JPH06198761A - Production of composite optical element - Google Patents

Production of composite optical element

Info

Publication number
JPH06198761A
JPH06198761A JP36065992A JP36065992A JPH06198761A JP H06198761 A JPH06198761 A JP H06198761A JP 36065992 A JP36065992 A JP 36065992A JP 36065992 A JP36065992 A JP 36065992A JP H06198761 A JPH06198761 A JP H06198761A
Authority
JP
Japan
Prior art keywords
mold
base material
resin layer
optical element
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36065992A
Other languages
Japanese (ja)
Inventor
Masaki Shirakawa
正樹 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP36065992A priority Critical patent/JPH06198761A/en
Publication of JPH06198761A publication Critical patent/JPH06198761A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain an inexpensive composite optical element having no damage on its optical surface and not restricted by the shape of a base material. CONSTITUTION:An energy curable resin layer 2 is interposed between a mold 1 having a molding surface 1a molding an optical function surface having a desired shape and a glass base material 2 having a diameter larger than that of the mold 1. The closely bonded molded object 4 consisting of the mold 4, the energy curable resin layer 3 and the glass base material is set so that the center 5 of the optical surface 2a having no resin layer of the glass base material 2 is positioned on the extension of the optical axis 6 of the desired molding surface 1a of the mold 1 before the energy curable resin layer 3 is cured and, thereafter, the energy curable resin layer 3 is cured. Thereafter, the outer peripheral part of the glass base material 2 is processed into a desired shape using a processing member 7 while the closely bonded member 4 is rotated around the optical axis 6 of the mold 1 and, thereafter, a composite optical element is released from the mold 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス基材とこの基材
の表面に形成されたエネルギー硬化型樹脂層とから成る
複合型光学素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite optical element comprising a glass base material and an energy-curable resin layer formed on the surface of the base material.

【0002】[0002]

【従来の技術】従来、光学部品であるレンズの多くはガ
ラスで形成されていたが、特に非球面レンズを加工する
場合、球面レンズと比べて加工コストが非常に高くな
る。そこで、この欠点を解消する光学部品の製造方法と
して、透明な熱可塑性樹脂を型に注入して成形加工す
る、いわゆるプラスチックレンズを製造する方法があ
る。この方法は、研磨加工が不要なため低コストで量産
が可能である反面、ガラス材料に比べて成形後の冷却の
際にひけが生じやすいため、焦点距離が狂ってしまうと
いう欠点があった。
2. Description of the Related Art Conventionally, most of lenses which are optical components have been formed of glass. However, in the case of processing an aspherical lens in particular, the processing cost is much higher than that of a spherical lens. Therefore, as a method of manufacturing an optical component that solves this drawback, there is a method of manufacturing a so-called plastic lens, in which a transparent thermoplastic resin is injected into a mold and molded. This method can be mass-produced at low cost because it does not require polishing, but has a drawback that the focal length is erroneous because sink marks are more likely to occur during cooling after molding than glass materials.

【0003】この欠点を補う製造方法として、所望の光
学的形状を有する金型とガラス基材との間に樹脂を介在
させて硬化させることにより、ガラス基材と樹脂層とか
らなる光学部品を形成する、いわゆる複合型光学素子の
製造方法がある。この方法によれば、樹脂層が薄膜とな
っているため、熱膨張や熱による屈折率変化も小さく、
さらに歪やひけの発生も抑えることができる。
As a manufacturing method for compensating for this drawback, an optical component comprising a glass base material and a resin layer is obtained by interposing a resin between a mold having a desired optical shape and the glass base material and curing the resin. There is a method of manufacturing a so-called composite optical element for forming. According to this method, since the resin layer is a thin film, the refractive index change due to thermal expansion and heat is small,
Furthermore, the occurrence of distortion and sink marks can be suppressed.

