもスムーズ
には行なわれない。すなわち空乏層巾を1/kで縮小し
ようと思えば(短チャネル効果を抑制するためには必
須)基板不純物濃度をk2 で増加せねばならず、しきい
値電圧VTは一定に保たれてしまうとか、移動度が低下
するなどの弊害か表われることになる。又、ゲート絶縁
膜中の電界を必然的に高くせざるを得ず信頼性に対して
も大きな問題となる。さらに、この様な従来構造のMI
Sトランジスタではその電気特性は基板不純物濃度に強
く依存する。ところが、スケールダウンしていくと、各
トランジスタ当りに関係する不純物の絶対量が1/kに
減少することになり、これは大規模LSIではゆらぎによ
る素子特性のばらつきとして大きな問題となる。またそ
れ以前に、不純物プロファイルのコントロールは他のパ
ラメータに比べると難しい。
The so-called scaling rule is famous as an index of miniaturization of MIS transistors. The scaling law requires a reduction in operating voltage and an increase in impurity concentration as well as miniaturization of size. The decrease of the operating voltage is a measure for keeping the internal electric field constant, and the increase of the impurity concentration is intended to decrease the width of the depletion layer. However, due to the diffusion potential due to the band gap of the semiconductor, the above two items are required. Scaling is not always smooth. That is, in order to reduce the width of the depletion layer by 1 / k (essential for suppressing the short channel effect), the substrate impurity concentration must be increased by k 2 , and the threshold voltage V T is kept constant. It may be an adverse effect such as a loss of mobility or a decrease in mobility. Further, the electric field in the gate insulating film is inevitably high, which is a serious problem in terms of reliability. Furthermore, MI of such a conventional structure
The electrical characteristics of the S transistor strongly depend on the substrate impurity concentration. However, as the scale down is performed, the absolute amount of impurities related to each transistor is reduced to 1 / k, which is a big problem in large-scale LSI as variation in element characteristics due to fluctuation. And before that, controlling the impurity profile is more difficult than other parameters.

この様な問題を避ける手段としては、基板表面に高濃度
不純物層を設けた上でエピタキシァル成長により低不純
物濃度薄膜を形成してここにトランジスタを作成する方
法や、イオン注入等でゲート酸化膜一基板界面に基板不
純物とは逆のタイプの不純物を導入し不純物を補償する
方法等が考えられている。この様な方法を取れば、ゲー
ト直下の空乏層幅は小さく出来、表面不純物濃度は低く
保つことができる。又ゲート中の電界も余り高くせずに
すむ。しかし、いずれにせよその後の種々の熱工程によ
る不純物の再分布は避けられず、プロセス感度は非常に
高くなる。特に後者の方法は、高濃度領域での不純物補
償を必要とするので制御が問題である。従って、不純物
分布のゆらぎをも考慮すれば大規模回路に適用すること
は大きな困難を伴なう。
As a means for avoiding such a problem, a method of forming a transistor in which a low impurity concentration thin film is formed by epitaxial growth after forming a high concentration impurity layer on the substrate surface, or a gate oxide film is formed by ion implantation or the like. There has been considered a method of compensating for impurities by introducing impurities of a type opposite to the substrate impurities into the substrate interface. By adopting such a method, the width of the depletion layer just below the gate can be made small and the surface impurity concentration can be kept low. Also, the electric field in the gate need not be too high. However, in any case, redistribution of impurities due to various subsequent thermal steps is unavoidable, and the process sensitivity becomes very high. In particular, the latter method requires control of impurities in a high concentration region, and therefore has a problem of control. Therefore, if the fluctuation of the impurity distribution is taken into consideration, it is very difficult to apply it to a large-scale circuit.

第1図は従来のMISトランジスタの一例の断面図であ
る。
FIG. 1 is a sectional view of an example of a conventional MIS transistor.

一導電型半導体基板1に反対導電型のソース及びドレイ
ン領域2,3が設けられ、表面にゲート絶縁膜4が設け
られ、その上にゲート電極5が形成されてMISトラン
ジスタが構成される。破線6は空乏層の拡がりを、Lは
チャネル幅を示す。
Source and drain regions 2 and 3 of opposite conductivity type are provided on the one conductivity type semiconductor substrate 1, a gate insulating film 4 is provided on the surface thereof, and a gate electrode 5 is formed on the gate insulating film 4 to form a MIS transistor. The broken line 6 indicates the expansion of the depletion layer, and L indicates the channel width.

