JPH06194656A - Tn liquid crystal display element - Google Patents

Tn liquid crystal display element

Info

Publication number
JPH06194656A
JPH06194656A JP34460692A JP34460692A JPH06194656A JP H06194656 A JPH06194656 A JP H06194656A JP 34460692 A JP34460692 A JP 34460692A JP 34460692 A JP34460692 A JP 34460692A JP H06194656 A JPH06194656 A JP H06194656A
Authority
JP
Japan
Prior art keywords
liquid crystal
slit
crystal display
slits
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34460692A
Other languages
Japanese (ja)
Other versions
JP3108768B2 (en
Inventor
Takashi Sugiyama
貴 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP34460692A priority Critical patent/JP3108768B2/en
Publication of JPH06194656A publication Critical patent/JPH06194656A/en
Application granted granted Critical
Publication of JP3108768B2 publication Critical patent/JP3108768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134327Segmented, e.g. alpha numeric display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Abstract

PURPOSE:To provide the TN liquid crystal display element of higher display quality which obtains nearly uniform visual angle characteristics in all directions by improving the visual angle characteristics. CONSTITUTION:This TN liquid crystal display element has a couple of substrates 1 and 2 which are arranged across from each other, a couple of transparent electrodes 3 and 4 which are provided on the couple of substrates 1 and 2 and put one over each other by holding a liquid crystal layer 5 between to form display areas, and slits 7 and 8 formed by removing parts of the transparent electrodes 3 and 4 in the respective display areas on the couple of display electrodes 3 and 4; and the slit of one of the couple of transparent electrodes 3 and 4 and the slit of the other transparent electrode are arranged alternately in the display areas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ツイストネマチック
(TNと略称する)液晶表示素子に関し、特に視角特性
を改善して表示品質を向上したTN液晶表示素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a twisted nematic (abbreviated as TN) liquid crystal display device, and more particularly to a TN liquid crystal display device having improved viewing angle characteristics and improved display quality.

【0002】[0002]

【従来の技術】液晶表示ディスプレイ等に使用される液
晶表示素子いわゆる液晶セルは、液晶の特定な分子配列
を電界等の外部からの作用によって別の異なる分子配列
に状態変化させて、その間の光学的特性の変化を視覚的
な変化として表示に利用している。液晶分子をある特定
の配列状態にするために液晶を挟む電極を備えたガラス
基板の表面には配向処理を行うのが普通である。
2. Description of the Related Art A liquid crystal display element used in a liquid crystal display or the like, a so-called liquid crystal cell, changes a specific molecular arrangement of liquid crystal into another different molecular arrangement by an action from the outside such as an electric field, and transmits an optical signal between them. The change in the physical characteristics is used as a visual change for display. In order to bring the liquid crystal molecules into a specific alignment state, it is usual to perform an alignment treatment on the surface of a glass substrate provided with electrodes sandwiching the liquid crystal.

【0003】TN液晶セルの配向処理では、液晶をはさ
む透明電極を形成したガラス基板をラビングし、その際
に、ラビングの方向が上下の基板間で互いに直交するよ
うに行い、液晶セルがネガ表示の場合にはセルを挟む平
行偏光子の偏光板をその偏光軸がどちらか一方のラビン
グ方向と平行になるように配置し、またポジ表示の場合
には、直交偏光子の偏光板の偏光軸が基板のラビング方
向と平行になるように配置される。
In the alignment treatment of a TN liquid crystal cell, a glass substrate on which a transparent electrode sandwiching a liquid crystal is formed is rubbed, and at that time, rubbing directions are perpendicular to each other so that the liquid crystal cell displays a negative image. In the case of, the polarizing plates of parallel polarizers that sandwich the cell are arranged so that their polarization axes are parallel to one of the rubbing directions, and in the case of positive display, the polarization axes of the polarizing plates of orthogonal polarizers. Are arranged so as to be parallel to the rubbing direction of the substrate.

【0004】[0004]

【発明が解決しようとする課題】このようなラビングで
配向処理をすると、液晶分子の配向方向が一様なため
に、観測者から画面を見たときの表示が見やすい角度が
特定の角度範囲に制限される視角特性を有する。
When the alignment treatment is carried out by such rubbing, the orientation of the liquid crystal molecules is uniform, so that the angle at which the image is easily seen by the observer is within a specific angle range. It has limited viewing angle characteristics.

【0005】例えば、図5(A)は、TN液晶セルの視
角特性を表す等コントラスト曲線の一例である。図5
(A)において、円の中心部を液晶セルの表示点とし、
そこを中心に同心円状に液晶セルに対する垂線からの角
度を取り、放射線状に水平面内の観測位置を角度φで示
す。
For example, FIG. 5A is an example of an equal contrast curve representing the viewing angle characteristics of a TN liquid crystal cell. Figure 5
In (A), the center of the circle is the display point of the liquid crystal cell,
An angle from the perpendicular to the liquid crystal cell is taken concentrically around that point, and the observation position in the horizontal plane is indicated by the angle φ in a radial pattern.

【0006】図5(A)の太い実線の曲線は等コントラ
スト線で、それぞれの曲線にはコントラスト値が示され
ている。図5(A)で示されるように、コントラストの
高い視角領域は特定の角度領域に偏っていることがわか
る。従って、このような液晶セルはある方向からは見え
やすく、別の方向からは見えにくいといった視角依存性
を持つことになる。
The thick solid curve in FIG. 5A is an equal contrast line, and the contrast value is shown on each curve. As shown in FIG. 5A, it can be seen that the viewing angle region with high contrast is biased to a specific angle region. Therefore, such a liquid crystal cell has a viewing angle dependency that it is easy to see from one direction and hard to see from another direction.

【0007】このような視角依存性を持つ液晶セルは表
示装置として利用した場合には、表示画面に対してある
角度(図5(A)の例ではφ=45°付近)ではコント
ラストが極端に低下し、甚だしい場合には表示の明暗が
反転してしまう。
When such a liquid crystal cell having a viewing angle dependency is used as a display device, the contrast becomes extremely sharp at a certain angle (around φ = 45 ° in the example of FIG. 5A) with respect to the display screen. When it is extremely low, the brightness of the display is reversed.

