JPH06196519A - Bonding wire - Google Patents

Bonding wire

Info

Publication number
JPH06196519A
JPH06196519A JP43A JP35786092A JPH06196519A JP H06196519 A JPH06196519 A JP H06196519A JP 43 A JP43 A JP 43A JP 35786092 A JP35786092 A JP 35786092A JP H06196519 A JPH06196519 A JP H06196519A
Authority
JP
Japan
Prior art keywords
bonding wire
gold
ball
wire
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Koji Akizuki
弘司 秋月
Shiro Komachi
史朗 小町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP43A priority Critical patent/JPH06196519A/en
Publication of JPH06196519A publication Critical patent/JPH06196519A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To remarkably reduce vibration rupture ratio without deteriorating various characteristics of a gold wire, by using a bonding wire containing a specified amount of calcium, beryllium and sodium or potassium, the residual part of which consists of inevitable impurities and gold. CONSTITUTION:A semiconductor element 1 is bonded to an island part 3 of a substrate. The tip of a bonding wire 6 is melted, and a ball 4 is formed. The bonding wire 6 is bonded to a chip electrode 5 by applying pressure to the ball 4. The bonding wire 6 is bonded to an outer lead 7, and the chip electrode 5 is connected with the outer lead 7. The bonding wire 6 contains the following; calcium of 0.0001-0.003wt.%, beryllium of 0.0001-0.001wt.%, and sodium or potassium of 0.0001-0.003wt.%. The residual part consists of inevitable impurities and gold of 0.001wt.% or less. Thereby the vibration rupture ratio in the assembling work of semiconductor can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子上のチップ
電極と外部リードとを接続するために用いるボンディン
グワイヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonding wire used for connecting a chip electrode on a semiconductor element and an external lead.

【0002】[0002]

【従来の技術】トランジスタ、IC、LSI等の半導体
素子上のチップ電極と外部リードとの結線には、ボンデ
ィングワイヤとして金線が一般に使用されている。これ
は、ボンディングする際に形成される金ボールが適切な
硬度を有するために、接合時の圧力によってもシリコン
等よりなる半導体素子を損傷することがなく、また、非
常に安定した素子であるために、腐食等による劣化の可
能性が極めて低く、安定して高い信頼性が得られること
等の理由による。
2. Description of the Related Art Gold wires are generally used as bonding wires for connecting chip electrodes on semiconductor elements such as transistors, ICs and LSIs to external leads. This is because the gold balls formed at the time of bonding have an appropriate hardness, so that the semiconductor element made of silicon or the like is not damaged even by the pressure at the time of bonding, and it is a very stable element. In addition, the possibility of deterioration due to corrosion or the like is extremely low, and stable and high reliability can be obtained.

【0003】一方、最近のボンディング技術の向上に伴
うボンディングの高速化、及び半導体デバイスの高集積
度化等から使用されるワイヤの機械的特性、ボンディン
グ特性、及び信頼性に関する要求が年々厳しくなってき
ている。従来こういった要求を満たすために、ボールの
形状、及び硬度を損なわない程度に、高純度金中に微量
の他の金属元素を添加する方法が用いられている。例え
ば、金線の常温及び高温での機械強度、及び耐熱強度を
向上させる目的で、高純度金にカルシウム、ベリリウ
ム、ゲルマニウムを含有させた合金組成のもの(特公昭
57−35577号公報)、更に第4元素としてランタ
ン、セリウムといった希土類元素を含有させた合金組成
のもの(特公平2−12022号公報)等が報告されて
いる。
On the other hand, due to the speeding up of bonding accompanying the recent improvement in bonding technology, and the increase in integration of semiconductor devices, the requirements for mechanical properties, bonding properties, and reliability of wires used have become stricter year by year. ing. In order to meet such requirements, a method of adding a trace amount of another metal element to high-purity gold is used so far as the shape and hardness of the ball are not impaired. For example, for the purpose of improving mechanical strength and heat resistance of a gold wire at normal temperature and high temperature, an alloy composition containing high purity gold containing calcium, beryllium and germanium (Japanese Patent Publication No. 57-35577), and An alloy composition containing a rare earth element such as lanthanum and cerium as the fourth element (Japanese Patent Publication No. 2-12022) has been reported.