図に示すように空乏層6の拡がりによりチャネル幅Lは
小さくなり、短チャネル効果を生ずる。短チャネル効果
は、本来ゲートで制御されなければならない内部の電位
がソースあるいはドレインによって影響されることが原
因で生じる。従って、内部に電荷が発生しな状態(例え
ばオフ状態)に於て、半導体基板とゲート絶縁膜の界面
及び空乏層内の各点の電位に与えるゲート,基板,ソー
ス,ドレインの各電極の影響度は基本的に各電極に対す
る距離で決定されることになる。以上の理由から、短チ
ャネル効果を防ぐためには少なくともソース ドレイン
中点付近の各点ではゲートあるいは基板までの距離が、
ソースあるいはドレインまでの距離より短いことが必要
である。このため短チャネルではゲート絶縁膜厚Tox と
空乏層幅Wのスケーリングが重要となるわけである。
As shown in the figure, the channel width L is reduced due to the expansion of the depletion layer 6, and a short channel effect is produced. The short channel effect is caused by the influence of the source or the drain on the internal potential that should be controlled by the gate. Therefore, the influence of each electrode of the gate, substrate, source, and drain on the potential of each point in the interface between the semiconductor substrate and the gate insulating film and in the depletion layer when no charge is generated inside (for example, in the off state) The degree is basically determined by the distance to each electrode. For the above reason, in order to prevent the short channel effect, the distance to the gate or the substrate should be at least at each point near the source / drain midpoint.
It must be shorter than the distance to the source or drain. Therefore, in the short channel, scaling of the gate insulating film thickness Tox and the depletion layer width W D is important.

以上の考察からわかる様に、短チャネル効果が効果的に
抑制されるためには基本的には が満足される必要がある。これを満足させようとすると
従来のMISトランジスタでは前述のような大きな困難
を伴うという欠点があった。
As can be seen from the above consideration, in order to effectively suppress the short channel effect, basically Needs to be satisfied. If it is attempted to satisfy this, the conventional MIS transistor has a drawback that it is accompanied by the great difficulty as described above.

本発明の目的は、上記欠点を除去し、基本特性が空間的
な構造だけで決まり、チャネル直下の半導体基板の不純
物濃度の影響を受けずに極微細な寸法を実現できるMI
Sトランジスタ及びその製造方法を提供することにあ
る。
An object of the present invention is to eliminate the above-mentioned drawbacks, to determine the basic characteristics only by the spatial structure, and to realize extremely fine dimensions without being affected by the impurity concentration of the semiconductor substrate immediately below the channel.
An object is to provide an S transistor and a manufacturing method thereof.

本発明のMISトランジスタは、一導電型半導体基板の
上に設けられたソース及びドレイン領域と、該ソース及
びドレイン領域に対してゲート絶縁膜を介して設けられ
るゲート電極と、前記ゲート絶縁膜の下でかつ前記ソー
ス領域とドレイン領域との間に設けられる、且つ真性に
近い低不純物濃度の一導電型半導体膜と、該半導体膜の
下に設けられる絶縁膜と、該絶縁膜の下でかつ前記半導
体膜に接触しないように設けられ前記半導体基板よりも
高不純物濃度の一導電型半導体層とを含んで構成され
る。
The MIS transistor of the present invention comprises a source and drain region provided on a semiconductor substrate of one conductivity type, a gate electrode provided on the source and drain region via a gate insulating film, and a gate electrode below the gate insulating film. A semiconductor layer of one conductivity type which is provided between the source region and the drain region and has a near-intrinsic low impurity concentration, an insulating film provided below the semiconductor film, and below the insulating film and The semiconductor layer is formed so as not to come into contact with the semiconductor film and includes a one-conductivity-type semiconductor layer having an impurity concentration higher than that of the semiconductor substrate.