【0004】一般的な球面ガラスレンズにおいて高精度
の光学性能を得るための条件として、光学芯の高精度化
が挙げられる。これは芯取り・芯出しと言われ、複合型
光学素子においても同様に、所望の光学的形状を有する
金型を反転することにより得られた樹脂層の光軸と樹脂
層を有していないガラス基材光学面の球心とが同一直線
上にあることと、この光軸と基材外周部中心が一致して
いることが光学性能上必要になる。
As a condition for obtaining high-precision optical performance in a general spherical glass lens, there is a high-precision optical core. This is called centering / centering, and similarly in the composite type optical element, the optical axis of the resin layer obtained by reversing the mold having the desired optical shape and the resin layer are not provided. It is necessary for optical performance that the spherical center of the optical surface of the glass base material is on the same straight line and that the optical axis and the center of the outer peripheral portion of the base material are aligned.

【0005】このため、球面ガラスレンズではベルクラ
ンプ機能による芯取り方法が一般的である。また、複合
型光学素子においては高精度に芯取りされたガラス基材
を用いるため、ガラス基材の光軸と所望の形状を有する
金型の光軸とを一致させる必要があり、このための一般
的な技術として、特開昭60−215551号公報記載
の方法がある。この方法は、平行光りビームを用いて高
精度に加工された基材と金型を位置出しする方法で、基
材を芯取りした後に、基材の光軸(基材の外径中心)と
金型の軸心とを一致させている。また、特開昭62−2
27711号公報記載の方法は、ベルクランプを用いて
基材の位置出しを行った上に、このベルクランプ中心と
一致した光軸を持つ金型により成形する方法で、基材の
光軸と金型の軸心とを一致させた後に、基材の光軸(成
形後の樹脂の光軸)と基材の外径中心とを一致させてい
る。さらに、特開平3−184813号公報記載の方法
は、高精度に加工された基材の外周をチャック等により
位置決めし成形する方法で、特開昭60−215551
号公報と同様に、基材を芯取りした後に、基材の光軸
(基材の外径中心)と金型の軸心とを一致させている。
For this reason, the centering method using the bell clamp function is generally used for spherical glass lenses. Further, since the glass substrate centered with high accuracy is used in the composite optical element, it is necessary to align the optical axis of the glass substrate with the optical axis of the mold having a desired shape. As a general technique, there is a method described in JP-A-60-215551. This method is a method of positioning a base material and a mold processed with high precision using a parallel light beam, and after centering the base material, the optical axis of the base material (center of the outer diameter of the base material) The axis of the mold is aligned. In addition, JP-A-62-2
The method described in Japanese Patent Publication No. 27711 is a method in which a base material is positioned using a bell clamp, and is then molded by a mold having an optical axis that coincides with the center of the bell clamp. After the axis of the mold is aligned, the optical axis of the substrate (optical axis of the resin after molding) is aligned with the center of the outer diameter of the substrate. Further, the method described in JP-A-3-184813 is a method of positioning and molding the outer periphery of a substrate processed with high precision by a chuck or the like, and disclosed in JP-A-60-215551.
After centering the base material, the optical axis of the base material (center of the outer diameter of the base material) and the axial center of the mold are aligned, as in the publication.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記従
来技術には、以下のような問題点があった。球面ガラス
レンズで用いているベルクランプ機構による方法では、
ベルホルダーにより光学素子を挟み込むため、片側が樹
脂層である複合型光学素子では樹脂層にベルホルダーの
傷がついてしまい、素子として使えなくなった。一方、
平行光ビームによる方法は、その設備の複雑さから非常
に費用がかかるばかりでなく、位置出しのための時間を
要するために成形サイクルタイムが長くなり、できた複
合型光学素子は高価でかつ量産物への適用が困難であっ
た。また、先に基材の芯出しをベルクランプにより行う
方法は、外径に比べて曲率の大きい基材に対しては高精
度の位置出しができず、基材の形状に制約があった。さ
らに、基材外周をチャック等により保持する方法は、薄
肉の基材を用いた場合、保持力により基材を変形させた
り、破損してしまい、ベルクランプによる方法と同様に
基材の形状に制約があった。
However, the above-mentioned prior art has the following problems. In the method by the bell clamp mechanism used in the spherical glass lens,
Since the optical element is sandwiched between the bell holders, the composite optical element, which has a resin layer on one side, scratches the bell holder on the resin layer and cannot be used as an element. on the other hand,
The method using a parallel light beam is not only very expensive due to the complexity of its equipment, but also requires a long time for positioning, resulting in a long molding cycle time, and the resulting composite optical element is expensive and mass-produced. It was difficult to apply to things. Further, the method of first performing the centering of the base material by the bell clamp cannot accurately position the base material having a curvature larger than the outer diameter, and thus the shape of the base material is limited. Furthermore, the method of holding the outer periphery of the base material with a chuck or the like causes the base material to be deformed or damaged by the holding force when a thin base material is used. There were restrictions.