【0004】[0004]

【発明が解決しようとする課題】しかしながら最近の半
導体デバイスの多ピン化傾向に伴って、外部リードの形
状は、長尺化、及びリード幅の狭小化といった傾向にあ
る。そのためボンディングワイヤは、半導体組立工程で
発生する振動、及び搬送工程で起こる機械的な振動、衝
撃の影響を受けやすくなってきており、金ボール直上の
ネック部が破断するという現象がみられるようになって
きた。この破断の原因は、水素炎、またはアーク放電に
よりボールを形成する際に、金線が受ける影響によっ
て、ボール直上の結晶組織は粒が粗大化した再結晶組織
となり、そのためボールネック部は脆化を起こし、その
引っ張り強度がボール形成以前の金線の7割程度にまで
低下して振動に対する強度が不足するからだと考えられ
る。
However, the shape of the external lead tends to be elongated and the lead width to be narrowed with the recent trend of increasing the number of pins of semiconductor devices. Therefore, the bonding wire is becoming more susceptible to the vibration generated in the semiconductor assembly process, the mechanical vibration generated in the transfer process, and the impact, and the phenomenon that the neck part directly above the gold ball is broken is observed. It's coming. The cause of this fracture is that the crystal structure directly above the ball becomes a recrystallized structure with coarse grains due to the influence of the gold wire when forming the ball by hydrogen flame or arc discharge, and the ball neck becomes brittle. It is thought that this is because the tensile strength is reduced to about 70% of the gold wire before ball formation and the strength against vibration is insufficient.

【0005】図1に振動破断が発生する様子を示す。半
導体素子1は、接着剤2を用いて基板のアイランド部3
に接合される。そして、ボンディングワイヤの先端を水
素炎、又はアーク放電により溶融し、ボール4を形成す
る。このボール4を半導体素子上のチップ電極5に圧力
をかけて押しつけることによりチップ電極5とボンディ
ングワイヤ6の接合を行う。次に、ボンディングワイヤ
6に圧力と超音波を加えて外部リード7に押しつけるこ
とでボンディングワイヤ6と外部リード7の接合が行わ
れ、チップ電極5と、外部リード7とが結線される。結
線された後に半導体の組立作業や搬送を行うと、工程中
の振動、または衝撃を受けて、外部リード7が上8下9
に振動する。この振動に応じてボンディングワイヤ6も
振動8’、9’を繰り返すことになる。そのため、結晶
粒が肥大化し、脆化を起こしているボールネック部で破
断が生じることになる。外部リード7が受ける振動量
は、リードが長くリード幅が狭い程大きいため、多ピン
化が進むにつれて振動破断は顕著になる。
FIG. 1 shows how vibration breakage occurs. The semiconductor element 1 uses the adhesive 2 to form the island portion 3 of the substrate.
To be joined to. Then, the tip of the bonding wire is melted by hydrogen flame or arc discharge to form the ball 4. The ball 4 is pressed against the chip electrode 5 on the semiconductor element to bond the chip electrode 5 and the bonding wire 6. Next, by applying pressure and ultrasonic waves to the bonding wire 6 and pressing it against the external lead 7, the bonding wire 6 and the external lead 7 are bonded, and the chip electrode 5 and the external lead 7 are connected. If the semiconductor is assembled or transported after being connected, the external leads 7 are subject to vibrations or shocks during the process, and the upper leads 9
Vibrate to. The bonding wire 6 also repeats the vibrations 8 ′ and 9 ′ in response to this vibration. As a result, the crystal grains become large and fracture occurs at the ball neck portion where embrittlement is occurring. The amount of vibration received by the external lead 7 is greater as the lead is longer and the lead width is narrower.

【0006】この対応手段の一つに、使用する金線の径
を大きくしてネック部を強化する方法がある。しかしな
がらこの方法では高価な金の使用量が増えるために、コ
スト面を考慮した場合、必ずしも得策とはいえない。
One of the countermeasures is to increase the diameter of the gold wire used to strengthen the neck. However, this method is not necessarily a good measure when considering the cost, since the amount of expensive gold used increases.

【0007】そこで本発明は、従来の金線が持つ諸特性
を損なうことなく、振動破断率を大幅に低減し得るボン
ディングワイヤを提供することにある。
Therefore, the present invention is to provide a bonding wire capable of greatly reducing the vibration rupture rate without deteriorating the various characteristics of the conventional gold wire.

