JPH06196441A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH06196441A
JPH06196441A JP24245292A JP24245292A JPH06196441A JP H06196441 A JPH06196441 A JP H06196441A JP 24245292 A JP24245292 A JP 24245292A JP 24245292 A JP24245292 A JP 24245292A JP H06196441 A JPH06196441 A JP H06196441A
Authority
JP
Japan
Prior art keywords
gas
film
ppm
aluminum
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24245292A
Other languages
Japanese (ja)
Other versions
JP2757705B2 (en
Inventor
Kuniko Miyagawa
邦子 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4242452A priority Critical patent/JP2757705B2/en
Publication of JPH06196441A publication Critical patent/JPH06196441A/en
Application granted granted Critical
Publication of JP2757705B2 publication Critical patent/JP2757705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the reliability of a semiconductor device by a method wherein, when semi-fused aluminum is embedded in a semiconductor device where a hole is made, the density of impurities in a film-forming atmosphere is set below one ppm using the processing gas of impurity density of below one ppm and aluminum. CONSTITUTION:An oxide film 21 is formed on an Si substrate 20, a contact hole is provided there, a polysilicon film is thinly formed, and aluminum 22 is sputtered. At this time, when the entering of impurity gas into the film and production of oxidation are prevented while the sputtering is being conducted using Ar gas passing through a refining device in which the impurity gas pressure is suppressed to one ppm or lower, the aluminum 22 is turned to a semi- fused state, and the hole is filled with it. As a result, the embedding of metal by sputtering having excellent process consistency can be conducted at a low temperature, the reliability can be improved and the cost can be cut down.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】従来、配線形成工程におけるAl合金の
スパッタによる埋め込みは、ベースプレッシャーが10
- 8 Torrの装置で、成膜中の不純物ガス圧を制御す
ることなく、基板温度を500℃以上にあげて、Al−
SiまたはAl−Si−Cuの合金をスパッタ法で成膜
し、埋め込みを行っていた。しかしこの方法では、成膜
中に表面が酸化されるため、Al合金を半溶融状態にし
てホールを埋め込むことの妨げとなる。不純物ガス濃度
が高い状態で埋め込みを行うためには、成膜中のAl合
金の流動性を上げる必要があるため、基板温度を500
℃以上の温度にする必要があった。
2. Description of the Related Art Conventionally, a base pressure of 10 is used for burying an Al alloy by sputtering in a wiring forming process.
-With an 8 Torr device, the substrate temperature is raised to 500 ° C or higher without controlling the impurity gas pressure during film formation, and Al-
A Si or Al-Si-Cu alloy was formed into a film by a sputtering method and embedded. However, in this method, the surface is oxidized during film formation, which hinders the Al alloy from being in a semi-molten state and filling holes. In order to perform burying in a state where the impurity gas concentration is high, it is necessary to increase the fluidity of the Al alloy during film formation.
It was necessary to raise the temperature to ℃ or above.

【0003】Al−Si−Cu等Al合金を電極や配線
に用いた場合、基板加熱温度が500℃を越えると、微
細な配線中にSiの塊が析出しその部分が非常に高抵抗
になってしまう。特に0.2μm程度の幅の微細配線で
は、基板加熱温度が500℃を越えると大きく析出した
Siが信頼性を低下させる。
When an Al alloy such as Al-Si-Cu is used for electrodes and wirings, if the substrate heating temperature exceeds 500 ° C., a lump of Si is deposited in the fine wiring and the portion has a very high resistance. Will end up. In particular, in the case of fine wiring having a width of about 0.2 μm, when the substrate heating temperature exceeds 500 ° C., the large amount of deposited Si reduces the reliability.