本発明のMISトランジスタの製造方法は、一導電型半
導体基板の上にシリコン窒化膜を設け、該シリコン窒化
膜を選択除去して開口部を形成する工程と、該開口部か
ら一導電型不純物を導入して前記半導体基板よりも高不
純物濃度の一導電型半導体層を形成する工程と、前記一
導電型半導体層の表面の少くとも一部に絶縁膜を形成す
る工程と、前記シリコン窒化膜を除去する工程と、前記
半導体基板表面及び前記絶縁膜上に真性に近い低不純物
濃度の一導電型シリコン膜を被着する工程と、前記半導
体基板に接触して形成される前記シリコン膜の単結晶部
分を種とし前記シリコン膜を熱処理して前記絶縁膜上の
シリコン膜を単結晶する工程と、前記絶縁膜上のシリコ
ン膜表面にゲート絶縁膜を形成し、該ゲート絶縁膜上に
ゲート電極を形成する工程と、前記シリコン膜に前記ゲ
ート電極に整合させてソース及びドレイン領域を形成す
る工程とを含んで構成される。
A method of manufacturing a MIS transistor according to the present invention includes a step of forming a silicon nitride film on a semiconductor substrate of one conductivity type, selectively removing the silicon nitride film to form an opening, and removing impurities of one conductivity type from the opening. A step of forming a one-conductivity-type semiconductor layer having a higher impurity concentration than that of the semiconductor substrate by introducing, an step of forming an insulating film on at least a part of the surface of the one-conductivity-type semiconductor layer, and the silicon nitride film. A step of removing, a step of depositing a near-intrinsic low conductivity one-conductivity-type silicon film on the surface of the semiconductor substrate and the insulating film, and a single crystal of the silicon film formed in contact with the semiconductor substrate A step of heat-treating the silicon film by using the portion as a seed to single crystal the silicon film on the insulating film; forming a gate insulating film on the surface of the silicon film on the insulating film; and forming a gate electrode on the gate insulating film. Formation That step and configured to include a step of forming source and drain regions in alignment with the gate electrode in the silicon film.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

まず、本発明のMISトランジスタの実施例について説
明する。
First, an embodiment of the MIS transistor of the present invention will be described.

第2図は本発明のMISトランジスタの一実施例断面図
である。
FIG. 2 is a sectional view of an embodiment of the MIS transistor of the present invention.

この実施例は、一導電型半導体基板11の上に設けられ
たソース及びドレイン領域12,13と、このソース及
びドレイン領域に対してゲート絶縁膜14を介して設け
られるゲート電極15と、このゲート絶縁膜の下でかつ
ソース領域12とドレイン領域13との間に設けられる
半導体膜19と、この半導体膜の下に設けられる絶縁膜
18と、この絶縁膜の下でかつ半導体膜19に接触しな
いように設けられ半導体基板11よりも高不純物濃度の
一導電型半導体層17とを含んで構成される。
In this embodiment, the source and drain regions 12 and 13 are provided on the one conductivity type semiconductor substrate 11, the gate electrode 15 is provided on the source and drain regions via a gate insulating film 14, and the gate and A semiconductor film 19 provided under the insulating film and between the source region 12 and the drain region 13, an insulating film 18 provided under the semiconductor film, and not under the insulating film and in contact with the semiconductor film 19. And the one-conductivity-type semiconductor layer 17 having an impurity concentration higher than that of the semiconductor substrate 11.

上記構造において、半導体層19は真性半導体に近い低
濃度に形成する。チャネルは半導体層19内にできるこ
とになる。そうすると、チャネルの下に半導体基板11
よりも高不純物濃度の半導体層17を設けたので、等価
的に空乏層厚みは構造だけで決り、ドレインバイアスに
も依存しない。従って、本構造に於ける短チャネル防止
の条件は、絶縁膜18の厚さをTsub、半導体膜19の
厚さをTsi、ゲート絶縁膜14の厚さをTox とすれ
ば、 となる。
In the above structure, the semiconductor layer 19 is formed at a low concentration close to that of an intrinsic semiconductor. The channel will be formed in the semiconductor layer 19. Then, the semiconductor substrate 11 is formed under the channel.
Since the semiconductor layer 17 having a higher impurity concentration is provided, the depletion layer thickness is equivalently determined only by the structure and does not depend on the drain bias. Therefore, the condition for preventing the short channel in this structure is that the thickness of the insulating film 18 is Tsub, the thickness of the semiconductor film 19 is Tsi, and the thickness of the gate insulating film 14 is Tox. Becomes

第3図は第2図に示す一実施例のエネルギーバンドを示
す図である。
FIG. 3 is a diagram showing an energy band of the embodiment shown in FIG.