【0007】本発明は、前記従来技術における問題点に
鑑みてなされたもので、光学面に傷のない、安価で基材
の形状に制約のない複合型光学素子の製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above problems in the prior art, and it is an object of the present invention to provide a method for manufacturing a composite optical element which has no scratch on the optical surface, is inexpensive, and has no restriction on the shape of the substrate. To aim.

【0008】[0008]

【課題を解決するための手段および作用】上記課題を解
決するために本発明は、ガラス素材の一方の表面にエネ
ルギ−硬化型樹脂層を形成する複合型光学素子の製造方
法であって、その光軸がガラス基材のもう一方の表面
(光学機能面)の球心を通るよう、金型によって上記樹
脂に光学機能面を転写する複合型光学素子の製造方法に
おいて、金型によって上記樹脂に光学機能面を転写する
際、上記金型に樹脂を密着させて金型と樹脂とガラス基
材とを一体の密着成形体とし、上記密着状態を維持しつ
つ、ガラス基材の外径を所定の形状に加工することとし
た。
In order to solve the above-mentioned problems, the present invention is a method for producing a composite-type optical element in which an energy-curable resin layer is formed on one surface of a glass material. In the method of manufacturing a composite optical element, wherein the optical functional surface is transferred to the resin by a mold so that the optical axis passes through the spherical center of the other surface (optical functional surface) of the glass substrate, When transferring the optical functional surface, the resin is brought into close contact with the mold to form an integrated contact molded body of the mold, the resin and the glass base material, and the outer diameter of the glass base material is set to a predetermined value while maintaining the close contact state. It was decided to process into the shape of.

【0009】図1は本発明の製造方法を示す概念図であ
る。以下に、上記課題を解決するための手段を図1を用
いて示す。所望形状の光学機能面を成形する成形面1a
を持つ金型1と金型1の外径よりも大径なガラス基材2
との間にエネルギー硬化型樹脂層3が介在している。こ
の金型1・エネルギー硬化型樹脂層3・ガラス基材2か
らなる密着成形体4は、エネルギー硬化型樹脂層3を硬
化する前に金型1の所望の成形面1aの光軸6の延長上
に、ガラス基材2の樹脂層を形成しない光学面2aの球
心5がくるように位置出しした後、エネルギー硬化型樹
脂層3を硬化する。
FIG. 1 is a conceptual diagram showing the manufacturing method of the present invention. The means for solving the above problems will be shown below with reference to FIG. Forming surface 1a for forming an optically functional surface having a desired shape
1 having a glass and a glass substrate 2 having a diameter larger than the outer diameter of the die 1
The energy-curable resin layer 3 is interposed between and. The contact molding 4 comprising the mold 1, the energy curable resin layer 3 and the glass substrate 2 is an extension of the optical axis 6 of the desired molding surface 1a of the mold 1 before the energy curable resin layer 3 is cured. After positioning so that the spherical center 5 of the optical surface 2a of the glass base material 2 on which the resin layer is not formed is positioned above, the energy curable resin layer 3 is cured.

【0010】その後、金型1の光軸6で密着体4を回転
させながらガラス基材2の外周部を加工部材7を用いて
所望の形状に加工した後、金型1から複合型光学素子を
離型する。
After that, the outer peripheral portion of the glass substrate 2 is processed into a desired shape by using the processing member 7 while rotating the contact member 4 around the optical axis 6 of the mold 1, and then the composite optical element is moved from the mold 1. Release.