【0008】[0008]

【課題を解決するための手段】本発明のボンディングワ
イヤは、カルシウムを0.0001〜0.003重量%
と、ベリリウムを0.0001〜0.001重量%と、
ナトリウム又は/及びカリウムを0.0001〜0.0
03重量%含有し、残部が0.001重量%以下の不可
避不純物と金とからなる点に特徴がある。
The bonding wire of the present invention contains calcium in an amount of 0.0001 to 0.003% by weight.
And 0.0001 to 0.001% by weight of beryllium,
0.0001 to 0.0 of sodium or / and potassium
It is characterized in that it contains 03% by weight and the balance is 0.001% by weight or less of inevitable impurities and gold.

【0009】[0009]

【作用】カルシウムの添加は、金の結晶格子に歪を与え
て金線の機械的強度を高めるとともに、金ボールを形成
する際にワイヤが受ける熱の影響によって金ボール直上
の結晶粒が粗大化することを防ぐ効果がある。従って、
結晶粒の粗大化によるボールネック部の脆化を防止し、
振動破断を低減させる効果がある。また、再結晶温度が
高くなるために、ループ高さを低くする効果がある。し
かし、カルシウム添加量が0.0001重量%未満では
その効果が得られず、また、0.003重量%を超える
とボールを形成する際にボール表面にカルシウムが析出
して酸化皮膜が形成されるため、チップ電極との密着性
を著しく阻害する。そのためカルシウムの添加量は、
0.0001〜0.003重量%とすることが望まし
い。
[Operation] The addition of calcium increases the mechanical strength of the gold wire by straining the gold crystal lattice, and the crystal grains directly above the gold ball become coarse due to the effect of heat applied to the wire when forming the gold ball. It has the effect of preventing Therefore,
Prevents embrittlement of the ball neck due to coarsening of crystal grains,
It has the effect of reducing vibration rupture. Further, since the recrystallization temperature becomes high, there is an effect of reducing the loop height. However, if the amount of calcium added is less than 0.0001% by weight, the effect cannot be obtained, and if it exceeds 0.003% by weight, calcium is deposited on the surface of the ball to form an oxide film when the ball is formed. Therefore, the adhesiveness with the chip electrode is significantly hindered. Therefore, the amount of calcium added is
It is desirable to set it to 0.0001 to 0.003% by weight.

【0010】ベリリウムの添加は、ボンディングを行っ
た際の金線のループ形状を改善する効果がある。ベリリ
ウムの含有量が多い程ループ高さは高くなる。前記のよ
うにカルシウムの添加はループ高さを低下させるが、更
にベリリウムを添加することでこのループ高さを調整す
ることができる。しかし、添加量が0.0001重量%
未満ではループを高くする効果は得られず、また、0.
001重量%を超えるとボール直上の結晶粒界の脆化を
生じるためネック強度が低下し、振動破断の原因とな
る。そのため、ベリリウムの添加量は、0.0001〜
0.001重量%とすることが望ましい。
The addition of beryllium has the effect of improving the loop shape of the gold wire during bonding. The higher the beryllium content, the higher the loop height. As described above, the addition of calcium lowers the loop height, but by adding beryllium, the loop height can be adjusted. However, the addition amount is 0.0001% by weight.
If it is less than 1, the effect of increasing the loop is not obtained, and if it is 0.
If the amount exceeds 001% by weight, the crystal grain boundary immediately above the ball becomes brittle and the neck strength decreases, causing vibrational rupture. Therefore, the addition amount of beryllium is 0.0001 to
It is preferably 0.001% by weight.

【0011】ナトリウム又は/及びカリウムの添加は、
ボールを形成する際に起こるボール上の結晶粒径の粗大
化及びボールネック部の強度低下を抑制し、更に結晶粒
の大きさを均一にする効果がある。しかし、0.000
1重量%未満の添加ではその効果はみられず、また、
0.003重量%を超える添加ではボール形成時にボー
ル表面に酸化皮膜が形成され、ボール形状に歪を生じ、
チップ電極との接合性を阻害する。そのため、ナトリウ
ム又は/及びカリウムの添加は、0.0001〜0.0
03重量%とすることが望ましい。
The addition of sodium or / and potassium is
It has the effects of suppressing the coarsening of the crystal grain size on the ball and the reduction of the strength of the ball neck portion that occur when forming the ball, and further making the crystal grain size uniform. But 0.000
If less than 1% by weight, the effect is not seen, and
If added in excess of 0.003% by weight, an oxide film will be formed on the surface of the ball during ball formation, causing distortion in the ball shape,
It impairs the bondability with the chip electrode. Therefore, the addition of sodium or / and potassium is 0.0001 to 0.0
It is desirable to set it to 03% by weight.