図において、番号11,14,15,17,18,19
は第2図に示す番号のものに対応している。また、E
は伝導帯下端、Eはフェルミ準位、Eiはミッギャッ
プ、Eは価電子帯の上端のレベルをそれぞれ示す。前
述のように、半導体膜19は真性半導体に近い低濃度領
域であり、その下に絶縁膜18が存在するので熱工程に
よる不純物の侵入は殆んどない。このためバンドの曲り
はなく図(a)に示した様に直線の電位分布となる。な
おこの図(a)はゲート電圧が0ボルトの場合を示して
いる。従って、この実施例のVは基板のフェルミ準位
とミッドギャップEiとのポテンシャル差をBと
しゲート金属の仕事関数をソースドレインのそれと同じ
にすれば、 で与えられることになる。(3)式からわかる様に(2)式さ
え満足されていればVはMISトランジスタの幾何学
的形状だけから決まる。第3図(b)はゲート電圧がV
を越えてトランジスタがONしたところを示してい
る。又ドレイン電圧が加わっている場合でも、等価的な
空乏層幅は変化しないので、最終的にはトランジスタの
基本的な電気特性はその幾何学的な形状のみによって決
定される。
In the figure, numbers 11, 14, 15, 17, 18, 19
Correspond to the numbers shown in FIG. Also, E C
Shows conduction band, E F is the Fermi level, Ei is Miggyappu, E V is the level of the upper end of the valence band, respectively. As described above, the semiconductor film 19 is a low-concentration region close to an intrinsic semiconductor, and the insulating film 18 exists thereunder, so that impurities hardly enter due to the thermal process. For this reason, there is no bending of the band, and a linear potential distribution is obtained as shown in FIG. It should be noted that this figure (a) shows the case where the gate voltage is 0 volt. Therefore, V T of this embodiment if the work function of the gate metal and the potential difference between the Fermi level E F and mid gap Ei substrate and B the same as that of the source and drain, Will be given in. As can be seen from equation (3), V T is determined only by the geometrical shape of the MIS transistor if equation (2) is satisfied. In FIG. 3 (b), the gate voltage is V
It shows that the transistor has turned on beyond T. Further, even when the drain voltage is applied, the equivalent depletion layer width does not change, so that the basic electrical characteristics of the transistor are ultimately determined only by its geometrical shape.

以上の動作原理からわかる様に不純物プロファイルが電
気的特性を決定しないので、これに起因する移動度の低
下、素子特性のばらつき、非線形性等の問題がなくなる
と同時にゲート電界の緩和も期待できる。しかも本構造
ではソース,ドレインの大部分の域は、低濃度の基板に
接しているので全面がゲート金属の下と同じ構造になっ
ている場合等に比べると寄生容量は非常に少なくてす
む。また単なるSOI構造でしばしば問題になるバック
チャネルリークも負の基板バイアスを与えることによっ
て有効に抑制することができる。
As can be seen from the above operation principle, since the impurity profile does not determine the electrical characteristics, it is possible to eliminate the problems such as the decrease in mobility, variations in element characteristics, and non-linearity, which are alleviated, and at the same time, the relaxation of the gate electric field is expected. Moreover, in this structure, most of the source and drain regions are in contact with the low-concentration substrate, so that the parasitic capacitance is much smaller than in the case where the entire surface has the same structure as that under the gate metal. Further, back channel leakage, which is often a problem in a simple SOI structure, can be effectively suppressed by applying a negative substrate bias.

次に本発明のMISトランジスタの製造方法の実施例に
ついて説明する。以下の説明において、一導電型をP型
として説明する。N型の場合は導電型をすべて逆にすれ
ば良い。
Next, an example of the method of manufacturing the MIS transistor of the present invention will be described. In the following description, one conductivity type will be described as P type. In the case of N type, all conductivity types may be reversed.

第4図(a)〜(f)は本発明のMISトランジスタの製造方
法を説明するための工程順を示した断面図である。
4 (a) to 4 (f) are cross-sectional views showing the order of steps for explaining the method for manufacturing the MIS transistor of the present invention.

まず、第4図(a)に示すように、不純物濃度1×1015
/cm3のP型半導体基板11の上に通常のLOCOS法
によりフィールド酸化膜20を形成する。
First, as shown in FIG. 4 (a), the impurity concentration is 1 × 10 15
A field oxide film 20 is formed on the P-type semiconductor substrate 11 of / cm 3 by a normal LOCOS method.

