JPH06198B2 - Regeneration method of activated carbon by ionizing radiation - Google Patents

Regeneration method of activated carbon by ionizing radiation

Info

Publication number
JPH06198B2
JPH06198B2 JP1028517A JP2851789A JPH06198B2 JP H06198 B2 JPH06198 B2 JP H06198B2 JP 1028517 A JP1028517 A JP 1028517A JP 2851789 A JP2851789 A JP 2851789A JP H06198 B2 JPH06198 B2 JP H06198B2
Authority
JP
Japan
Prior art keywords
activated carbon
ionizing radiation
treatment
irradiation
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1028517A
Other languages
Japanese (ja)
Other versions
JPH02207841A (en
Inventor
雅一 細野
衛 柏谷
英彦 新井
定次郎 宮田
未男 町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP1028517A priority Critical patent/JPH06198B2/en
Publication of JPH02207841A publication Critical patent/JPH02207841A/en
Publication of JPH06198B2 publication Critical patent/JPH06198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • C01B32/366Reactivation or regeneration by physical processes, e.g. by irradiation, by using electric current passing through carbonaceous feedstock or by using recyclable inert heating bodies

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、浄水処理、廃水処理及び砂糖の精製等に利用
した後の活性炭の再生処理法に関する。
TECHNICAL FIELD The present invention relates to a method for regenerating activated carbon after it has been used for water purification treatment, wastewater treatment, sugar refining, and the like.

(従来の技術) 活性炭(粉末炭あるいは粒状炭)は脱色及び水中の有機
物等の吸着特性に優れているため、水処理および製造工
程において用いられるが、ある期間使用すると吸着性能
が低下するため再生処理を施す必要がある。しかも水処
理及び製造工程に使用された活性炭の場合、不可逆的な
要素が多いので、その再生は、通常、800〜1000℃の温
度において水蒸気雰囲気中で処理する方法によってい
る。しかしながら、この方法による再生は、上記のよう
に高温を要する多量エネルギ消費型であるため、相当の
費用と大規模な装置を必要とする。また、高温で処理す
るので、再生時に5%前後の活性炭が失われる。
(Prior art) Activated carbon (powdered coal or granular coal) is used in water treatment and manufacturing processes because it has excellent decolorization and adsorption properties for organic substances in water. Need to be processed. Moreover, in the case of activated carbon used in the water treatment and manufacturing process, since it has many irreversible elements, its regeneration is usually performed by a method of treating it in a steam atmosphere at a temperature of 800 to 1000 ° C. However, the regeneration by this method requires a large amount of energy and consumes a large amount of energy because it requires a high temperature as described above. Further, since the treatment is performed at a high temperature, about 5% of activated carbon is lost during regeneration.

他方、吸着筒に充填した活性炭に廃水等を流しながら電
離性放射線を照射して廃水等を処理する方法が知られて
いるが、この方法では電子線の有効到達距離が2MeVの
場合でも6〜8mmと短いので大量の廃水処理は困難で
ある。また、廃水等の処理に用いた活性炭に酸素あるい
は空気雰囲気中で電離性放射線照射すると活性炭の吸着
性能が一部回復することが知られているが、後述の比較
例で示すように、その効果はそれほど大きくない。
On the other hand, there is known a method of treating wastewater by irradiating it with ionizing radiation while flowing the wastewater etc. into the activated carbon filled in the adsorption column, but in this method, even if the effective reach of the electron beam is 2 MeV, Since it is as short as 8 mm, it is difficult to treat a large amount of wastewater. Further, it is known that the adsorption performance of activated carbon is partially recovered by irradiating the activated carbon used for the treatment of wastewater or the like with an ionizing radiation in an oxygen or air atmosphere. Is not that big.

以上のように、廃水等の処理に用いた活性炭の再生とし
て高温熱処理による再生を採用した場合には、上記の問
題以外にも高温加熱再生処理に関する高度の専門的技術
者と2〜3年毎の炉の修理が必要である等の問題があ
る。
As described above, when the regeneration by high-temperature heat treatment is adopted as the regeneration of the activated carbon used for the treatment of wastewater, etc., in addition to the above problems, every two to three years with highly specialized engineers involved in high-temperature heat regeneration treatment. There are problems such as the need to repair the furnace.