【0011】[0011]

【実施例1】図2(a)〜(d)に本実施例に係る複合
型光学素子の製造方法の製造工程図を示す。まず、図2
(a)に示すように、曲率半径100mmと80mmを
持つ外径40mmのメニスカス形状の光学ガラスBSL
−7製ガラス基材2の成形面上に必要量の紫外線硬化型
樹脂11を吐出する。このガラス基材2は芯取り加工が
されていないため、光軸とガラス基材2の外周部中心と
は一致していないが、ベルホルダー12に乗せられるこ
とにより樹脂層を形成しない光学面2aの球心14は、
ガラス基材2の置き方に関わらず、常に同じ位置とな
る。外径35mmの金型1は所望の面形状の成形面1a
を持ち、上下摺動可能になっている。
Example 1 FIGS. 2A to 2D are manufacturing process diagrams of a method of manufacturing a composite optical element according to this example. First, FIG.
As shown in (a), a meniscus-shaped optical glass BSL having an outer diameter of 40 mm and a radius of curvature of 100 mm and 80 mm.
-7 A required amount of the ultraviolet curable resin 11 is discharged onto the molding surface of the glass base material 2. Since the glass base material 2 is not centered, the optical axis does not coincide with the center of the outer peripheral portion of the glass base material 2, but the optical surface 2a on which the resin layer is not formed by being placed on the bell holder 12 The core 14 of
Regardless of how the glass substrate 2 is placed, it is always at the same position. The mold 1 having an outer diameter of 35 mm is a molding surface 1a having a desired surface shape.
Holds and can slide up and down.

【0012】図2(b)は、前記図2(a)の状態から
金型1を下降させ、所望面形状の成形面1aにより紫外
線硬化型樹脂11を押し広げた状態を示す。この時、金
型1の成形面1aの光軸13の同軸上にガラス基材2の
樹脂層を形成しない光学面2aの球心14がくるように
金型1を正確に保持する。また、形成された樹脂層3の
樹脂厚も必要な厚さとなるようになっている。この状態
で、ベルホルダー12側から紫外線をガラス基材2を通
して照射させることにより、樹脂層3を硬化させ、金型
1・樹脂層3・ガラス基材2からなる密着成形体4を得
る。
FIG. 2B shows a state in which the mold 1 is lowered from the state of FIG. 2A and the ultraviolet curable resin 11 is spread by the molding surface 1a having a desired surface shape. At this time, the mold 1 is accurately held so that the spherical center 14 of the optical surface 2a on which the resin layer of the glass substrate 2 is not formed is coaxial with the optical axis 13 of the molding surface 1a of the mold 1. In addition, the resin thickness of the formed resin layer 3 is also a required thickness. In this state, the resin layer 3 is cured by irradiating the glass substrate 2 with ultraviolet rays from the bell holder 12 side, and the contact molding 4 including the mold 1, the resin layer 3 and the glass substrate 2 is obtained.

【0013】次に、図2(c)に示すように、上記方法
で得られた密着成形体4を金型1の光軸13で150r
pmで回転させながら、ガラス基材2の外周を#500
の砥石7によって所望外形寸法38mmまで加工する。
このとき、砥石7は3000rpmで回転させながら加
工を行った。その後、金型1と樹脂層3との界面から離
型することにより、図2(d)に示すような複合型光学
素子20が得られた。
Next, as shown in FIG. 2 (c), the contact molding 4 obtained by the above-mentioned method is moved by the optical axis 13 of the mold 1 at 150 r.
While rotating at pm, # 500 around the outer circumference of the glass substrate 2.
The desired outer dimension of 38 mm is processed by the grindstone 7.
At this time, the grindstone 7 was processed while rotating at 3000 rpm. After that, by releasing from the interface between the mold 1 and the resin layer 3, the composite optical element 20 as shown in FIG. 2D was obtained.

【0014】この複合型光学素子20は、金型1の面形
状を正確に反転して得られた所望面形状を持つ樹脂層3
を有し、その所望面形状の光軸と同軸である軸15上に
ガラス基材2の樹脂層3を形成していない光学面2aの
球心14が存在し、かつガラス基材2の外径2bの中心
と軸15(所望形状の光軸)が一致した高精度の品質を
持っていた。また、得られた樹脂層3の光学面には外観
上問題となる傷の発生はなかった。
The composite optical element 20 has a resin layer 3 having a desired surface shape obtained by accurately reversing the surface shape of the mold 1.
And the spherical center 14 of the optical surface 2a on which the resin layer 3 of the glass substrate 2 is not formed is present on the axis 15 that is coaxial with the optical axis of the desired surface shape, and The center of the diameter 2b and the axis 15 (the optical axis of the desired shape) coincided with each other, and the quality was high. Further, the optical surface of the obtained resin layer 3 did not have scratches that would cause a problem in appearance.