【0012】カルシウムの添加量と、ナトリウム又は/
及びカリウムの添加量との合計が0.001重量%未満
では、振動破断率の低減効果が少ないため、カルシウム
の添加量と、ナトリウム又は/及びカリウムの添加量と
の合計は、0.001重量%以上とすることが望まし
い。
The amount of calcium added and sodium or /
If the total of the amount of potassium and potassium added is less than 0.001% by weight, the effect of reducing the vibration rupture rate is small, so the total amount of calcium added and the amount of sodium or / and potassium added is 0.001% by weight. It is desirable to set it to be at least%.

【0013】[0013]

【実施例】純度99.999重量%以上の電解高純度金
に、カルシウム、ベリリウム、ナトリウム、カリウムを
種々の割合で添加し、高周波誘導炉で溶解して種々の組
成の金合金を得た。これら合金に溝ロール加工を施した
後、ダイスを用いた伸線加工により直径0.03mmの
金線とした。このワイヤを室温での伸び率が6%となる
ように連続焼鈍を行い、ボンディングワイヤを得た。連
続焼鈍は、450℃に保たれた均熱部約50cmの焼鈍
炉内を用い、炉の両端の巻き取り装置により40m/m
inの速度で通過するように行った。
EXAMPLE Calcium, beryllium, sodium and potassium were added in various proportions to electrolytic high-purity gold having a purity of 99.999% by weight or more and melted in a high frequency induction furnace to obtain gold alloys of various compositions. After subjecting these alloys to groove roll processing, wire drawing using a die was performed to obtain a gold wire having a diameter of 0.03 mm. This wire was continuously annealed so that the elongation at room temperature was 6% to obtain a bonding wire. The continuous annealing uses an annealing furnace with a soaking part of about 50 cm kept at 450 ° C., and 40 m / m by the winding device at both ends of the furnace.
It was made to pass at a speed of in.

【0014】各金線の実験試料について、合金の組成、
常温引っ張り強度、ループ高さ、ボールネック部の強
度、振動破断率を調べた。合金の組成は高周波誘導プラ
ズマ発光分光分析装置で分析した。常温引っ張り強度
は、引っ張り試験機により測定した。ループ高さは、高
速自動ボンダーを用いて半導体素子上のチップ電極と外
部リードとの間を結線した後、リードフレーム面に対す
るループ最高部の高さをループ高さとし、光学顕微鏡を
用いて測定した。
For each gold wire experimental sample, the alloy composition,
The tensile strength at room temperature, the loop height, the strength of the ball neck portion, and the vibration rupture rate were examined. The composition of the alloy was analyzed by a high frequency induction plasma emission spectroscopy analyzer. The room temperature tensile strength was measured by a tensile tester. The loop height was measured by using an optical microscope after connecting the chip electrode on the semiconductor element and the external lead using a high-speed automatic bonder, and then defining the height of the loop highest part with respect to the lead frame surface as the loop height. .

【0015】ボールネック部の強度は、引っ張り試験機
で測定した。このときボールを形成したワイヤ長100
mmのワイヤのボール首下を穴あきブロックに引っか
け、ブロックを固定してワイヤ他端を引っ張って、破断
したときの引っ張り強さをボールネック部の強度とし
た。振動破断部率は、1個当たり80本のリードを持つ
リードフレーム6個よりなるテストシートを各々3枚づ
つ作成し、それぞれ1枚づつをマガジンに収納した後、
周波数50Hz、変位量2mmの一定振動を3分間与え
た。その後、実体顕微鏡にて破断数を測定し、ボンディ
ング本数1440本における破断率を算出してこれを振
動破断部率とした。各実験試料の、合金の組成、常温引
っ張り強度、ループ高さ、ボールネック部の強度、振動
破断率を表1に示す。
The strength of the ball neck portion was measured by a tensile tester. Wire length 100
The bottom of the ball neck of the mm wire was hooked on a holed block, the block was fixed, the other end of the wire was pulled, and the tensile strength at the time of breaking was taken as the strength of the ball neck portion. The vibration rupture rate is 3 test sheets each consisting of 6 lead frames each having 80 leads, and after storing each 1 test sheet in the magazine,
A constant vibration having a frequency of 50 Hz and a displacement of 2 mm was applied for 3 minutes. After that, the number of breaks was measured with a stereoscopic microscope, the breakage rate at 1440 bondings was calculated, and this was taken as the vibration breakage rate. Table 1 shows the composition of the alloy, the tensile strength at room temperature, the loop height, the strength of the ball neck portion, and the vibration rupture rate of each experimental sample.