(発明が解決しようとする課題) 本発明は、上記の従来技術の問題点を解決し、廃水その
他の処理に用いた使用済活性炭の効果的な再生方法を提
供することを目的とする。
(Problems to be Solved by the Invention) It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an effective method for regenerating used activated carbon used for treatment of wastewater and the like.

(課題を解決するための手段) 本発明者らは、上記目的を達成すべく種々の方法を検討
した結果、水蒸気気流中で電離性放射線を照射すること
により、極めて効果的に使用済活性炭の吸着性能が回復
できることを見出し本発明に至った。
(Means for Solving the Problems) As a result of studying various methods for achieving the above-mentioned object, the inventors of the present invention irradiate ionizing radiation in a steam flow to extremely effectively remove spent activated carbon. The inventors have found that the adsorption performance can be recovered and have completed the present invention.

従って、本発明の方法は、使用済活性炭に、水蒸気気流
中で電離性放射線を照射することを特徴としている。
Therefore, the method of the present invention is characterized in that spent activated carbon is irradiated with ionizing radiation in a steam flow.

(作用) 本発明の電離性放射線法によれば、比較的低温(100〜5
00℃)で再生できるので、例えば、電離性放射線源とし
て電子加速器を用いることができ、その結果、該電子加
速器の定期的な保守・点検以外は10年近く照射容器等
の修理を必要としない。
(Operation) According to the ionizing radiation method of the present invention, a relatively low temperature (100-5
Since it can be regenerated at 00 ° C), for example, an electron accelerator can be used as a source of ionizing radiation, and as a result, there is no need to repair the irradiation container, etc. for nearly 10 years except for regular maintenance and inspection of the electron accelerator. .

本発明の方法によって吸着性能が回復する機構について
は現在のところ定かでないが、活性炭上に吸着された有
機物等が電離性放射線の照射によって分解されるととも
に、照射による水蒸気の分解で生じた酸化性の強い水酸
ラジカルにより効果的な吸着有機物等の分解が起きたた
めと考えられる。
Although the mechanism by which the adsorption performance is recovered by the method of the present invention is not clear at present, the organic matter and the like adsorbed on the activated carbon are decomposed by the irradiation of ionizing radiation, and the oxidative property generated by the decomposition of water vapor by the irradiation. It is considered that effective decomposition of adsorbed organic matter and the like occurred due to strong hydroxyl radicals.

本発明における電離性放射線の照射条件は特に限定され
ない。また、使用できる電離性放射線は、アルファ線、
重陽子線、陽子線、ベータ線、電子線、ガンマ線、X線
のいずれでもよい。
The irradiation conditions of the ionizing radiation in the present invention are not particularly limited. Ionizing radiation that can be used is alpha rays,
It may be any of deuteron rays, proton rays, beta rays, electron rays, gamma rays and X-rays.

本発明の方法は、以下で述べる実施例にみられるよう
に、極めて単純な操作によりしかも通常の高温水蒸気再
生法より低い温度で再生処理ができ、また、再生時の活
性炭の重量損失も4%以下と小さく、使用済活性炭の再
生方法として極めて実用的価値のある方法である。
The method of the present invention can be regenerated by an extremely simple operation and at a temperature lower than that of the ordinary high temperature steam regeneration method, as seen in the examples described below, and the activated carbon has a weight loss of 4% during regeneration. It is as small as the following, and it is a method with very practical value as a method for recycling used activated carbon.

更に、本発明の方法は、浄水処理及び廃水処理等に限ら
ず、あらゆる使用済活性炭の再生に用いることができ
る。
Furthermore, the method of the present invention is not limited to water purification treatment, wastewater treatment, and the like, and can be used to regenerate any used activated carbon.