【0004】また、反応性スパッタでTiNを堆積する
際、チャンバ中に存在する水蒸気はじゃまになるのでこ
れを制御するために、水素を感知して水蒸気量を定量化
し、水蒸気量が増加した場合それに応じて反応性ガス
(N2 )の分圧を増加させるという方法がある(特開昭
63−60277号公報)。しかしこの方法では、水蒸
気量の絶対値を減少させてはおらず、コンタクトホール
の埋め込みに応用した場合成膜中にAl表面が酸化され
てしまい、流動性が悪くなってしまうので、やはり基板
温度を500℃以上にする必要があった。
Further, when TiN is deposited by reactive sputtering, the water vapor existing in the chamber becomes an obstacle, and in order to control this, hydrogen is sensed to quantify the water vapor amount, and when the water vapor amount increases. There is a method of increasing the partial pressure of the reactive gas (N 2 ) accordingly (Japanese Patent Laid-Open No. 63-60277). However, in this method, the absolute value of the amount of water vapor is not reduced, and when applied to the filling of contact holes, the Al surface is oxidized during film formation, and the fluidity deteriorates. It was necessary to raise the temperature to 500 ° C or higher.

【0005】[0005]

【発明が解決しようとする課題】プロセスガス中の不純
物ガスはAl合金と反応して膜中に取り込まれるか、ま
たはそのまま膜中に取り込まれる。特に水の分圧や、酸
素分圧が高いと、成膜中にAl合金は酸化されて、融点
の非常に高い酸化被膜を作るため、Al合金が半溶融状
態になりにくく、ホールの埋め込みが困難になるという
問題がある。たとえ、水蒸気量を感知してプロセスガス
量を調整しても、プロセスガス中の不純物ガスの絶対量
を減少させなければ、不純物の膜中取り込みや、表面酸
化が起こって埋め込みは困難である。埋め込みを確実に
するために、従来のように基板温度を500℃以上の高
温にすると、Al合金が水、酸素などの不純物ガスと反
応し表面荒れを起こす上に、特に多層配線構造の場合に
は下層配線に影響を与え、電気特性が不安定になる問題
があった。
The impurity gas in the process gas reacts with the Al alloy and is taken into the film, or is taken into the film as it is. In particular, if the partial pressure of water or the partial pressure of oxygen is high, the Al alloy is oxidized during film formation to form an oxide film having a very high melting point, so that the Al alloy is unlikely to be in a semi-molten state and filling of holes is difficult. There is a problem that it becomes difficult. Even if the amount of water vapor is sensed and the amount of process gas is adjusted, if the absolute amount of impurity gas in the process gas is not reduced, incorporation of impurities into the film and surface oxidation will occur, making embedding difficult. When the substrate temperature is set to a high temperature of 500 ° C. or higher in order to ensure the filling, the Al alloy reacts with an impurity gas such as water and oxygen to cause surface roughening, and especially in the case of a multilayer wiring structure. Had a problem that the lower layer wiring was affected and the electrical characteristics became unstable.

【0006】[0006]

【課題を解決するための手段】本発明は、ホールを形成
した半導体装置上にAlまたはAl合金を半溶融状態に
してホールを埋め込む方法において、不純物濃度をpp
m以下にしたプロセスガス及びAl合金を使用し、成膜
雰囲気の不純物濃度をppm以下に設定することを特徴
とする半導体装置の製造方法である。
SUMMARY OF THE INVENTION The present invention is a method of filling a hole in a semiconductor device in which Al or Al alloy is in a semi-molten state to fill the hole with an impurity concentration of pp.
A method for manufacturing a semiconductor device is characterized in that an impurity concentration of a film forming atmosphere is set to be equal to or lower than ppm by using a process gas and an Al alloy which are controlled to be equal to or lower than m.

【0007】[0007]

【作用】不純物をガス圧をppm以下に抑えることによ
り、スパッタ中に膜への不純物取り込みがなくなり、ま
た表面酸化を抑えることができる。これにより高温スパ
ッタによる埋め込みでAlの流動性を阻害するものがな
くなるために、従来よりも基板温度を低くしてホールを
埋め込むことが可能となり、デバイスの信頼性が向上す
る。
By controlling the gas pressure of the impurities to be not more than ppm, it is possible to prevent the impurities from being taken into the film during the sputtering and to suppress the surface oxidation. As a result, there is nothing that obstructs the fluidity of Al due to burying by high temperature sputtering, so that it is possible to lower the substrate temperature than before and bury holes, and device reliability is improved.