【0008】図5(A)のような視角特性を持つのは、
ラビングの際に図5(B)で示すようなプレチルトが生
じるからである。液晶がプレチルトを持つ方向は、図5
(B)の矢印のラビングするベクトル方向に一致する。
The view angle characteristic as shown in FIG.
This is because the pretilt as shown in FIG. 5B occurs during rubbing. The direction in which the liquid crystal has a pretilt is as shown in FIG.
The direction of the vector to be rubbed is indicated by the arrow in (B).

【0009】液晶セルに電圧が印加されると、液晶分子
はプレチルトしている方向に立ち上がってくるために、
その方向から観測した場合に、旋光性が解消されやすく
なる。従って、ベクトルの終端方向すなわち、液晶分子
が立ち上がる方向(チルトアップしている方向)が一番
見やすく、その逆の方向が最も見にくくなる。
When a voltage is applied to the liquid crystal cell, the liquid crystal molecules rise in the pretilt direction.
When observed from that direction, the optical activity tends to be eliminated. Therefore, the direction in which the vector ends, that is, the direction in which the liquid crystal molecules rise (the direction in which the liquid crystal molecules are tilted up) is the easiest to see, and the opposite direction is the most difficult to see.

【0010】[0010]

【発明が解決しようとする課題】以上説明した従来の技
術によれば、TN液晶表示素子において、特定の方向に
表示品質が悪くなる視角特性を示していた。
According to the conventional technique described above, the TN liquid crystal display element has a viewing angle characteristic in which display quality deteriorates in a specific direction.

【0011】本発明の目的は、視角特性を改善して、全
方向にわたってほぼ一様な視角特性が得られるようなよ
り高い表示品質のTN液晶表示素子を提供することにあ
る。なお、本発明におけるTN液晶はSTN(スーパー
ツイストネマチック)液晶も広義に含む。
It is an object of the present invention to provide a TN liquid crystal display device having a higher display quality, in which the viewing angle characteristic is improved and a substantially uniform viewing angle characteristic is obtained in all directions. The TN liquid crystal in the present invention includes STN (super twist nematic) liquid crystal in a broad sense.

【0012】[0012]

【課題を解決するための手段】本発明のTN液晶表示素
子は、対向配置された一対の基板と、前記一対の基板上
に設けられ、液晶層を挟んで互いに重なり合って表示領
域を形成する一対の透明電極と、前記一対の透明電極の
各々の前記表示領域における透明電極の一部が取り除か
れたスリットとを有し、前記一対の透明電極の一方の透
明電極の前記スリットと他方の透明電極の前記スリット
とが前記表示領域内で交互に配置される。
A TN liquid crystal display device of the present invention comprises a pair of substrates which are arranged to face each other, and a pair of substrates which are provided on the pair of substrates and overlap each other with a liquid crystal layer interposed therebetween to form a display region. Transparent electrode and a slit in which a part of the transparent electrode in the display area of each of the pair of transparent electrodes is removed, the slit of one transparent electrode of the pair of transparent electrodes and the other transparent electrode And the slits are alternately arranged in the display area.

【0013】[0013]

【作用】一対の透明電極間で交互に配置されるスリット
を表示領域に設けたことによって、一対の電極の表示領
域で、電圧印加時には液晶分子の立ち上がり方向がそれ
ぞれ逆方向の小領域が同時に形成されるので、互いの小
領域の視角依存性が補完されて、表示領域全体として視
角依存性が低減する。
By providing slits alternately arranged between a pair of transparent electrodes in the display area, small areas in which the rising directions of liquid crystal molecules are opposite to each other are simultaneously formed in the display area of the pair of electrodes when a voltage is applied. Therefore, the viewing angle dependence of the small areas of each other is complemented, and the viewing angle dependence of the entire display area is reduced.

【0014】[0014]

【実施例】以下、図1から図4を参照して、本発明の実
施例によるTN液晶表示素子の構造とその動作について
説明する。先ず、図1により、本発明の基本概念を示
す。図1の(A)はTN液晶セルに電圧が印加されない
状態の液晶分子配列を示し、図1の(B)は電圧が印加
された状態での液晶分子配列を示す。この図1を参照し
て、本発明において視角依存性が低減する原理について
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure and operation of a TN liquid crystal display device according to an embodiment of the present invention will be described below with reference to FIGS. First, FIG. 1 shows the basic concept of the present invention. FIG. 1A shows the liquid crystal molecule alignment in the state where no voltage is applied to the TN liquid crystal cell, and FIG. 1B shows the liquid crystal molecule alignment in the state where the voltage is applied. With reference to FIG. 1, the principle of reducing the viewing angle dependency in the present invention will be described.

【0015】上下の透明ガラス基板1、2が対向配置さ
れ、それぞれの内側表面に透明電極3、4が形成されて
いる。上下の透明電極3、4でTN液晶層5を挟持して
表示領域を形成する。
The upper and lower transparent glass substrates 1 and 2 are opposed to each other, and transparent electrodes 3 and 4 are formed on the inner surfaces of the substrates. A display region is formed by sandwiching the TN liquid crystal layer 5 between the upper and lower transparent electrodes 3 and 4.

【0016】液晶層5中の液晶分子6は、上下の基板の
配向処理によって、図1(A)の無電界時には分子長軸
方向が一方の透明電極から他方の透明電極に向かって次
第に回転して、上端と下端とでは液晶分子6の配向方向
が水平面内で直交することになる。
The liquid crystal molecules 6 in the liquid crystal layer 5 gradually rotate in the direction of the major axis of the molecule from one transparent electrode to the other transparent electrode due to the alignment treatment of the upper and lower substrates when there is no electric field in FIG. 1 (A). Thus, at the upper end and the lower end, the alignment directions of the liquid crystal molecules 6 are orthogonal to each other in the horizontal plane.

【0017】本発明で特徴的な構造は、上下の透明電極
3、4に電極の一部を取り除いたスリット7、8が設け
てあることである。しかも、上部透明電極3のスリット
7は、下部透明電極4のスリット8とは重ならず、ずれ
て配置されている。
A characteristic structure of the present invention is that upper and lower transparent electrodes 3 and 4 are provided with slits 7 and 8 from which a part of the electrodes is removed. Moreover, the slits 7 of the upper transparent electrode 3 do not overlap the slits 8 of the lower transparent electrode 4 and are displaced from each other.