以下、実施例及び比較例に基づいて本発明を具体的に説
明するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例) 実施例1 界面活性剤ラウリル硫酸ソーダを平衡吸着させた粒状活
性炭をステンレススチール製の薄槽型照射容器に入れチ
タンの薄膜で覆った後、水蒸気を照射容器中に流しなが
らチタン薄膜を通して2MeVの電子線を2MGy照射した。
照射後の水蒸気は大気中に放出した。この水蒸気を照射
容器内に送り込むのに必要な圧力は50mm前後の水頭で
十分であった。該照射時の照射電流は10mA、線量率は
45kGy/s、照射時間は44秒であり、活性炭の温度は
約300℃であった。また、この照射処理時の活性炭の
重量損失は4%であった。
(Example) Example 1 Granular activated carbon on which the surfactant sodium lauryl sulfate was equilibrated and adsorbed was placed in a thin tank type irradiation container made of stainless steel, covered with a thin film of titanium, and then a titanium thin film was made to flow steam into the irradiation container. 2 MGy of electron beam of 2 MeV was irradiated.
The water vapor after the irradiation was released into the atmosphere. A pressure of about 50 mm was sufficient as the pressure necessary to send this water vapor into the irradiation container. The irradiation current during the irradiation was 10 mA, the dose rate was 45 kGy / s, the irradiation time was 44 seconds, and the temperature of the activated carbon was about 300 ° C. Further, the weight loss of activated carbon during this irradiation treatment was 4%.

この照射処理済活性炭のヨウ素価及び比表面積は各々10
60mg/g、1020m2/g及び800mg/g、770m2/gであった。
The iodine value and specific surface area of this irradiation-treated activated carbon are 10
It was 60 mg / g, 1020 m 2 / g and 800 mg / g, 770 m 2 / g.

実施例2 染色廃水を主成分とする廃水を吸着処理した粒状活性炭
に実施例1と同様に水蒸気気流中で2MeVの電子線を2MG
y照射した。このときの照射電流等の条件は実施例1と
同じであった。この照射処理時の活性炭の重量損失は4
%であった。
Example 2 As in Example 1, 2 mg of electron beam of 2 MeV was applied to granular activated carbon in which waste water containing dyeing waste water as a main component was adsorbed in a steam flow.
y irradiated. The conditions such as the irradiation current at this time were the same as in Example 1. The weight loss of activated carbon during this irradiation treatment is 4
%Met.

この照射処理済の活性炭のヨウ素価及び比表面積は各々
970mg/g及び960m2/gであった。また、廃水吸着処理前後
での活性炭のヨウ素価及び比表面積は各々1060mg/g、10
20m2/g及び850mg/g、800m2/gであった。
The iodine value and specific surface area of this activated carbon are
It was 970 mg / g and 960 m 2 / g. The iodine value and specific surface area of the activated carbon before and after the wastewater adsorption treatment were 1060 mg / g and 10%, respectively.
It was 20 m 2 / g, 850 mg / g, and 800 m 2 / g.

比較例1 実施例1で用いた平衡吸着済活性炭を酸素気流中で実施
例1と同じ条件で同じ線量を照射した。この照射処理時
の活性炭の重量損失は約5%であった。また、この照射
処理済の活性炭のヨウ素価及び比表面積は各々800mg/g
及び790m2/gであった。
Comparative Example 1 The equilibrium adsorbed activated carbon used in Example 1 was irradiated with the same dose under the same conditions as in Example 1 in an oxygen stream. The weight loss of activated carbon during this irradiation treatment was about 5%. In addition, the iodine value and specific surface area of this irradiated activated carbon are 800 mg / g each.
And 790 m 2 / g.

比較例2 実施例1で用いた平衡吸着済活性炭を水蒸気気流中、3
00℃で約1分間加熱処理した。この熱処理済活性炭の
ヨウ素価及び比表面積は各々800mg/g及び770m2/gであっ
た。
Comparative Example 2 The equilibrium-adsorbed activated carbon used in Example 1 was treated with 3 in a steam flow.
Heat treatment was performed at 00 ° C. for about 1 minute. The iodine value and specific surface area of this heat-treated activated carbon were 800 mg / g and 770 m 2 / g, respectively.

以上から明らかなように、本発明の方法によれば、酸素
気流中での照射による方法及び加熱処理による方法のい
ずれよりも優れた結果が得られた。
As is clear from the above, according to the method of the present invention, excellent results were obtained as compared with both the method by irradiation in an oxygen stream and the method by heat treatment.