【0008】[0008]

【実施例】本発明の実施例について図面を参照して説明
する。
Embodiments of the present invention will be described with reference to the drawings.

【0009】使用したスパッタ装置はベースプレッシャ
ーが1×10- 1 0 Torrまで排気できる超真空スパ
ッタ装置である。この装置には主たる排気用クライオポ
ンプの他にクライオポンプの設定温度を70K程度にし
て、スパッタ中にプロセスガスであるArは排気しない
が、他の水などの沸点の高い不純物ガスは排気できるク
ライオポンプが設置してあり、スパッタ中の不純物ガス
の分圧をさげられるようになっている。
[0009] sputtering apparatus used base pressure is 1 × 10 - is an ultra vacuum sputtering apparatus capable evacuated to 1 0 Torr. In this device, in addition to the main exhaust cryopump, the set temperature of the cryopump is set to about 70K, and Ar, which is the process gas, is not exhausted during sputtering, but other cryogenic impurities such as water can be exhausted. A pump is installed so that the partial pressure of the impurity gas during sputtering can be reduced.

【0010】プロセスガスであるArは精製装置を通
し、その出口では水、炭化水素類、窒素などがppm以
下になるように設定してある。使用したターゲットは純
Alで、従来の物に比べターゲット中の酸素濃度が低い
ものを用いた。
Ar, which is a process gas, is passed through a refining device, and its outlet is set so that water, hydrocarbons, nitrogen and the like are in a ppm or less. The target used was pure Al, and the target had a lower oxygen concentration than the conventional one.

【0011】スパッタ中のガス分析は差動排気系によ
り、水、窒素、酸化炭素類、炭化水素類をppbレベル
まで同時にモニターした。
For gas analysis during sputtering, water, nitrogen, carbon oxides, and hydrocarbons were simultaneously monitored to a ppb level by a differential exhaust system.

【0012】純Alの高温スパッタによる埋め込みは上
記条件のもとで行った。基板温度は400〜500℃で
あり、スパッタパワーは10kwである。埋め込むホー
ルは深さが約1.1μm、ホール径は0.15〜0.8
μmで、下地膜としてポリシリコンが500A敷いてあ
るものを検討した。このポリシリコンは高温スパッタ中
に純Al中にとけ込んでAl−Si合金となる。また、
不純物ガス濃度をppm以下まで低くした場合と、そう
でない場合を比べるために、不純物ガスを多く含む実験
はボンベから直接供給されたArガスを使用した。図1
に精製装置を通したときのArガス中の不純物である水
蒸気の分圧図1(a)と、直接ボンベから供給されたA
rガス中の同じく水蒸気の分圧図1(b)を測定した結
果を示す。(a)と(b)で水の分圧は約2桁の差があ
ることがわかる。Arの中に水が含まれているため
(b)ではArの分圧の変化に追随して水の分圧も変化
している。また他に炭化水素類もボンベからの直接供給
では、精製装置を通したガスに比べ高くなっている。こ
の2種のガスを用いて埋め込み実験を行った。図2にそ
れぞれのガスで基板温度470℃で埋め込みを行った結
果を示す。Si基板20上に酸化膜21を形成しそこに
前述のコンタクトホールを開口し、ポリシリコンをうす
く敷き(図示せず)純アルミ22をスパッタ形成した。
不純物ガス圧をppm以下まで抑えた精製装置を通した
Arガスを用いた場合、スパッタ中に不純物ガスの膜中
への取り込みや酸化が行われないため、Alは半溶融状
態になりホールは埋め込まれる(図2(a))が不純物
ガスを多く含むと、同じ基板温度でもAlの流動性は阻
害され、ボイド23が生じ良好な埋め込みは行われない
(図2(b))。
Embedding of pure Al by high temperature sputtering was performed under the above conditions. The substrate temperature is 400 to 500 ° C., and the sputter power is 10 kw. The buried hole has a depth of about 1.1 μm and a hole diameter of 0.15 to 0.8.
A film having a thickness of μm and 500 A of polysilicon laid as a base film was examined. This polysilicon melts into pure Al during high temperature sputtering to form an Al-Si alloy. Also,
In order to compare the case where the impurity gas concentration was lowered to ppm or less and the case where it was not, the experiment containing a large amount of the impurity gas used Ar gas directly supplied from the cylinder. Figure 1
Partial pressure of water vapor, which is an impurity in Ar gas when passing through the refining equipment in Fig. 1 (a), and A directly supplied from the cylinder.
The partial pressure of the same water vapor in the r gas is shown in FIG. It can be seen that there is a difference of about two digits between the partial pressures of water in (a) and (b). Since water is contained in Ar, the partial pressure of water also changes in accordance with the change in the partial pressure of Ar in (b). In addition, hydrocarbons are also higher in the direct supply from the cylinder than in the gas passed through the refiner. An embedding experiment was conducted using these two kinds of gases. FIG. 2 shows the results of embedding with respective gases at a substrate temperature of 470 ° C. An oxide film 21 was formed on the Si substrate 20, the above-mentioned contact hole was opened therein, and a thin layer of polysilicon (not shown) pure aluminum 22 was sputtered.
When Ar gas that has passed through the refining device with the impurity gas pressure suppressed to less than ppm is used, the impurity gas is not taken into the film or oxidized during sputtering, so Al becomes a semi-molten state and holes are filled. (FIG. 2 (a)) contains a large amount of impurity gas, the fluidity of Al is hindered even at the same substrate temperature, and voids 23 are generated, resulting in poor filling (FIG. 2 (b)).