【0018】図1(A)で示すような状態で、もし透明
電極3、4間に所定の電圧を印加した場合には、スリッ
トのエッジ部分には、図1(A)の破線の矢印のような
電気力線9(いわゆるフリンジ電界)が発生する。すな
わち、スリット7、8における電気力線は電極面(基板
面)に対して垂直にはならず、斜め電界となる。
If a predetermined voltage is applied between the transparent electrodes 3 and 4 in the state shown in FIG. 1A, the edge portion of the slit is indicated by the broken arrow in FIG. Such lines of electric force 9 (so-called fringe electric field) are generated. That is, the lines of electric force in the slits 7 and 8 are not perpendicular to the electrode surface (substrate surface), and become an oblique electric field.

【0019】斜め電界9に対しては、液晶分子6は実線
の矢印の方向に立ち上がる。これは、あたかもプレチル
ト角が有る場合の液晶分子の立ち上がり方向と同じであ
る。このようにして電界に応答した液晶分子6の配列状
態を、図1(B)に示す。図1(B)から、スリット
7、8の中央部付近を境に液晶分子6の立ち上がり方向
が左右で異なることが判る。しかも、上下のスリット
7、8が重ならずに交互に設けた配置によって、スリッ
ト7、8で区切られた小領域は、液晶分子6の立ち上が
り方向が交互に逆転する。
With respect to the oblique electric field 9, the liquid crystal molecules 6 rise in the direction of the solid arrow. This is the same as the rising direction of liquid crystal molecules when there is a pretilt angle. The alignment state of the liquid crystal molecules 6 in response to the electric field is shown in FIG. From FIG. 1B, it can be seen that the rising directions of the liquid crystal molecules 6 are different between the left and right with the vicinity of the central portions of the slits 7 and 8 as boundaries. Moreover, due to the arrangement in which the upper and lower slits 7 and 8 are provided alternately without overlapping, the rising directions of the liquid crystal molecules 6 are alternately reversed in the small regions partitioned by the slits 7 and 8.

【0020】つまり、中央部の液晶分子6はaの小領域
では図面の左方向(右下がり)に傾き、bの小領域では
逆に右方向(左下がり)に傾き、cの小領域ではまた左
方向(右下がり)に傾く。スリットを上下電極で交互に
さらに増加しても、同様に傾きの逆転が交互に現れるこ
とになる。
That is, the liquid crystal molecules 6 in the central portion are tilted to the left (downward to the right) in the drawing in the small area a, conversely to the right (downward left) in the small area b, and again in the small area c. Lean to the left (downward to the right). Even if the slits are further increased alternately by the upper and lower electrodes, the reversal of the inclination appears alternately.

【0021】最良の視認方向は、aとcの小領域では図
の左側の方向からであり、bの小領域では右側上方から
の方向である。また、視認状態が最も悪いのは、以上の
逆の方向である。
The best viewing direction is from the left side of the figure in the small areas a and c, and from the upper right side in the small area b. In addition, the worst state of visual recognition is in the opposite direction.

【0022】従って、いずれの視角方向においても、最
も視認状態の良い小領域が最も視覚状態の悪い小領域を
補償するために、表示領域全体としては視角依存性が減
少し、TN液晶表示素子の表示品質が向上する。他の方
向の視認性については図5(A)の特性で示すように、
問題はない。
Therefore, in any viewing angle direction, the small area with the best visible state compensates for the small area with the worst visible state, so that the viewing angle dependence of the entire display area is reduced and the TN liquid crystal display element The display quality is improved. As for the visibility in other directions, as shown by the characteristics in FIG.
No problem.

【0023】また、一般に液晶分子に対して直角方向の
電界に対してよりも、斜めの電界に対しての閾値の方が
低くなることが知られている。このことは、本発明にお
いては、スリット付近の液晶分子がそれ以外の液晶分子
よりも電界に対し先に応答するということを示してお
り、異なる配列の小領域が安定に形成されることを保証
している。
Further, it is generally known that the threshold value for an oblique electric field is lower than that for an electric field in a direction perpendicular to liquid crystal molecules. This indicates that, in the present invention, the liquid crystal molecules near the slit respond to the electric field earlier than the other liquid crystal molecules, and it is guaranteed that the small regions of different arrangement are stably formed. is doing.

【0024】次に、図1で示した基本構成を利用した本
発明の実施例の構造を図2と図3に示す。図2は、単純
セグメント型TN液晶表示素子の一例の平面図である。
図3は図2の斜視図であり、上下電極とスリットとの関
係をより明瞭に示す。
Next, the structure of the embodiment of the present invention using the basic structure shown in FIG. 1 is shown in FIGS. FIG. 2 is a plan view of an example of a simple segment type TN liquid crystal display element.
FIG. 3 is a perspective view of FIG. 2 and more clearly shows the relationship between the upper and lower electrodes and the slit.

【0025】図2のTN液晶表示素子は数字の「1」を
表示している。「1」の文字の輪郭線で囲まれた内側の
領域は、図3で示すように、上下の透明電極10と20
とで挟持された表示領域である。なお、透明電極10、
20が形成されるガラス基板については図1と同様であ
るので、図示を省略してある。
The TN liquid crystal display element shown in FIG. 2 displays the numeral "1". As shown in FIG. 3, the inner region surrounded by the contour line of the character “1” has upper and lower transparent electrodes 10 and 20.
It is a display area sandwiched between and. The transparent electrode 10,
The glass substrate on which 20 is formed is similar to that of FIG.

【0026】上の透明電極10にはスリット11、1
2、13が形成される。下の透明電極20には、スリッ
ト11、12、13とは重ならない位置にスリット2
1、22、23が形成される。スリットを形成した上下
透明電極10、20を重ねて、上から見ると、図2のよ
うに見える表示領域が形成される。表示特性をなるべく
均一にするには、スリット間の間隔はほぼ一定とするの
が好ましい。
The upper transparent electrode 10 has slits 11, 1
2, 13 are formed. In the lower transparent electrode 20, the slit 2 is provided at a position not overlapping the slits 11, 12, and 13.
1, 22, 23 are formed. When the upper and lower transparent electrodes 10 and 20 in which the slits are formed are stacked and viewed from above, a display region that looks like FIG. 2 is formed. In order to make the display characteristics as uniform as possible, it is preferable that the intervals between the slits be substantially constant.