【0016】[0016]

【表1】 [Table 1]

【0017】常温引っ張り強度は14g以上、ボールネ
ック部の強度は10g以上、振動破断率は10%以下で
あることが望ましい。本発明のボンディングワイヤによ
る実験試料は、いずれも良好な特性を示し、金ボールの
形状も問題なかった。
It is desirable that the tensile strength at room temperature is 14 g or more, the strength of the ball neck portion is 10 g or more, and the vibration rupture rate is 10% or less. All the experimental samples using the bonding wire of the present invention showed good characteristics, and the shape of the gold ball had no problem.

【0018】[0018]

【発明の効果】本発明によれば、従来よりも振動により
断線することが少ないボンディングワイヤを提供でき
る。
According to the present invention, it is possible to provide a bonding wire which is less likely to be broken by vibration than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】結線されたボンディングワイヤが振動により破
断する様子を示した図である。
FIG. 1 is a diagram showing a state in which a bonded bonding wire is broken by vibration.

【符号の説明】[Explanation of symbols]

1 半導体素子 2 接着剤 3 アイランド 4 ボール 5 チップ電極 6 ボンディングワイヤ 7 外部リード 8、8’ 外部リード振動(上側) 9、9’ 外部リード振動(下側) 1 semiconductor element 2 adhesive 3 island 4 ball 5 chip electrode 6 bonding wire 7 external lead 8, 8'external lead vibration (upper side) 9, 9'external lead vibration (lower side)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 カルシウムを0.0001〜0.003
重量%と、ベリリウムを0.0001〜0.001重量
%と、ナトリウム又は/及びカリウムを0.0001〜
0.003重量%含有し、残部が0.001重量%以下
の不可避不純物と金とからなるボンディングワイヤ。
1. A calcium content of 0.0001 to 0.003.
% By weight, 0.0001 to 0.001% by weight of beryllium, and 0.0001 to 0.001% of sodium or / and potassium.
A bonding wire containing 0.003% by weight and the balance 0.001% by weight or less of inevitable impurities and gold.
JP43A 1992-12-25 1992-12-25 Bonding wire Pending JPH06196519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06196519A (en) 1992-12-25 1992-12-25 Bonding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06196519A (en) 1992-12-25 1992-12-25 Bonding wire

Publications (1)

Publication Number Publication Date
JPH06196519A true JPH06196519A (en) 1994-07-15

Family

ID=18456307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06196519A (en) 1992-12-25 1992-12-25 Bonding wire

Country Status (1)

Country Link
JP (1) JPH06196519A (en)

Similar Documents

Publication Publication Date Title
US7678999B2 (en) Gold alloy wire for bonding wire having high bonding reliability, high roundness of compression ball, high straightness and high resin flowability resistance
JP2000040710A (en) Gold alloy fine wire for bonding
JP4726206B2 (en) Gold alloy wire for bonding wire with high initial bondability, high bond reliability, high roundness of crimped ball, high straightness, high resin flow resistance and low specific resistance
US5989364A (en) Gold-alloy bonding wire
US7857189B2 (en) Gold alloy wire for bonding wire having high initial bondability, high bonding reliability, high roundness of compression ball, high straightness, and high resin flowability resistance
JP3628139B2 (en) Gold alloy wire for semiconductor element bonding
JP3235198B2 (en) Bonding wire
JPH06196519A (en) Bonding wire
JP3235199B2 (en) Bonding wire
JP3104442B2 (en) Bonding wire
JP4641248B2 (en) Gold alloy wire for bonding wires with excellent bondability, straightness and resin flow resistance
JPH10303235A (en) Gold alloy wire for bonding on semiconductor device
KR930001265B1 (en) Bonding wir for semiconductor elements
JP3669810B2 (en) Gold alloy wire for semiconductor element bonding
JP3475511B2 (en) Bonding wire
JP2689773B2 (en) Bonding wire
JP3445616B2 (en) Gold alloy wires for semiconductor devices
JPH05179376A (en) Fine gold alloy wire for bonding
US8147750B2 (en) Gold alloy wire for ball bonding
JPH10233410A (en) Alloy au wire for bonding semiconductor element
JP3426473B2 (en) Gold alloy wires for semiconductor devices
JPH06145842A (en) Bonding gold alloy thin wire
JP3535657B2 (en) Gold alloy wire for semiconductor elements
JP3059314B2 (en) Gold alloy fine wire for bonding
JPH10303238A (en) Gold alloy wire for bonding on semiconductor device