【0013】この現象は、Al−Si−Cu,Al−S
iなど他のAl合金を使用しても、また、シリサイド、
ナイトライド等種々のバリアメタルなどの下地膜を利用
した場合でも同じである。
This phenomenon is caused by Al--Si--Cu and Al--S.
Even if other Al alloys such as i are used, silicide,
The same is true when using a base film such as various barrier metals such as nitride.

【0014】[0014]

【発明の効果】本発明を用いれば、従来とプロセス整合
性のよいスパッタによるメタル埋め込みを、従来よりも
低い温度で行うことができ信頼性の向上につながる上、
コストの低減もできる効果がある。
As described above, according to the present invention, it is possible to embed metal by sputtering, which has good process consistency with the conventional one, at a temperature lower than that of the conventional one, and to improve reliability.
There is also an effect that the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の一実施例の説明するため
に行ったガス分析の測定結果である。(a)はガス精製
装置を通した場合、(b)はボンベから直接供給した場
合である。
FIG. 1 is a measurement result of gas analysis performed for explaining an example of a semiconductor device of the present invention. (A) shows the case where the gas is passed through the gas purifier, and (b) shows the case where the gas is directly supplied from the cylinder.

【図2】(a)は不純物ガス圧をppm以下に抑えた精
製ガスを使用したときのホールの埋め込み結果、(b)
はボンベからの直接供給ガスによる埋め込み結果を示す
図である。
FIG. 2 (a) is a result of filling holes when a purified gas in which the impurity gas pressure is suppressed to ppm or less is used, (b)
FIG. 6 is a diagram showing a result of embedding with a gas directly supplied from a cylinder.

【符号の説明】[Explanation of symbols]

20 Si基板 21 酸化膜 22 アルミ 23 ボイド 20 Si substrate 21 Oxide film 22 Aluminum 23 Void

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ホールを形成した半導体装置の上にAl
またはAl合金を半溶融状態にしてホールを埋め込む方
法において、不純物濃度をppm以下にしたプロセスガ
ス及びAl合金を使用し、成膜雰囲気の不純物濃度もp
pm以下に設定することを特徴とする半導体装置の製造
方法。
1. Al on a semiconductor device having holes formed therein.
Alternatively, in the method of filling the hole by making the Al alloy in a semi-molten state, the process gas and the Al alloy having the impurity concentration of ppm or less are used, and the impurity concentration of the film forming atmosphere is p
A method of manufacturing a semiconductor device, characterized in that it is set to pm or less.
JP4242452A 1992-09-11 1992-09-11 Method for manufacturing semiconductor device Expired - Lifetime JP2757705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4242452A JP2757705B2 (en) 1992-09-11 1992-09-11 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4242452A JP2757705B2 (en) 1992-09-11 1992-09-11 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH06196441A true JPH06196441A (en) 1994-07-15
JP2757705B2 JP2757705B2 (en) 1998-05-25