【0015】本実施例では、BSL−7製のメニスカス
形状のガラス基材2を用いたが、他の硝材、両凹あるい
は両凸等の他の形状のガラス基材でも同様の効果が得ら
れる。また、砥石7の粗さや外周加工時の回転数もその
硝材やガラス基材形状により変えても、同様の効果が得
られる。さらに、使用する樹脂は紫外線硬化型樹脂以外
にも熱硬化型や電子線硬化型等の他のエネルギー硬化型
樹脂でも良い。
In this embodiment, the meniscus-shaped glass base material 2 made of BSL-7 was used, but the same effect can be obtained by using other glass materials, or glass base materials having other shapes such as biconcave or biconvex. . Further, the same effect can be obtained by changing the roughness of the grindstone 7 and the number of rotations at the time of processing the outer periphery depending on the glass material or the shape of the glass substrate. Further, the resin used may be a thermosetting resin, an electron beam curable resin, or another energy curable resin other than the ultraviolet curable resin.

【0016】[0016]

【実施例2】図3(a)〜(c)に本実施例に係る複合
型光学素子の製造方法の製造工程図を示す。図3(a)
は、金型1の所望形状の成形面1a上に吐出した熱硬化
型樹脂を、ベルホルダー12に吸着保持されている曲率
半径50mmと60mmを持つ外径40mmの両凸形状
の光学ガラスBSL−7製ガラス基材2により押し広
げ、所望の樹脂層3が形成された状態を示す。このガラ
ス基材2は芯取り加工がされていないため、光軸とガラ
ス基材2との外周部中心は一致していないが、ベルホル
ダー12に吸着保持されることにより、樹脂層3を形成
しない光学面2aの球心14はガラス基材2の置き方に
関わらず常に同じ位置となる。さらに、外径35mmの
金型1の成形面1aの光軸13上に球心14が一致する
ように正確に保持する。また、形成された樹脂層3の樹
脂厚も必要な厚さとする。この状態で、80℃の温度と
することにより、樹脂層3を硬化させ、金型1・樹脂層
3・ガラス基材2からなる密着成形体4を得る。
[Embodiment 2] FIGS. 3A to 3C are manufacturing process diagrams of a method for manufacturing a composite optical element according to this embodiment. Figure 3 (a)
Is a biconvex optical glass BSL- with an outer diameter of 40 mm having a radius of curvature of 50 mm and 60 mm, which is adsorbed and held by a bell holder 12 on a thermosetting resin discharged onto a molding surface 1a of a desired shape of a mold 1. 7 shows a state in which a desired resin layer 3 is formed by pressing and spreading the glass base material 2 made of glass. Since this glass substrate 2 is not centered, the optical axis and the center of the outer peripheral portion of the glass substrate 2 do not coincide, but the resin layer 3 is formed by being sucked and held by the bell holder 12. The spherical center 14 of the optical surface 2a is always at the same position regardless of how the glass substrate 2 is placed. Further, the molding surface 1a of the mold 1 having an outer diameter of 35 mm is accurately held so that the spherical center 14 is aligned with the optical axis 13. Further, the resin thickness of the formed resin layer 3 is also a required thickness. In this state, the temperature is set to 80 ° C. to cure the resin layer 3 and obtain the contact molding 4 including the mold 1, the resin layer 3 and the glass substrate 2.

【0017】次に、図3(b)に示すように、上記方法
で得られた密着成形体4を金型1の光軸13で150r
pmで回転させながら、ガラス基材2の外周を#500
の砥石7によって所望外形寸法38mmまで加工する。
このとき、砥石7は3000rpmで回転させながら加
工を行った。その後、金型1と樹脂層3との界面から離
型することにより、図3(c)に示すような複合型光学
素子20を得た。
Next, as shown in FIG. 3 (b), the contact molding 4 obtained by the above-mentioned method is moved by the optical axis 13 of the mold 1 at 150 r.
While rotating at pm, # 500 around the outer circumference of the glass substrate 2.
The desired outer dimension of 38 mm is processed by the grindstone 7.
At this time, the grindstone 7 was processed while rotating at 3000 rpm. After that, by releasing from the interface between the mold 1 and the resin layer 3, a composite optical element 20 as shown in FIG. 3C was obtained.