次に、第4図(b)に示すように、熱酸化により厚さ10
0Å程度の絶縁膜18を成長させた後、CVD法でシリ
コン窒化膜21を約3000Åの厚さに堆積する。そし
て将来ゲート電極15が位置する部分のシリコン窒化膜
21を選択除去して開口部を設け、ホウ素をドーズ量1
15/cm3程度でイオン注入し、高濃度の半導体層17
を形成する。イオン注入のエネルギーを20KeV程度
に選べば半導体層17は開口部の部分にのみ形成され
る。
Next, as shown in FIG. 4 (b), a thickness of 10 is obtained by thermal oxidation.
After the insulating film 18 having a thickness of about 0Å is grown, the silicon nitride film 21 is deposited to a thickness of about 3000Å by the CVD method. Then, in the future, the silicon nitride film 21 in the portion where the gate electrode 15 is located is selectively removed to form an opening, and a boron dose of 1
High concentration semiconductor layer 17 by ion implantation at about 0 15 / cm 3
To form. If the ion implantation energy is selected to be about 20 KeV, the semiconductor layer 17 is formed only in the opening portion.

次に、第4図(c)に示すように、絶縁膜18の厚さが3
00Åになるまで熱酸化を行なった後、全ての窒化膜2
1を取除き、その後絶縁膜18が100Å程度エッチさ
れる条件でエッチングを行なう。そうすると半導体層1
7の上には厚さ200Å程度の絶縁膜18が残ることに
なる。
Next, as shown in FIG. 4 (c), the insulating film 18 has a thickness of 3
After thermal oxidation until it reaches 00Å, all nitride film 2
1 is removed, and then etching is performed under the condition that the insulating film 18 is etched by about 100 Å. Then, the semiconductor layer 1
An insulating film 18 having a thickness of about 200 Å remains on top of 7.

次に、第4図(d)に示すよにシリコン層19を約200
0Åの厚さに堆積し、フィールド酸化膜20の間にのみ
存在するように選択除去する。堆積したシリコン層19
は、半導体基板11に直接に接した部分は単結晶であ
り、絶縁膜18に接した部分は多結晶である。次に、レ
ーザービームあるいは電子ビームを用いるビームアニー
ル法またはLESS(Lateral Epitaxy by Seeded Soli
-dification)法を用い、前記の単結晶部分を種として
多結晶シリコン部分を単結晶化する。
Next, as shown in FIG.
It is deposited to a thickness of 0Å and selectively removed so that it exists only between the field oxide films 20. Deposited silicon layer 19
The part directly contacting the semiconductor substrate 11 is a single crystal, and the part contacting the insulating film 18 is a polycrystal. Next, a beam annealing method using a laser beam or an electron beam or LESS (Lateral Epitaxy by Seeded Soli
-dification) method is used to single crystallize the polycrystalline silicon portion using the single crystal portion as a seed.

次に、第4図(e)に示すように、半導体膜19の表面に
ゲート絶縁膜14を約200Åの厚さに成長させ、この
上にゲート電極15を形成する。ゲート電極15は例え
ばホウ素をドープしたポリシリコンで形成する。このゲ
ート電極15をマスクして砒素をイオン注入しソース及
びドレイン領域12,13を形成する。
Next, as shown in FIG. 4 (e), the gate insulating film 14 is grown to a thickness of about 200Å on the surface of the semiconductor film 19, and the gate electrode 15 is formed thereon. The gate electrode 15 is formed of, for example, boron-doped polysilicon. The gate electrode 15 is masked and arsenic is ion-implanted to form source and drain regions 12 and 13.

次に、第4図(f)に示すように、CVD法でシリコン酸
化膜22を成長させコンタクトホールをあけた後金属配
線23を形成する。
Next, as shown in FIG. 4 (f), a silicon oxide film 22 is grown by a CVD method to form a contact hole, and then a metal wiring 23 is formed.

以上のようにして本発明のMISトランジスタを作るこ
とができる。第4図(f)に示す構造は第2図に示す構造
と同等であり、動作も効果も同等である。本発明の製造
方法によれば最小チャネル長を0.1μm程度まで微細
化することが可能であり、また半導体層17と絶縁膜1
8とが自己整合で形成できる。
The MIS transistor of the present invention can be manufactured as described above. The structure shown in FIG. 4 (f) is equivalent to the structure shown in FIG. 2 and has the same operation and effect. According to the manufacturing method of the present invention, the minimum channel length can be reduced to about 0.1 μm, and the semiconductor layer 17 and the insulating film 1 can be miniaturized.
And 8 can be formed by self-alignment.