【0027】図2において、矢印30と40は、それぞ
れ図示しない上下基板のラビングによる配向方向を示
す。この例において、左巻きのカイラル特性を持つ液晶
を用いれば、液晶層中央部の液晶分子の無電界時の配向
方向は図2の矢印50の向きである。
In FIG. 2, arrows 30 and 40 respectively indicate the orientation directions of the upper and lower substrates (not shown) by rubbing. In this example, when a liquid crystal having a left-handed chiral property is used, the alignment direction of the liquid crystal molecules in the central portion of the liquid crystal layer when there is no electric field is the direction of arrow 50 in FIG.

【0028】従って、先に基本的な原理で説明した如
く、スリット11、12、13、21、22、23の長
手方向の向きは、液晶層中央部の液晶分子の配向方向5
0と直交する。スリットは表示領域において11、2
1、12、22、13、23というように、上下の電極
間で交互に配置される。従って、液晶分子の立ち上がり
方向は交互に反転する。図2のI−I’における断面が
図1の断面図に対応する。
Therefore, as described above in the basic principle, the longitudinal direction of the slits 11, 12, 13, 21, 22, 23 is the same as the alignment direction 5 of the liquid crystal molecules in the central part of the liquid crystal layer.
It is orthogonal to 0. Slits are 11 and 2 in the display area
1, 12, 22, 13, and 23 are alternately arranged between the upper and lower electrodes. Therefore, the rising directions of the liquid crystal molecules are alternately inverted. The cross section at II ′ of FIG. 2 corresponds to the cross sectional view of FIG.

【0029】図2、図3で示す構成によって、文字
「1」の表示領域のスリットで挟まれた小領域の電界印
加時の液晶分子の傾きが交互に逆転するために、全体と
して視角特性が補完され、視角依存性が減少するので、
いずれの方向からでも視認性が良くなる。
With the configuration shown in FIGS. 2 and 3, the inclination of the liquid crystal molecules in the small area sandwiched by the slits in the display area of the character "1" when the electric field is applied is alternately reversed, so that the viewing angle characteristic as a whole is improved. Since it is complemented and the viewing angle dependence is reduced,
The visibility is improved from any direction.

【0030】なお、ここでスリットの長手方向が液晶層
中央部の液晶分子の配向方向と直交することの有効性に
ついて述べる。前述したように、本発明において必要な
斜め電界は、液晶層の中央部の液晶分子の配向方向に対
して平行な方向の斜め成分を持つものが有効である。こ
のような理由で、スリットはその長手方向が液晶分子配
向方向と直交するものであることが望ましい。
Here, the effectiveness of making the longitudinal direction of the slit perpendicular to the alignment direction of the liquid crystal molecules in the central portion of the liquid crystal layer will be described. As described above, it is effective that the oblique electric field required in the present invention has an oblique component parallel to the alignment direction of the liquid crystal molecules in the central portion of the liquid crystal layer. For this reason, it is desirable that the longitudinal direction of the slit be orthogonal to the liquid crystal molecule alignment direction.

【0031】また、スリットの幅(長手方向と直交する
方向の長さ)がある程度以上広い場合には、スリット中
央部の電界が極端に弱くなり、電圧印加に対して液晶分
子が反応しなくなる領域が生じ、その領域で表示不良が
発生する。印加電圧にもよるが、スリットの幅は2mm
以下が好ましい。
Further, when the width of the slit (the length in the direction orthogonal to the longitudinal direction) is wider than a certain amount, the electric field in the central portion of the slit becomes extremely weak, and the liquid crystal molecules do not react to the applied voltage. Occurs, and a display defect occurs in that area. The width of the slit is 2mm, depending on the applied voltage
The following are preferred.

【0032】逆にスリットの幅が余りに狭すぎると、充
分な斜め電界が生じなくなってしまい、本発明の効果が
充分に発揮できないことになる。少なくとも、スリット
の幅は、液晶層5の厚み、所謂セルギャップ以上である
ことが望ましい。
On the contrary, if the width of the slit is too narrow, a sufficient oblique electric field will not be generated and the effect of the present invention will not be sufficiently exhibited. At least the width of the slit is preferably equal to or larger than the thickness of the liquid crystal layer 5, that is, the so-called cell gap.

【0033】さらに、上下電極間における隣接するスリ
ット間の間隔(図2の例では、例えばスリット21と1
1とで挟まれた小領域の間隔)は、充分な表示領域を確
保するためには大きい方がよいが、目視でスリットの存
在が識別されると表示品質上好ましくないので、それを
防止するためにはなるべく狭い方が良い。経験的には、
このスリット間の間隔は液晶層5のセルギャップより大
きく、かつ2mmより実質的に小さいことが望ましいで
あろう。
Further, the gap between the adjacent slits between the upper and lower electrodes (in the example of FIG. 2, for example, slits 21 and 1)
The distance between the small areas sandwiched between 1 and 1 is preferably large in order to secure a sufficient display area, but it is not preferable in terms of display quality if the presence of slits is visually identified, so that is prevented. It is better to be as narrow as possible. Empirically,
It may be desirable for the spacing between the slits to be larger than the cell gap of the liquid crystal layer 5 and substantially smaller than 2 mm.

【0034】次に、液晶層5が持つプレチルト角につい
て述べる。斜め電界9に対する液晶分子6の応答の対称
性を確保するためには、基板表面と液晶分子のダイレク
タ方向とのなす角度であるプレチルト角は小さいことが
望ましい。少なくとも、斜め電界の傾斜角度より小さい
ことが望ましい。例えば、プレチルト角は実質的に10
°以下がよく、理想的には0°であることが望ましい。
これを実現するためには、以下の方法が考えられる。
Next, the pretilt angle of the liquid crystal layer 5 will be described. In order to ensure the symmetry of the response of the liquid crystal molecules 6 to the oblique electric field 9, it is desirable that the pretilt angle, which is the angle formed by the substrate surface and the director direction of the liquid crystal molecules, is small. It is desirable that it is at least smaller than the inclination angle of the oblique electric field. For example, the pretilt angle is substantially 10
The angle is preferably less than 0 °, and ideally 0 °.
In order to realize this, the following method can be considered.