【0018】この複合型光学素子20は、金型1の面形
状を正確に反転して得られた所望形状を持つ樹脂層3を
有し、その所望面形状の光軸と同軸である軸15上にガ
ラス基材2の樹脂層を形成していない光学面2aの球心
14が存在し、かつガラス基材2の外径2bの中心と軸
15(所望面形状の光軸)が一致した高精度の品質を持
っていた。また、得られた樹脂層3の光学面には外観上
問題となる傷の発生はなかった。
The composite optical element 20 has a resin layer 3 having a desired shape obtained by accurately reversing the surface shape of the mold 1, and an axis 15 coaxial with the optical axis of the desired surface shape. The spherical center 14 of the optical surface 2a on which the resin layer of the glass substrate 2 is not formed exists, and the center of the outer diameter 2b of the glass substrate 2 and the axis 15 (the optical axis of the desired surface shape) are aligned. Had high precision quality. Further, the optical surface of the obtained resin layer 3 did not have scratches that would cause a problem in appearance.

【0019】本実施例では、BSL−7製のメニスカス
形状のガラス基材2を用いたが、他の硝材、両凹あるい
はメニスカス形状等の他の形状のガラス基材でも同様の
効果が得られる。また、砥石7の粗さや外周加工時の回
転数もその硝材やガラス基材形状により変えても、同様
の効果が得られる。さらに、使用する樹脂は紫外線硬化
型樹脂以外にも熱硬化型や電子線硬化型等の他のエネル
ギー硬化型樹脂でも良い。
In the present embodiment, the meniscus-shaped glass base material 2 made of BSL-7 was used, but the same effect can be obtained by using another glass material, or a glass base material having another shape such as a biconcave shape or a meniscus shape. . Further, the same effect can be obtained by changing the roughness of the grindstone 7 and the number of rotations at the time of processing the outer periphery depending on the glass material or the shape of the glass substrate. Further, the resin used may be a thermosetting resin, an electron beam curable resin, or another energy curable resin other than the ultraviolet curable resin.

【0020】[0020]

【実施例3】図4(a)および(b)に本実施例に係る
複合型光学素子の製造方法の製造工程図を示す。図4
(a)は、曲率半径60mm、外径30mmの両凹形状
の光学ガラス基材2と所望面形状の成形面1aを有する
金型1とにより樹脂層3が形成されている状態を示す。
樹脂層3を形成しない光学面2aの球心14と金型1の
光軸13の位置決めにおいてベルホルダー12を用いる
等の方法は、前記実施例1と同様である。
[Embodiment 3] FIGS. 4A and 4B are manufacturing process diagrams of a method for manufacturing a composite optical element according to this embodiment. Figure 4
(A) shows a state in which a resin layer 3 is formed by a biconcave optical glass substrate 2 having a radius of curvature of 60 mm and an outer diameter of 30 mm and a mold 1 having a molding surface 1a having a desired surface shape.
The method of using the bell holder 12 for positioning the spherical center 14 of the optical surface 2a on which the resin layer 3 is not formed and the optical axis 13 of the mold 1 is the same as that of the first embodiment.

【0021】この状態で、樹脂層3を硬化させる。次
に、図4(b)に示すように、実施例1,2と同様にし
て、砥石7によりガラス基材2の外周を所望形状に加工
する。その際、砥石7を回転させつつ光軸13と平行方
向に移動させることにより、砥石7に形成されている端
部研摩面7aにより、ガラス基材2の光軸13と垂直な
端面2cを同時に加工する。その後、金型1と樹脂層3
との界面から離型することにより、実施例1,2と同様
の品質を持つ複合型光学素子を得た。
In this state, the resin layer 3 is cured. Next, as shown in FIG. 4B, the outer periphery of the glass substrate 2 is processed into a desired shape by the grindstone 7 in the same manner as in Examples 1 and 2. At that time, by rotating the grindstone 7 and moving it in a direction parallel to the optical axis 13, the end polishing surface 7a formed on the grindstone 7 causes the end surface 2c of the glass base material 2 which is perpendicular to the optical axis 13 at the same time. To process. After that, the mold 1 and the resin layer 3
By releasing from the interface with and, a composite optical element having the same quality as in Examples 1 and 2 was obtained.