以上詳細に説明したように、本発明によれば、基本的特
性が空間構造だけで決まり、チャネル直下の半導体基板
の不純物濃度の影響を受けずに極微細寸法のMISトラ
ンジスタを得ることができるのでその効果は大きい。
As described in detail above, according to the present invention, the basic characteristics are determined only by the spatial structure, and it is possible to obtain a MIS transistor having an extremely fine size without being affected by the impurity concentration of the semiconductor substrate immediately below the channel. The effect is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来のMISトランジスタの一例の断面図、第
2図は本発明のMISトランジスタの一実施例の断面
図、第3図は第1図に示す一実施例のエネルギーバンド
を示す図、第4図(a)〜(f)は本発明のMISトランジス
タの製造方法の一実施例を説明するための工程順に示し
た断面図である。 1……半導体基板、2,3……ソース及びドレイン領
域、4……ゲート絶縁膜、5……ゲート電極、11……
一導電型半導体基板、12,13……ソース及びドレイ
ン領域、14……ゲート絶縁膜、15……ゲート電極、
17……一導電型半導体層、18……絶縁膜、19……
半導体膜、20……フィールド酸化膜、21……シリコ
ン窒化膜、22……シリコン酸化膜、23……金属配
線、E……伝導帯の下端レベル、E……フェルミ準
位、Ei……ミッドギャップ、E……価電子帯の上端
レベル。
FIG. 1 is a cross-sectional view of an example of a conventional MIS transistor, FIG. 2 is a cross-sectional view of an embodiment of the MIS transistor of the present invention, and FIG. 3 is a diagram showing energy bands of the embodiment shown in FIG. 4 (a) to 4 (f) are sectional views showing the order of steps for explaining one embodiment of the method for manufacturing a MIS transistor of the present invention. 1 ... Semiconductor substrate, 2, 3 ... Source and drain regions, 4 ... Gate insulating film, 5 ... Gate electrode, 11 ...
One-conductivity type semiconductor substrate, 12, 13 ... Source and drain regions, 14 ... Gate insulating film, 15 ... Gate electrode,
17 ... One conductivity type semiconductor layer, 18 ... Insulating film, 19 ...
Semiconductor film, 20 ...... field oxide film, 21 ...... silicon nitride film, 22 ...... silicon oxide film, 23 ...... metal wire, E C ...... lower level of the conduction band, E F ...... Fermi level, Ei ... … Mid gap, E V …… The upper level of the valence band.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一導電型半導体基板の上に設けられたソー
ス及びドレイン領域と、該ソース及びドレイン領域に対
してゲート絶縁膜を介して設けられるゲート電極と、前
記ゲート絶縁膜の下でかつ前記ソース領域とドレイン領
域との間に設けられかつ真性に近い低不純物濃度の一導
電型半導体膜と、該半導体膜の下に設けられる絶縁膜
と、該絶縁膜の下でかつ前記半導体膜に接触しないよう
に設けられ前記半導体基板よりも高不純物濃度の一導電
型半導体層とを含むことを特徴とするMISトランジス
タ。
1. A source and drain region provided on a semiconductor substrate of one conductivity type, a gate electrode provided on the source and drain region via a gate insulating film, and below the gate insulating film. A one conductivity type semiconductor film having a low impurity concentration which is provided between the source region and the drain region and is close to the intrinsic region, an insulating film provided below the semiconductor film, and a semiconductor film provided below the insulating film and at the semiconductor film. A MIS transistor, which is provided so as not to come into contact with the semiconductor substrate and includes one conductive type semiconductor layer having a higher impurity concentration than the semiconductor substrate.
【請求項2】一導電型半導体基板の上にシリコン窒化膜
を設け、該シリコン窒化膜を選択除去して開口部を形成
する工程と、該開口部から一導電型不純物を導入して前
記半導体基板よりも項不純物濃度の一導電型半導体層を
形成する工程と、前記一導電型半導体層の表面の少くと
も一部に絶縁膜を形成する工程と、前記シリコン窒化膜
を除去する工程と、前記半導体基板表面及び前記絶縁膜
上に真性に近い低不純物濃度の一導電型シリコン膜を被
着する工程と、前記半導体基板に接触して形成される前
記シリコン膜の単結晶部分を種とし前記シリコン膜を熱
処理して前記絶縁膜上のシリコン膜を単結晶にする工程
と、前記絶縁膜上のシリコン膜表面にゲート絶縁膜を形
成し、該ゲート絶縁膜上にゲート電極を形成する工程
と、前記シリコン膜に前記ゲート電極に整合させてソー
ス及びドレイン領域を形成する工程とを含むことを特徴
とするMISトランジスタ製造方法。
2. A step of providing a silicon nitride film on a semiconductor substrate of one conductivity type, selectively removing the silicon nitride film to form an opening, and introducing an impurity of one conductivity type from the opening. Forming a one conductivity type semiconductor layer having a higher impurity concentration than the substrate, forming an insulating film on at least a part of the surface of the one conductivity type semiconductor layer, and removing the silicon nitride film, Depositing a near-intrinsic low conductivity one-conductivity type silicon film on the surface of the semiconductor substrate and the insulating film; and using a single crystal portion of the silicon film formed in contact with the semiconductor substrate as a seed A step of heat-treating the silicon film to make the silicon film on the insulating film into a single crystal; a step of forming a gate insulating film on the surface of the silicon film on the insulating film and forming a gate electrode on the gate insulating film. , The silicon film MIS transistor fabrication method characterized by comprising the step of forming the source and drain regions in alignment with the gate electrode.
JP58023944A 1983-02-16 1983-02-16 MIS transistor and manufacturing method thereof Expired - Lifetime JPH0620130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023944A JPH0620130B2 (en) 1983-02-16 1983-02-16 MIS transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023944A JPH0620130B2 (en) 1983-02-16 1983-02-16 MIS transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS59149059A JPS59149059A (en) 1984-08-25
JPH0620130B2 true JPH0620130B2 (en) 1994-03-16