【0035】通常は、液晶層5の中央部の液晶分子6に
もある程度のチルト角を与えるために、図2の矢印30
の逆方向と矢印40で示すようなラビング方向を選定す
る。すなわち、液晶分子6の頭を少し持ち上げた方向を
保ったまま、90°ツイスト(捻じる)させるが、片方
のラビング方向を逆(40の逆方向)とすれば、液晶層
の厚さと共にチルト角も変化しなければならず、液晶内
の液晶分子配列の対称性によって、液晶層中央部の液晶
分子のチルト角は0°になることが判る。
Usually, in order to give a certain tilt angle to the liquid crystal molecules 6 at the center of the liquid crystal layer 5, the arrow 30 in FIG.
And the rubbing direction as shown by the arrow 40 is selected. That is, the head of the liquid crystal molecule 6 is twisted by 90 ° while keeping the head slightly lifted, but if one of the rubbing directions is reversed (the opposite direction of 40), the liquid crystal layer 6 is tilted together with the thickness. It can be seen that the angle also has to be changed, and the tilt angle of the liquid crystal molecules in the central portion of the liquid crystal layer is 0 ° due to the symmetry of the liquid crystal molecule alignment in the liquid crystal.

【0036】なお、図2と図3で説明した実施例は、単
純セグメント型液晶表示素子を例に説明したが、本発明
は、図1の断面構造で示すような上下電極で交互にスリ
ットを配置した構成であれば、TFT等を使用するアク
ティブマトリックス型液晶表示装置や、ドットマトリッ
クス型液晶表示装置にも適用できる。
Although the embodiments described with reference to FIGS. 2 and 3 have been described by taking the simple segment type liquid crystal display device as an example, the present invention is such that upper and lower electrodes alternately have slits as shown in the sectional structure of FIG. As long as it is arranged, it can be applied to an active matrix type liquid crystal display device using a TFT or the like and a dot matrix type liquid crystal display device.

【0037】図4に、本発明をTFTアクティブマトリ
ックス液晶表示装置に適用した実施例を示す。図4はT
FTアクティブマトリックス液晶表示装置の数個の画素
の領域の平面図である。なお、アクティブマトリックス
型液晶装置は現在では一般的であるので、その構造につ
いては簡単に言及するに止める。
FIG. 4 shows an embodiment in which the present invention is applied to a TFT active matrix liquid crystal display device. Figure 4 is T
FIG. 3 is a plan view of an area of several pixels of an FT active matrix liquid crystal display device. Since the active matrix type liquid crystal device is common nowadays, its structure will be briefly mentioned.

【0038】図4において、透明ガラス基板(図示せ
ず)上に複数のアモルファスシリコン等によるTFT素
子60と、ITO等による透明画素電極61と、さら
に、TFT素子60のソース電極Sとゲート電極Gとに
それぞれ接続するソースライン(信号線)62とゲート
ライン(走査線)63とが形成され、TFT素子60に
よりドレイン電極Dを介して画素電極61を駆動する。
画素電極61の上には図示しない配向膜が形成される。
In FIG. 4, a plurality of TFT elements 60 made of amorphous silicon or the like, a transparent pixel electrode 61 made of ITO or the like, a source electrode S and a gate electrode G of the TFT element 60 are formed on a transparent glass substrate (not shown). A source line (signal line) 62 and a gate line (scanning line) 63 which are respectively connected to and are formed, and the TFT element 60 drives the pixel electrode 61 via the drain electrode D.
An alignment film (not shown) is formed on the pixel electrode 61.

【0039】平面図では図示しにくいので省略するが、
上記画素電極の形成されたガラス基板の上に、その基板
と対向して、TN液晶層を介してもう一つのガラス基板
が配置され、その基板には、共通電極が形成される。ま
た共通電極の液晶層と接する面上には配向処理がされた
配向膜が形成される。
Although it is difficult to illustrate in a plan view, it is omitted,
Another glass substrate is arranged on the glass substrate on which the pixel electrode is formed so as to face the substrate, with a TN liquid crystal layer interposed therebetween, and a common electrode is formed on the substrate. An alignment film that has been subjected to an alignment treatment is formed on the surface of the common electrode that is in contact with the liquid crystal layer.

【0040】図4の左側に両基板の配向方向を示す。下
の基板の配向方向が点線70であり、それと直交して上
の基板の配向方向が実線矢印80で示す。矢印90は液
晶層中央部の液晶分子の配向方向を示す。
The orientation of both substrates is shown on the left side of FIG. The orientation direction of the lower substrate is shown by the dotted line 70, and the orientation direction of the upper substrate orthogonal to it is shown by the solid arrow 80. The arrow 90 indicates the alignment direction of the liquid crystal molecules in the central part of the liquid crystal layer.

【0041】画素電極61には電極の一部を取り除いた
図示のような実線でしめすスリット64が複数形成され
る。さらに、画素電極61と対向する共通電極にも破線
で示すような電極の一部を削除したスリット65が形成
される。上下の基板のスリット64と65は交互に並ぶ
配置とする。
The pixel electrode 61 has a plurality of slits 64 formed by removing a part of the electrode and shown by solid lines. Further, the common electrode facing the pixel electrode 61 is also provided with a slit 65 in which a part of the electrode is removed as shown by a broken line. The slits 64 and 65 of the upper and lower substrates are arranged alternately.

【0042】図4のII−II’における断面は、図1
で示す断面構造と基本的に対応する。この上下電極間で
交互に配置したスリット64,65により、図1を参照
して説明したのと同様な作用効果を生ずる。
The cross section taken along the line II-II 'of FIG. 4 is shown in FIG.
It basically corresponds to the sectional structure shown in. Due to the slits 64 and 65 alternately arranged between the upper and lower electrodes, the same operational effect as described with reference to FIG. 1 is produced.

【0043】なお、アクティブマトリックス構造には上
記以外の別の構造も有るが、本発明はそのような別のア
クティブマトリックス構造でも適用できる。本発明は、
以上図面を参照して説明した実施例に限るものではな
く、上記開示に基づき当業者であれば様々な変更や改良
ができることはいうまでもない。
Although the active matrix structure has another structure other than the above, the present invention can be applied to such another active matrix structure. The present invention is
It is needless to say that the person skilled in the art can make various modifications and improvements based on the above disclosure without being limited to the embodiments described with reference to the drawings.

【0044】[0044]

【発明の効果】一対の透明電極間で交互に配置されるス
リットを表示領域に設けたことによって、一対の電極の
表示領域で、電圧印加時には液晶分子の立ち上がり方向
がそれぞれ逆方向の小領域が同時に形成されるので、互
いの小領域の視角依存性が補完されて、表示領域全体と
して視角依存性が低減し、もっていずれの方向から見て
も視認性が良好となり、表示品質が向上する。
By providing slits alternately arranged between a pair of transparent electrodes in the display area, a small area in which the rising directions of the liquid crystal molecules are opposite to each other in the display area of the pair of electrodes when voltage is applied. Since they are formed at the same time, the viewing angle dependence of each small area is complemented, the viewing angle dependence of the entire display area is reduced, and the visibility is good when viewed from any direction, and the display quality is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のTN液晶表示素子の断面図である。FIG. 1 is a cross-sectional view of a TN liquid crystal display device of the present invention.