Family

ID=17089313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4242452A Expired - Lifetime JP2757705B2 (en) 1992-09-11 1992-09-11 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2757705B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853136A4 (en) * 1996-07-05 1999-04-21 Japan Energy Corp Aluminum or aluminum alloy sputtering target

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957423A (en) * 1982-09-27 1984-04-03 Konishiroku Photo Ind Co Ltd Formation of metal conductor layer
JPS60180117A (en) * 1984-02-28 1985-09-13 Oki Electric Ind Co Ltd Semiconductor manufacturing apparatus
JPS6351918A (en) * 1986-08-22 1988-03-05 Tadahiro Omi Gas purifier for semi-conductor manufacturing device
JPH034923A (en) * 1989-05-31 1991-01-10 Daikin Ind Ltd Liquid separation apparatus
JPH0314227A (en) * 1989-06-13 1991-01-22 Sharp Corp Manufacture of semiconductor device
JPH03271367A (en) * 1990-03-20 1991-12-03 Fujitsu Ltd Sputtering apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957423A (en) * 1982-09-27 1984-04-03 Konishiroku Photo Ind Co Ltd Formation of metal conductor layer
JPS60180117A (en) * 1984-02-28 1985-09-13 Oki Electric Ind Co Ltd Semiconductor manufacturing apparatus
JPS6351918A (en) * 1986-08-22 1988-03-05 Tadahiro Omi Gas purifier for semi-conductor manufacturing device
JPH034923A (en) * 1989-05-31 1991-01-10 Daikin Ind Ltd Liquid separation apparatus
JPH0314227A (en) * 1989-06-13 1991-01-22 Sharp Corp Manufacture of semiconductor device
JPH03271367A (en) * 1990-03-20 1991-12-03 Fujitsu Ltd Sputtering apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853136A4 (en) * 1996-07-05 1999-04-21 Japan Energy Corp Aluminum or aluminum alloy sputtering target

Also Published As

Publication number Publication date
JP2757705B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US6306756B1 (en) Method for production of semiconductor device
JP2906873B2 (en) Manufacturing method of gold wiring
US5670823A (en) Integrated circuit barrier structure
JPH0234918A (en) Manufacture of semiconductor device
JPH077077A (en) Semiconductor device and manufacture thereof
JPH09115866A (en) Semiconductor device manufacturing method
US6054382A (en) Method of improving texture of metal films in semiconductor integrated circuits
JPH10125782A (en) Manufacturing method of semiconductor device
JPH0936230A (en) Manufacture of semiconductor device
JPH08316233A (en) Manufacture of semiconductor device
JPH06196441A (en) Manufacture of semiconductor device
JP2882380B2 (en) Semiconductor device and manufacturing method thereof
US6083830A (en) Process for manufacturing a semiconductor device
US20030042133A1 (en) Method for depositing a metal barrier layer
JP3732010B2 (en) Method for depositing low resistivity titanium oxynitride (TiON) film that gives excellent texture to the conductor layer deposited in a later step
JP3471266B2 (en) Semiconductor device manufacturing method and semiconductor device
JPH03255632A (en) Semiconductor device and manufacture thereof
JPH11265889A (en) Manufacture of wiring
KR100414745B1 (en) Method for forming metal interconnection of semiconductor device
JPH05259108A (en) Oxygen-doped titanium nitride film and its manufacture
JPH05129223A (en) Manufacture of semiconductor device
JP3321896B2 (en) Al-based material forming method, Al-based wiring structure, method of manufacturing semiconductor device, and semiconductor device
JP2785482B2 (en) Method for manufacturing semiconductor device
JPH05182926A (en) Forming method of wiring
JPH1140516A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 15