(発明の効果) 以上の如く、本発明の方法は、使用済活性炭に、水蒸気
気流中で電離性放射線を照射することによって再生処理
しているので、従来の高温水蒸気による再生方法と比べ
て低温・常圧且つ簡単な操作・装置で使用済活性炭の再
生ができると共に、再生時の活性炭の重量損失を少なく
することが可能となり、工業的に益するところ極めて大
である。
(Effects of the Invention) As described above, in the method of the present invention, the used activated carbon is regenerated by irradiating it with ionizing radiation in a steam flow, so that it is lower in temperature than the conventional method using high temperature steam. -It is possible to recycle used activated carbon with normal pressure and simple operation and equipment, and it is possible to reduce the weight loss of activated carbon at the time of regeneration, which is an extremely great industrial advantage.

フロントページの続き (72)発明者 町 未男 群馬県高崎市綿貫町1233番地 日本原子力 研究所高崎研究所内Front Page Continuation (72) Inventor Mio Machi 1233 Watanuki-cho, Takasaki-shi, Gunma Japan Atomic Energy Research Institute Takasaki Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】使用済活性炭に、水蒸気気流中で電離性放
射線を照射することを特徴とする活性炭の再生方法。
1. A method for regenerating activated carbon, which comprises irradiating used activated carbon with ionizing radiation in a steam flow.
【請求項2】前記使用済活性炭が、浄水処理、廃水処理
又は砂糖の精製において使用した後の活性炭である、第
1請求項記載の再生方法。
2. The regeneration method according to claim 1, wherein the used activated carbon is activated carbon that has been used in water purification treatment, wastewater treatment or sugar refining.
JP1028517A 1989-02-07 1989-02-07 Regeneration method of activated carbon by ionizing radiation Expired - Lifetime JPH06198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028517A JPH06198B2 (en) 1989-02-07 1989-02-07 Regeneration method of activated carbon by ionizing radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028517A JPH06198B2 (en) 1989-02-07 1989-02-07 Regeneration method of activated carbon by ionizing radiation

Publications (2)

Publication Number Publication Date
JPH02207841A JPH02207841A (en) 1990-08-17
JPH06198B2 true JPH06198B2 (en) 1994-01-05

Family

ID=12250877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028517A Expired - Lifetime JPH06198B2 (en) 1989-02-07 1989-02-07 Regeneration method of activated carbon by ionizing radiation

Country Status (1)

Country Link
JP (1) JPH06198B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2554802B2 (en) * 1991-08-23 1996-11-20 日本原子力研究所 Treatment method of difficult-to-treat activated carbon by ionizing radiation irradiation

Also Published As

Publication number Publication date
JPH02207841A (en) 1990-08-17

Similar Documents

Publication Publication Date Title
CN111115745B (en) Method for degrading organic pollutants in water by ionizing radiation
ES470372A1 (en) Method of decontaminating radioactive process waste waters
US4045553A (en) Method of treating silver impregnated activated carbon
CN106012491A (en) Method for preparing efficient modified ion exchange fiber
KR102160108B1 (en) Adsorbent of radioactive cesium and removal method of radioactive cesium
JPH06198B2 (en) Regeneration method of activated carbon by ionizing radiation
JP3603701B2 (en) Method and apparatus for treating peracetic acid-containing wastewater
JPS62163730A (en) Treatment of exhaust gas
JPH07308590A (en) Production and regenerating method of ion exchanger for separating cesium
JP2563448B2 (en) Method for producing immobilized tannin adsorbent
JPH0580941B2 (en)
KR102236311B1 (en) Purification method for tritium-containing raw water and purification device therefor
JPS6348573B2 (en)
US3871841A (en) Process of radioactive waste gases
NL2029939B1 (en) Treatment process for purifying chlorine-containing wastewater by crystallization of ammonium salt
JPH0319520B2 (en)
GB1370738A (en) Off-gas system for nuclear reactors
CN113171753B (en) Preparation of sodium alginate-zirconium phosphate composite beads and adsorption application of sodium alginate-zirconium phosphate composite beads in nuclear waste liquid
JP2015081891A (en) Method and apparatus for purifying nuclear-power-generation used fuel pool water, and method and apparatus for treating used fuel pool water
US3912625A (en) Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter
JP2011115772A (en) Method and apparatus for treating waste liquid
JP2011214971A (en) Method and device for processing spent ion exchange resin
CZ2014627A3 (en) Installation for reducing organic carbon in boric acid solution
JP3834715B2 (en) Organic acid decomposition catalyst and chemical decontamination method
KR20000003201A (en) Method for treating decontamination waste water of atomic power plant by electronic ray and ion exchange resin treatment