【図2】本発明の実施例による単純セグメント型TN液
晶表示素子の平面図である。
FIG. 2 is a plan view of a simple segment type TN liquid crystal display device according to an embodiment of the present invention.

【図3】本発明の実施例による単純セグメント型TN液
晶表示素子の斜視図である。
FIG. 3 is a perspective view of a simple segment type TN liquid crystal display device according to an embodiment of the present invention.

【図4】本発明の実施例によるアクティブマトリックス
型液晶表示素子の平面図である。
FIG. 4 is a plan view of an active matrix type liquid crystal display device according to an exemplary embodiment of the present invention.

【図5】従来の技術によるTN液晶表示素子の視角特性
とプレチルトを説明するための図である。
FIG. 5 is a diagram for explaining viewing angle characteristics and pretilt of a TN liquid crystal display device according to a conventional technique.

【符号の簡単な説明】[Simple explanation of symbols]

1,2・・・・・ガラス基板 3,4・・・・・透明電極 5・・・・・・・液晶層 6・・・・・・・液晶分子 7,8・・・・・スリット 9・・・・・・・電気力線 10,20・・・透明電極 11,12,13,21,22,23・・・スリット 30,40・・・配向方向 50・・・・・・液晶層中央部の液晶分子の配向方向 60・・・・・・TFT素子 61・・・・・・画素電極 62・・・・・・ソースライン 63・・・・・・ゲートライン 64,65・・・スリット 70,80・・・配向方法 90・・・・・・液晶層中央部の液晶分子の配向方法 1, 2 ... glass substrate 3, 4 ... transparent electrode 5 ... liquid crystal layer 6 ... liquid crystal molecule 7, 8 ... slit 9 ··· Electric force lines 10, 20 ··· Transparent electrodes 11, 12, 13, 21, 22, 23 ··· Slits 30, 40 · · Alignment direction 50 ··· Liquid crystal layer Alignment direction of liquid crystal molecules in the central portion 60 ... TFT element 61 ... Pixel electrode 62 ... Source line 63 ... Gate line 64, 65 ... Slits 70, 80 ... Alignment method 90 ... Alignment method of liquid crystal molecules in central part of liquid crystal layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 対向配置された一対の基板と、 前記一対の基板上に設けられ、液晶層を挟んで互いに重
なり合って表示領域を形成する一対の透明電極と、 前記一対の透明電極の各々の前記表示領域における透明
電極の一部が取り除かれたスリットとを有し、前記一対
の透明電極の一方の透明電極の前記スリットと他方の透
明電極の前記スリットとが前記表示領域内で交互に配置
されることを特徴とするTN液晶表示素子。
1. A pair of substrates arranged to face each other, a pair of transparent electrodes provided on the pair of substrates and overlapping each other with a liquid crystal layer interposed therebetween to form a display region, and each of the pair of transparent electrodes. And a slit from which a part of the transparent electrode in the display area is removed, and the slit of one transparent electrode of the pair of transparent electrodes and the slit of the other transparent electrode are alternately arranged in the display area. A TN liquid crystal display device characterized in that
【請求項2】 前記スリットは、その長手方向が無電界
時の前記液晶層の中心部の液晶分子の配向方向と直交す
る方向に伸びる形状を有することを特徴とする請求項1
記載のTN液晶表示素子。
2. The slit has a shape whose longitudinal direction extends in a direction orthogonal to an alignment direction of liquid crystal molecules in a central portion of the liquid crystal layer when no electric field is applied.
The TN liquid crystal display element described.
【請求項3】 前記液晶層の液晶分子は実質的に10°
以下のプレチルト角を与えられていることを特徴とする
請求項1記載のTN液晶表示素子。
3. The liquid crystal molecules of the liquid crystal layer are substantially 10 °.
The TN liquid crystal display device according to claim 1, which is provided with the following pretilt angles.
【請求項4】 前記スリットの長手方向と直交する方向
の幅は前記液晶層の前記電極間の厚みよりも大きいこと
を特徴とする請求項1記載のTN液晶表示素子。
4. The TN liquid crystal display device according to claim 1, wherein the width of the slit in the direction orthogonal to the longitudinal direction is larger than the thickness between the electrodes of the liquid crystal layer.
【請求項5】 前記交互に配置されたスリットにおい
て、隣接する前記スリット間の間隔は、前記液晶層の前
記電極間の厚みよりも大きく、かつ実質的に2mmより
も小さいことを特徴とする請求項1記載のTN液晶表示
素子。
5. In the alternately arranged slits, a distance between the adjacent slits is larger than a thickness between the electrodes of the liquid crystal layer and is substantially smaller than 2 mm. Item 10. A TN liquid crystal display device according to item 1.
JP34460692A 1992-12-24 1992-12-24 TN liquid crystal display device Expired - Fee Related JP3108768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34460692A JP3108768B2 (en) 1992-12-24 1992-12-24 TN liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34460692A JP3108768B2 (en) 1992-12-24 1992-12-24 TN liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH06194656A true JPH06194656A (en) 1994-07-15
JP3108768B2 JP3108768B2 (en) 2000-11-13