【0022】本実施例で得られた複合型光学素子は、特
にガラス基材2の外周部に鋭角部がないため、取り扱い
等により発生するバリ(微細な欠け)が生じにくくなっ
た。
In the composite type optical element obtained in this example, since the outer peripheral portion of the glass substrate 2 does not have an acute angle portion, burrs (fine chips) generated by handling or the like are less likely to occur.

【0023】[0023]

【実施例4】図5に本実施例に係る複合型光学素子の製
造方法の一工程図を示す。金型1・樹脂層3・ガラス基
材2からなる密着成形体4を得るまでは、前記実施例1
と同様である。ガラス基材2の外周加工を行う砥石7に
は、面取り用の斜部7bが形成されており、これにより
加工されたガラス基材2の外周部には面取り部2dが形
成される。本実施例で得られた複合型光学素子は、前記
実施例1〜3と同様の品質を持っていた。
[Embodiment 4] FIG. 5 shows a process chart of a method of manufacturing a composite optical element according to this embodiment. Until the contact molding 4 comprising the mold 1, the resin layer 3 and the glass substrate 2 is obtained,
Is the same as. A chamfered sloping portion 7b is formed on the grindstone 7 for processing the outer periphery of the glass base material 2, and a chamfered portion 2d is formed on the outer peripheral portion of the processed glass base material 2. The composite optical element obtained in this example had the same quality as in Examples 1 to 3 above.

【0024】以上の実施例では、ガラス基材2外周の所
望形状を円柱面、端面、面取り部としたが、本発明はか
かる実施例に限定されるものではなく、図6(a),
(b)に示すように、V溝面や段付き面としても良い。
In the above embodiments, the desired shape of the outer periphery of the glass substrate 2 is a cylindrical surface, an end surface, or a chamfered portion, but the present invention is not limited to such an embodiment, and as shown in FIG.
As shown in (b), it may be a V groove surface or a stepped surface.

【0025】以上のように、本発明の複合型光学素子の
製造方法によれば、金型・樹脂層・ガラス基材からなる
密着成形体を形成する際に高精度の位置出しを行い、ま
たその密着成形体を金型から離型する前にガラス基材外
周の芯取りを行うので、光学面に傷がなく、安価でガラ
ス基材の形状に制約のない複合型光学素子を得ることが
できる。
As described above, according to the method for producing a composite optical element of the present invention, highly accurate positioning is performed when forming a contact molding comprising a mold, a resin layer and a glass substrate, and Since the outer periphery of the glass base material is centered before the contact molded body is released from the mold, it is possible to obtain a composite optical element which has no scratches on the optical surface, is inexpensive, and has no restriction on the shape of the glass base material. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を示す概念図である。FIG. 1 is a conceptual diagram showing a manufacturing method of the present invention.

【図2】本発明の実施例1に係る複合型光学素子の製造
方法を示す製造工程図である。
FIG. 2 is a manufacturing process diagram illustrating a method of manufacturing the composite optical element according to Example 1 of the present invention.

【図3】本発明の実施例2に係る複合型光学素子の製造
方法を示す製造工程図である。
FIG. 3 is a manufacturing process diagram illustrating a method of manufacturing a composite optical element according to Example 2 of the present invention.

【図4】本発明の実施例3に係る複合型光学素子の製造
方法を示す製造工程図である。
FIG. 4 is a manufacturing process diagram illustrating a method of manufacturing a composite optical element according to Example 3 of the present invention.

【図5】本発明の実施例4に係る複合型光学素子の製造
方法を示す一工程図である。
FIG. 5 is a process chart showing a method of manufacturing a composite optical element according to Example 4 of the present invention.

【図6】ガラス基材の外周形状の変形例を示す要部正面
図である。
FIG. 6 is a main part front view showing a modified example of the outer peripheral shape of the glass substrate.