Family

ID=12124647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023944A Expired - Lifetime JPH0620130B2 (en) 1983-02-16 1983-02-16 MIS transistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0620130B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220573A (en) * 1987-03-09 1988-09-13 Nec Corp Semiconductor integrated circuit device
JP2660446B2 (en) * 1990-01-12 1997-10-08 三菱電機株式会社 Fine MIS type FET and manufacturing method thereof
JPH0832040A (en) * 1994-07-14 1996-02-02 Nec Corp Semiconductor device
FR2791181B1 (en) * 1999-03-19 2003-10-17 France Telecom NOVEL METAL GRID TRANSISTOR AND UNDERGROUND CHANNEL, COUNTER-DOPING, AND MANUFACTURING METHOD

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148464A (en) * 1979-05-08 1980-11-19 Chiyou Lsi Gijutsu Kenkyu Kumiai Mos semiconductor device and its manufacture

Also Published As

Publication number Publication date
JPS59149059A (en) 1984-08-25

Similar Documents

Publication Publication Date Title
US4935379A (en) Semiconductor device and method of manufacturing the same
US5087581A (en) Method of forming vertical FET device with low gate to source overlap capacitance
US4714519A (en) Method for fabricating MOS transistors having gates with different work functions
KR100237279B1 (en) Misfet, complementary misfet and manufacturing method thereof
KR100657098B1 (en) Field effect transistor with local source/drain insulation and associated method of production
US6049110A (en) Body driven SOI-MOS field effect transistor
US4329186A (en) Simultaneously forming fully implanted DMOS together with enhancement and depletion mode MOSFET devices
US5073519A (en) Method of fabricating a vertical FET device with low gate to drain overlap capacitance
US4654958A (en) Process for forming isolated silicon regions and field-effect devices on a silicon substrate
US5407837A (en) Method of making a thin film transistor
US5830787A (en) Method for fabricating a thin film transistor
JPH0518266B2 (en)
US5264721A (en) Insulated-gate FET on an SOI-structure
US4716128A (en) Method of fabricating silicon-on-insulator like devices
JPS63281465A (en) Manufacture of field effect transistor and its intermediate product
US6064077A (en) Integrated circuit transistor
JP3489602B2 (en) Semiconductor device and manufacturing method thereof
US4228447A (en) Submicron channel length MOS inverter with depletion-mode load transistor
JPH0620130B2 (en) MIS transistor and manufacturing method thereof
JPH05183164A (en) Semiconductor device
EP0405063A2 (en) An insulated-gate fet on an soi-structure
EP0436038A1 (en) Semiconductor device and method of producing the same
JPS63278273A (en) Semiconductor device
KR940004415B1 (en) Making method and structure of mosfet
US5496742A (en) Method for manufacturing semiconductor device enabling gettering effect