Family

ID=18370576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34460692A Expired - Fee Related JP3108768B2 (en) 1992-12-24 1992-12-24 TN liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3108768B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100953A (en) * 1998-08-20 2000-08-08 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device with concave portion in color filter and method of manufacturing thereof
US6157428A (en) * 1997-05-07 2000-12-05 Sanyo Electric Co., Ltd. Liquid crystal display
KR20010004543A (en) * 1999-06-29 2001-01-15 김영환 LCD improved viewing angle
US6229589B1 (en) 1997-10-01 2001-05-08 Sanyo Electric Co., Ltd. Liquid crystal display including a vertically aligned liquid crystal layer disposed between pixel electrodes and a common electrode
US6335776B1 (en) 1998-05-30 2002-01-01 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device having an auxiliary electrode formed on the same layer as the pixel electrode
US6342939B1 (en) 1993-07-27 2002-01-29 Sharp Kabushiki Kaisha Liquid crystal display including pixel electrode (S) designed to improve viewing characteristics
US6441877B1 (en) 1998-10-07 2002-08-27 Nec Corporation Active matrix type liquid crystal display device and method of forming the same
US6466288B1 (en) 1998-07-25 2002-10-15 Lg Lcd, Inc. Multi-domain liquid crystal display device
US6509944B2 (en) 1997-10-01 2003-01-21 Sanyo Electric Co., Ltd. Vertically aligned liquid crystal display with improved viewing characteristics
US6628357B1 (en) 1998-02-04 2003-09-30 Seiko Epson Corporation Liquid crystal device and electronic device
US6633357B2 (en) 2000-06-27 2003-10-14 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of fabricating the same
US6654090B1 (en) 1998-09-18 2003-11-25 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of manufacturing thereof
US6665035B2 (en) 1998-07-23 2003-12-16 Lg.Philips Lcd Co., Ltd. Method for assembling a multi-domain liquid crystal display device having field affecting electrode
US6707519B1 (en) 1998-02-04 2004-03-16 Seiko Epson Corporation Three state transflective liquid crystal display
US6714271B1 (en) 1999-03-24 2004-03-30 Nec Corporation Liquid crystal display having an in a pixel electrode along a boundary of differently oriented regions
US6717645B2 (en) 2000-09-12 2004-04-06 Sharp Kabushiki Kaisha LCD with electrodes(s) for producing transverse electric field component
US6750933B1 (en) 1998-08-06 2004-06-15 Lg.Phillips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US6774966B1 (en) 1997-06-10 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US6788374B2 (en) 2000-06-27 2004-09-07 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method for fabricating the same
JP2005241831A (en) * 2004-02-25 2005-09-08 Stanley Electric Co Ltd Liquid crystal display element
JP2005300744A (en) * 2004-04-08 2005-10-27 Stanley Electric Co Ltd Liquid crystal display element and its manufacturing method
JP2005331701A (en) * 2004-05-20 2005-12-02 Stanley Electric Co Ltd Method for manufacturing low tilt alignment film and method for manufacturing liquid crystal display element
US7002653B2 (en) 2000-11-28 2006-02-21 Sharp Kabushiki Kaisha Liquid crystal display apparatus and production method of same
JP2007187826A (en) * 2006-01-12 2007-07-26 Stanley Electric Co Ltd Liquid crystal display element
JP2007256578A (en) * 2006-03-23 2007-10-04 Stanley Electric Co Ltd Liquid crystal display device
JP2007264226A (en) * 2006-03-28 2007-10-11 Stanley Electric Co Ltd Liquid crystal display element
US7570332B2 (en) 1998-05-16 2009-08-04 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7593081B2 (en) 1998-09-18 2009-09-22 Sharp Kabushiki Kaisha Liquid crystal display apparatus having alignment control for brightness and response
JP2010026536A (en) * 2009-11-04 2010-02-04 Stanley Electric Co Ltd Liquid crystal display element
US7760305B2 (en) 1997-06-12 2010-07-20 Sharp Kabushiki Kaisha Liquid crystal display device with multiple alignment structures
US7787086B2 (en) 1998-05-19 2010-08-31 Samsung Electronics Co., Ltd. Liquid crystal display having wide viewing angle
JP2011053278A (en) * 2009-08-31 2011-03-17 Nippon Seiki Co Ltd Liquid crystal display element
US8743331B2 (en) 2002-06-28 2014-06-03 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
WO2017020412A1 (en) * 2015-07-31 2017-02-09 深圳市华星光电技术有限公司 Alignment method applicable to psva liquid crystal display panel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846401B2 (en) * 2006-03-17 2011-12-28 スタンレー電気株式会社 Liquid crystal display element
JP4884176B2 (en) * 2006-11-16 2012-02-29 スタンレー電気株式会社 Liquid crystal display element