【符号の説明】[Explanation of symbols]

1 金型 2 ガラス基材 3 樹脂層 4 密着成形体 6,13 光軸 7 砥石(加工部材) 11 紫外線硬化型樹脂 15 軸 DESCRIPTION OF SYMBOLS 1 Mold 2 Glass base material 3 Resin layer 4 Adhesive molding 6,13 Optical axis 7 Grinding stone (processing member) 11 UV curable resin 15 axis

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガラス素材の一方の表面にエネルギ−硬
化型樹脂層を形成する複合型光学素子の製造方法であっ
て、その光軸がガラス基材のもう一方の表面の球心を通
るよう、金型によって上記樹脂に光学機能面を転写する
複合型光学素子の製造方法において、金型によって上記
樹脂に光学機能面を転写する際、上記金型に樹脂を密着
させて金型と樹脂とガラス基材とを一体の密着成形体と
し、上記密着状態を維持しつつ、ガラス基材の外径を所
定の形状に加工することを特徴とする複合型光学素子の
製造方法。
1. A method of manufacturing a composite optical element, wherein an energy-curable resin layer is formed on one surface of a glass material, the optical axis of which passes through the spherical center of the other surface of the glass substrate. In a method for manufacturing a composite optical element in which an optical functional surface is transferred to the resin by a mold, when the optical functional surface is transferred to the resin by the mold, the resin is brought into close contact with the mold and the mold and the resin. A method for producing a composite-type optical element, characterized in that the glass base material is formed as an integral contact molding, and the outer diameter of the glass base material is processed into a predetermined shape while maintaining the above-mentioned contact state.
JP36065992A 1992-12-29 1992-12-29 Production of composite optical element Withdrawn JPH06198761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36065992A JPH06198761A (en) 1992-12-29 1992-12-29 Production of composite optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36065992A JPH06198761A (en) 1992-12-29 1992-12-29 Production of composite optical element

Publications (1)

Publication Number Publication Date
JPH06198761A true JPH06198761A (en) 1994-07-19

Family

ID=18470364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36065992A Withdrawn JPH06198761A (en) 1992-12-29 1992-12-29 Production of composite optical element

Country Status (1)

Country Link
JP (1) JPH06198761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111256A1 (en) * 2008-07-11 2011-05-12 Akiko Hara Optical Element, Method for Producing Optical Element, and Method for Manufacturing Electronic Device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111256A1 (en) * 2008-07-11 2011-05-12 Akiko Hara Optical Element, Method for Producing Optical Element, and Method for Manufacturing Electronic Device
US8601681B2 (en) * 2008-07-11 2013-12-10 Konica Minolta Opto, Inc. Method for producing an optical element

Similar Documents

Publication Publication Date Title
KR101065577B1 (en) Compound lens
US4890905A (en) Replica lens and method of manufacturing same
US4319945A (en) Method of producing aspherical optical elements
JPH0313902A (en) Compound optical parts and production thereof
US7790071B2 (en) Ceramic hybrid lens and method for manufacturing the same
JPH06198761A (en) Production of composite optical element
JP2000326348A (en) Mold for lens, its manufacture, and manufacture of lens
JPS6337309A (en) Manufacture of composite type lens
JP2007025297A (en) Manufacturing method of compound lens
JP2511269B2 (en) Lens molding press die
JP2000180602A (en) Hybrid lens and manufacture thereof
US20220283448A1 (en) Polarized lens for spectacles, method for manufacturing polarized lens for spectacles, method for manufacturing framed spectacle, and method for inspecting polarized lens for spectacles
JP2001310330A (en) Mold and molding thereof
JPH0552481B2 (en)
US20230226721A1 (en) Methods for manufacturing optical prisms
JP2003222708A (en) Optical element and its manufacturing method
JP2000007355A (en) Method for molding glass optical element, and molding frame body for the method
GB2088273A (en) Method of making biaspherical optical elements
JPH0545501A (en) Composite type optical element and production thereof
JP2005128181A (en) Method of manufacturing aspheric optical element
JP2829518B2 (en) Plastic lens
JPH08244128A (en) Manufacture of resin bonded type aspherical lens
JPH06130208A (en) Production of resin joined aspherical lens
JPH03208615A (en) Production of composite type optical element and device
KR930005369Y1 (en) Lens

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307