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342939B1 (en) 1993-07-27 2002-01-29 Sharp Kabushiki Kaisha Liquid crystal display including pixel electrode (S) designed to improve viewing characteristics
US6157428A (en) * 1997-05-07 2000-12-05 Sanyo Electric Co., Ltd. Liquid crystal display
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
US7826020B2 (en) 1997-06-10 2010-11-02 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US8035785B2 (en) 1997-06-10 2011-10-11 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7133111B2 (en) 1997-06-10 2006-11-07 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US6774966B1 (en) 1997-06-10 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7440065B2 (en) 1997-06-10 2008-10-21 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7821603B2 (en) 1997-06-12 2010-10-26 Sharp Kabushiki Kaisha Vertically-alligned (VA) liquid crystal display device
US7965363B2 (en) 1997-06-12 2011-06-21 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US7760305B2 (en) 1997-06-12 2010-07-20 Sharp Kabushiki Kaisha Liquid crystal display device with multiple alignment structures
USRE43123E1 (en) 1997-06-12 2012-01-24 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US6509944B2 (en) 1997-10-01 2003-01-21 Sanyo Electric Co., Ltd. Vertically aligned liquid crystal display with improved viewing characteristics
US6229589B1 (en) 1997-10-01 2001-05-08 Sanyo Electric Co., Ltd. Liquid crystal display including a vertically aligned liquid crystal layer disposed between pixel electrodes and a common electrode
US6628357B1 (en) 1998-02-04 2003-09-30 Seiko Epson Corporation Liquid crystal device and electronic device
US7535529B2 (en) 1998-02-04 2009-05-19 Seiko Epson Corporation Liquid crystal device and electronic device having liquid crystal molecules aligned at reflective electrodes
US6707519B1 (en) 1998-02-04 2004-03-16 Seiko Epson Corporation Three state transflective liquid crystal display
US7573554B2 (en) 1998-05-16 2009-08-11 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7570332B2 (en) 1998-05-16 2009-08-04 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7787087B2 (en) 1998-05-19 2010-08-31 Samsung Electronics Co., Ltd. Liquid crystal display having wide viewing angle
US7787086B2 (en) 1998-05-19 2010-08-31 Samsung Electronics Co., Ltd. Liquid crystal display having wide viewing angle
US8054430B2 (en) 1998-05-19 2011-11-08 Samsung Electronics Co., Ltd. Liquid crystal display having wide viewing angle
US8400598B2 (en) 1998-05-19 2013-03-19 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
US8711309B2 (en) 1998-05-19 2014-04-29 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
US6335776B1 (en) 1998-05-30 2002-01-01 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device having an auxiliary electrode formed on the same layer as the pixel electrode
US6665035B2 (en) 1998-07-23 2003-12-16 Lg.Philips Lcd Co., Ltd. Method for assembling a multi-domain liquid crystal display device having field affecting electrode
US6466288B1 (en) 1998-07-25 2002-10-15 Lg Lcd, Inc. Multi-domain liquid crystal display device
US7304704B2 (en) 1998-08-06 2007-12-04 Lg.Philips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US7697097B2 (en) 1998-08-06 2010-04-13 Lg Display Co., Ltd. Liquid-crystal display and method of its fabrication
US6750933B1 (en) 1998-08-06 2004-06-15 Lg.Phillips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US6100953A (en) * 1998-08-20 2000-08-08 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device with concave portion in color filter and method of manufacturing thereof
US7808594B2 (en) 1998-09-18 2010-10-05 Sharp Kabushiki Kaisha Liquid crystal display apparatus having alignment control for brightness and response
US7898627B2 (en) 1998-09-18 2011-03-01 Sharp Kabushiki Kaisha Vertical alignment type liquid crystal display apparatus
US6654090B1 (en) 1998-09-18 2003-11-25 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of manufacturing thereof
US8018559B2 (en) 1998-09-18 2011-09-13 Sharp Kabushiki Kaisha Liquid crystal display apparatus having alignment control for brightness and response
US7593081B2 (en) 1998-09-18 2009-09-22 Sharp Kabushiki Kaisha Liquid crystal display apparatus having alignment control for brightness and response
US8023085B2 (en) 1998-09-18 2011-09-20 Sharp Kabushiki Kaisha Liquid crystal display apparatus having alignment control for brightness and response
US6441877B1 (en) 1998-10-07 2002-08-27 Nec Corporation Active matrix type liquid crystal display device and method of forming the same
US6714271B1 (en) 1999-03-24 2004-03-30 Nec Corporation Liquid crystal display having an in a pixel electrode along a boundary of differently oriented regions
KR20010004543A (en) * 1999-06-29 2001-01-15 김영환 LCD improved viewing angle
US6633357B2 (en) 2000-06-27 2003-10-14 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of fabricating the same
US6788374B2 (en) 2000-06-27 2004-09-07 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method for fabricating the same
US6717645B2 (en) 2000-09-12 2004-04-06 Sharp Kabushiki Kaisha LCD with electrodes(s) for producing transverse electric field component
US7002653B2 (en) 2000-11-28 2006-02-21 Sharp Kabushiki Kaisha Liquid crystal display apparatus and production method of same
US8743331B2 (en) 2002-06-28 2014-06-03 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
JP2005241831A (en) * 2004-02-25 2005-09-08 Stanley Electric Co Ltd Liquid crystal display element
JP2005300744A (en) * 2004-04-08 2005-10-27 Stanley Electric Co Ltd Liquid crystal display element and its manufacturing method
JP4605632B2 (en) * 2004-04-08 2011-01-05 スタンレー電気株式会社 Liquid crystal display element and manufacturing method thereof
JP2005331701A (en) * 2004-05-20 2005-12-02 Stanley Electric Co Ltd Method for manufacturing low tilt alignment film and method for manufacturing liquid crystal display element
JP4605633B2 (en) * 2004-05-20 2011-01-05 スタンレー電気株式会社 Low tilt alignment film manufacturing method and liquid crystal display device manufacturing method
JP2007187826A (en) * 2006-01-12 2007-07-26 Stanley Electric Co Ltd Liquid crystal display element
JP2007256578A (en) * 2006-03-23 2007-10-04 Stanley Electric Co Ltd Liquid crystal display device
JP2007264226A (en) * 2006-03-28 2007-10-11 Stanley Electric Co Ltd Liquid crystal display element
EP2474858A4 (en) * 2009-08-31 2013-01-23 Nippon Seiki Co Ltd Liquid crystal display element
EP2474858A1 (en) * 2009-08-31 2012-07-11 Nippon Seiki Co., Ltd. Liquid crystal display element
JP2011053278A (en) * 2009-08-31 2011-03-17 Nippon Seiki Co Ltd Liquid crystal display element
JP2010026536A (en) * 2009-11-04 2010-02-04 Stanley Electric Co Ltd Liquid crystal display element
WO2017020412A1 (en) * 2015-07-31 2017-02-09 深圳市华星光电技术有限公司 Alignment method applicable to psva liquid crystal display panel
US10203557B2 (en) 2015-07-31 2019-02-12 Shenzhen China Star Optoelectronics Technology Co., Ltd. Alignment method suitable for PSVA liquid crystal display panel

Also Published As

Publication number Publication date
JP3108768B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
JP3108768B2 (en) TN liquid crystal display device
US6646707B2 (en) Fringe field switching mode LCD
JP3101454B2 (en) TN liquid crystal display device
JP4107978B2 (en) Liquid crystal display element
US6567144B1 (en) Liquid crystal display having a wide viewing angle
JP3407707B2 (en) Vertical alignment type multi-domain liquid crystal display
US5808705A (en) Liquid crystal display apparatus with two viewing angle modes and drive electrodes for mode dependent selection
US20100315582A1 (en) Liquid crystal display
JP3324926B2 (en) Liquid crystal display device
JP4902345B2 (en) Liquid crystal display element
JPH06222397A (en) Liquid crystal display device
JPH10307295A (en) Lateral electric field system liquid crystal display device
KR100314697B1 (en) Active matrix liquid-crystal display
JP3834304B2 (en) Liquid crystal display element
JPH09325373A (en) Liquid crystal display element and production therefor
KR100326826B1 (en) Liquid crystal display device with wide viewing angle
US6798484B2 (en) Two-domain in-plane switching mode LCD
JPH0736044A (en) Pixel orientation dividing type liquid crystal display element
JPS5820433B2 (en) EXIYO HIYOJISOSHI
KR20040062205A (en) liquid crystal display device and manufacturing method of the same
JPH103076A (en) Liquid crystal display element
KR100617024B1 (en) Liquid Crystal Display
KR100404164B1 (en) Liquid crystal display element and method of manufacturing the same
KR100675928B1 (en) Fringe field swiching mode lcd
JPH09325339A (en) Liquid crystal display element and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000808

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees