JPH06194645A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH06194645A
JPH06194645A JP4331541A JP33154192A JPH06194645A JP H06194645 A JPH06194645 A JP H06194645A JP 4331541 A JP4331541 A JP 4331541A JP 33154192 A JP33154192 A JP 33154192A JP H06194645 A JPH06194645 A JP H06194645A
Authority
JP
Japan
Prior art keywords
liquid crystal
refractive index
compensating plate
crystal display
compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4331541A
Other languages
Japanese (ja)
Inventor
Kenichi Takatori
憲一 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4331541A priority Critical patent/JPH06194645A/en
Publication of JPH06194645A publication Critical patent/JPH06194645A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent whity display at the time of inclining the visual angle of a liquid crystal display element obtaining the display of wide visual field by dividing an area into plural. CONSTITUTION:At least one compensating plate or composite compensating plate 1 is added to a liquid crystal element 2 having the area whose oriented direction is different. The compensating plate 1 hardly has the anisotropy of refractive index on a plane in a direction parallel with the surface of the compensating plate and the refractive index in a direction perpendicular to the surface of the compensating plate is smaller than the refractive index on the plane, so that the plate 1 has the anisotropy of the negative refractive index, and the anisotropy of the refractive index of a polarity possessed by the element 2 part at the time of impressing voltage is compensated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示素子に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device.

【0002】[0002]

【従来の技術】従来の複数の領域に分割し、隣合う領域
同士で異なる配向方向に配向規制力を与えることにより
広視野角を実現する液晶表示素子として、例えば、特開
63−106624号公報に示されているものがある。
ここではこれを例にとって説明する。図6にこの液晶表
示素子の平面図を示す。図7にこの液晶表示素子の断面
図(図6のC−C’線断面図)を示す。更に、ラビング
方向の模式図を図8に示す。一方のガラス基板23上に
は画素単位の表示用透明電極25、配向膜10と、この
透明電極25を駆動する薄膜トランジスタ13とが形成
されている。他方のガラス基板22上には表示用透明電
極24、配向膜10が形成されている。配向膜10は、
ポリイミドで形成されている。対向する透明電極24、
25間に形成される画素Bは、例えば縦横200μmの
正方形であり、マトリックス上に複数配列されている。
この画素Bを形成する表示用の透明電極の中央部に、ポ
リイミドからなる帯状スペーサ21が設けられている。
この結果、各画素Bは、帯状スペーサ21によって、領
域IとIIに分割される。この分割された領域IとII
は、模式的には図8に示すように形成される。即ち、一
方のガラス基板23と対向する他方のガラス基板22に
それぞれ上記した領域分割を行う。このガラス基板2
3、22の液晶面の配向膜はそれぞれ図8に示す矢印方
向にラビング処理する。
2. Description of the Related Art As a conventional liquid crystal display device which realizes a wide viewing angle by dividing an area into a plurality of areas and applying an alignment regulating force in different alignment directions between adjacent areas, for example, Japanese Patent Laid-Open No. 63-106624. There is one shown in.
Here, this will be described as an example. FIG. 6 shows a plan view of this liquid crystal display element. FIG. 7 shows a sectional view of this liquid crystal display element (a sectional view taken along the line CC ′ of FIG. 6). Furthermore, a schematic diagram of the rubbing direction is shown in FIG. On one glass substrate 23, a display transparent electrode 25 for each pixel, an alignment film 10 and a thin film transistor 13 for driving the transparent electrode 25 are formed. A display transparent electrode 24 and an alignment film 10 are formed on the other glass substrate 22. The alignment film 10 is
It is made of polyimide. Opposing transparent electrodes 24,
Pixels B formed between 25 are, for example, squares of 200 μm in length and width, and are arranged in a matrix.
A band-shaped spacer 21 made of polyimide is provided at the center of the display transparent electrode forming the pixel B.
As a result, each pixel B is divided into regions I and II by the strip spacer 21. These divided regions I and II
Are typically formed as shown in FIG. That is, the above-described area division is performed on the other glass substrate 22 facing the one glass substrate 23. This glass substrate 2
The alignment films 3 and 22 on the liquid crystal surface are rubbed in the directions of the arrows shown in FIG.

【0003】この従来例以前の液晶表示素子、例えば、
液晶の配向が上下基板間で90°螺旋形に捻れたTN
(ツイステッドネマティック)型液晶表示素子において
は、表示素子の基板鉛直方向から視角方向、即ち、観察
方向が傾くと表示の視角依存性が現れていた。そして、
特に階調表示時に視角方向を傾けると、各階調の透過率
の大小が反転する階調反転と呼ばれる現象が起きてい
た。この従来例では、分割された各々の領域での液晶配
向は螺旋型の捻れの向きは同じであるが基板表面に対す
る角度が異なっている。基板表面に対する角度の違いに
より、電圧印加時には液晶分子の立ち上がる方向が異な
るため、光が基板に対する鉛直方向から傾いた斜め方向
より入射する場合に各々の領域が光学特性を補償し合
う。その結果、電圧印加時における視角依存性は上下基
板間の配向の異なる領域同士で相殺され、視角依存性の
少ない光学特性が得られる。特に、階調表示時に視角を
変化しても階調反転の現象が見られなくなっている。
A liquid crystal display device before this conventional example, for example,
TN in which the liquid crystal orientation is twisted in a 90 ° spiral between the upper and lower substrates
In the (twisted nematic) type liquid crystal display element, the viewing angle dependency of the display appears when the viewing angle direction, that is, the viewing direction, is inclined from the substrate vertical direction of the display element. And
Particularly, when the viewing angle direction is tilted during gradation display, a phenomenon called gradation inversion occurs in which the magnitude of the transmittance of each gradation is reversed. In this conventional example, the liquid crystal alignment in each of the divided regions has the same spiral twist direction but different angles with respect to the substrate surface. Since the rising directions of the liquid crystal molecules are different when a voltage is applied due to the difference in the angle with respect to the substrate surface, the respective regions compensate each other for optical characteristics when light is incident from an oblique direction inclined from the vertical direction with respect to the substrate. As a result, the viewing angle dependency when a voltage is applied is canceled by the regions of different orientations between the upper and lower substrates, and optical characteristics with little viewing angle dependency are obtained. In particular, the phenomenon of gradation inversion is no longer observed even when the viewing angle is changed during gradation display.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
構造の液晶表示素子において視角方向を変化した時、階
調反転現象は視角±40度程度まで見られないが、その
視角範囲内においても表示全体の透過率が変化し表示が
白く浮いたような現象が発生する欠点がある。この白浮
きの現象は次のような原因で発生する。従来の構造の液
晶表示素子においては、配向方向の異なった配向を共存
させることにより、互いの特性を補償しあう。その結
果、上下の視角方向で特性が平均化されるが、通常のT
N型液晶表示素子における黒表示の透過率の視角依存性
が大きすぎるため、平均化しても黒表示の透過率の変化
が大きくなる。つまり、白浮き現象を抑えるには、黒表
示の透過率の変化、特に、透過率の上昇を抑えなければ
ならない。この透過率の上昇の原因は、電圧印加により
立ちあがった液晶配向が有する正の光学的異方性の発生
にある。
However, when the viewing angle direction is changed in the liquid crystal display device having the conventional structure, the gradation inversion phenomenon is not seen up to a viewing angle of ± 40 degrees, but the entire display is within the viewing angle range. However, there is a drawback in that the phenomenon in which the display changes and the display floats white. This phenomenon of whitening occurs due to the following reasons. In the liquid crystal display element having the conventional structure, the characteristics of each other are mutually compensated by coexisting the orientations having different orientation directions. As a result, the characteristics are averaged in the upper and lower viewing angle directions.
Since the viewing angle dependency of the transmittance of black display in the N-type liquid crystal display element is too large, the change in transmittance of black display becomes large even if the average is averaged. In other words, in order to suppress the whitening phenomenon, it is necessary to suppress the change in the transmittance of black display, in particular, the increase in the transmittance. The cause of this increase in transmittance is the occurrence of positive optical anisotropy possessed by the liquid crystal alignment that rises due to voltage application.

【0005】本発明の目的は、視角変化による階調の反
転、及び、白浮きの現象が無い、広域な視角特性を持つ
液晶表示素子を提供することにある。
It is an object of the present invention to provide a liquid crystal display device having a wide range of viewing angle characteristics, which is free from the phenomenon of grayscale inversion due to changes in viewing angle and whitening.

【0006】[0006]

【課題を解決するための手段】本発明は、2枚の支持基
板間に液晶物質を挟持してあり、且つ、光学的な特性を
補償する一枚以上の補償板を有する液晶表示素子におい
て、前記支持基板間に液晶の配向方向が異なる領域を複
数持ち、且つ、少なくとも一枚の補償板の屈折率に関し
て、補償板面と平行な方向の面内の屈折率の異方性がほ
ぼなく、且つ、補償板面と垂直な方向の屈折率が面内の
屈折率に比べて小さい補償板を少なくとも一枚有する
か、あるいはまた、補償板の組み合わせにより、組み合
せ補償板面と垂直な方向の面内の屈折率がほぼなく、且
つ、組み合せ補償板面と垂直な方向の屈折率が面内の屈
折率に比べ小さくなるように構成された少なくとも一組
の組み合せ補償板を有することを特徴とする。
The present invention provides a liquid crystal display device in which a liquid crystal substance is sandwiched between two supporting substrates and which has one or more compensating plates for compensating for optical characteristics. Having a plurality of regions having different liquid crystal orientations between the supporting substrates, and with respect to the refractive index of at least one compensating plate, there is almost no anisotropy of the in-plane refractive index in the direction parallel to the compensating plate surface, Further, at least one compensating plate having a refractive index in the direction perpendicular to the compensating plate surface is smaller than the in-plane refractive index, or by combining the compensating plates, a surface in the direction perpendicular to the combined compensating plate surface is provided. And at least one combination compensator configured so that the refractive index in the direction perpendicular to the plane of the combination compensator is smaller than the in-plane index of refraction. .

【0007】[0007]

【作用】図1に本発明の液晶表示素子の断面図を示す。
本発明の液晶表示素子においては、2枚の支持基板4間
に液晶物質5を狭持させ、支持基板間に液晶の配向方向
が異なる領域を複数設ける。この液晶素子2部における
液晶の配向方向により、互いの領域の特性を平均化しあ
う。更に、このような構造は電圧印加時に正の屈折率異
方性を持つ。本発明による補償板あるいは組み合せ補償
板1は、補償板面8と平行な方向の面内の屈折率の異方
性がほぼなく、且つ、補償板面と垂直な方向の屈折率が
面内の屈折率に比べて小さいため、補償板面に垂直な方
向に負の屈折率異方性を持つ。電圧印加時の補償板1・
液晶素子2の屈折率楕円体の模式図を図2に示す。液晶
素子2の屈折率楕円体6において、互いの領域の楕円体
が補償しあうことがわかる。更に、基板面に垂直な方向
に発生した正の光学的異方性を補償するように、補償板
あるいは組み合せ補償板1は負の屈折率異方性を有す
る。その結果、視角をどの斜め方向に傾けても、良好な
視覚特性が得られる。
1 is a sectional view of the liquid crystal display device of the present invention.
In the liquid crystal display element of the present invention, the liquid crystal substance 5 is sandwiched between two supporting substrates 4, and a plurality of regions having different liquid crystal alignment directions are provided between the supporting substrates. The characteristics of the respective regions are averaged by the alignment direction of the liquid crystal in the liquid crystal element 2 part. Further, such a structure has a positive refractive index anisotropy when a voltage is applied. The compensating plate or the combined compensating plate 1 according to the present invention has almost no anisotropy in the in-plane refractive index in the direction parallel to the compensating plate surface 8, and the in-plane refractive index in the direction perpendicular to the compensating plate surface. Since it is smaller than the refractive index, it has negative refractive index anisotropy in the direction perpendicular to the compensating plate surface. Compensation plate 1 when voltage is applied
A schematic view of the refractive index ellipsoid of the liquid crystal element 2 is shown in FIG. It can be seen that in the refractive index ellipsoid 6 of the liquid crystal element 2, the ellipsoids in the respective regions compensate each other. Further, the compensating plate or the combination compensating plate 1 has a negative refractive index anisotropy so as to compensate the positive optical anisotropy generated in the direction perpendicular to the substrate surface. As a result, good visual characteristics can be obtained regardless of the oblique direction of the viewing angle.

【0008】[0008]

【実施例】本発明の実施例を図3から図5を参照して説
明する。図3は本発明の第1の実施例を示す断面図であ
る。この実施例においては、能動素子としてアモルファ
スシリコンによる薄膜トランジスタを用い、一単位画素
の大きさを100μm角とした。走査電極線、信号電極
線は、スパッタ法で形成されたクロミウム(Cr)を用
い、太さは10μmとした。ゲート絶縁膜11には窒化
シリコン(SiNx)を用いた。画素電極12は透明電
極であるITO(酸化インジウム錫)を用い、スパッタ
法により形成した。このように薄膜トランジスタをアレ
イ状に形成したガラス基板を第一の支持基板とした。ま
た、対向側の第二の支持基板上には、カラーフィルタを
染色法によりアレイ状に形成しその上面にシリカを用い
た保護層を設け、更にITOを用いた透明電極を形成し
た。
Embodiments of the present invention will be described with reference to FIGS. FIG. 3 is a sectional view showing the first embodiment of the present invention. In this example, a thin film transistor made of amorphous silicon was used as an active element, and the size of one unit pixel was 100 μm square. The scanning electrode lines and the signal electrode lines were made of chromium (Cr) formed by a sputtering method and had a thickness of 10 μm. Silicon nitride (SiNx) was used for the gate insulating film 11. The pixel electrode 12 was formed by sputtering using ITO (indium tin oxide) which is a transparent electrode. The glass substrate on which the thin film transistors were formed in an array in this manner was used as a first supporting substrate. Further, on the second supporting substrate on the opposite side, color filters were formed in an array by a dyeing method, a protective layer using silica was provided on the upper surface, and a transparent electrode using ITO was further formed.

【0009】この第一の支持基板上にポリイミドによる
配向膜10を塗布した。その配向膜表面にポジ型レジス
トを塗布し、ストライプ上のマスクを用い、その隣合う
画素同士の中心線間をマスクする領域と露光する領域に
分けた。露光部のレジストを現像した後、ラビング処理
を施した。更に、もう一度レジストを塗布し、前回とマ
スク領域を反転し、露光し現像することによりラビング
未処理領域の配向膜表面のレジストを除去し、その表面
に前回のラビング処理方向と180°異なった方向にラ
ビング処理を施す。第二の支持基板も第一の支持基板と
同様に配向処理を施したが、ラビングの方向は90°捻
れた方向とした。この両基板をシリカ粒子によるスペー
サを介して接着剤で接着し、図のようにネマティック液
晶を注入した。
An alignment film 10 made of polyimide was applied on the first supporting substrate. A positive type resist was applied to the surface of the alignment film, and a mask on a stripe was used to divide a region between the center lines of adjacent pixels into a region for masking and a region for exposing. After developing the resist in the exposed area, rubbing treatment was performed. Furthermore, the resist is applied again, the mask area is reversed from the previous time, exposed and developed to remove the resist on the surface of the alignment film in the unrubbed area, and the surface is different from the previous rubbing direction by 180 °. Rubbing treatment. The second support substrate was also subjected to the alignment treatment in the same manner as the first support substrate, but the rubbing direction was twisted by 90 °. The two substrates were bonded together with an adhesive via a spacer made of silica particles, and nematic liquid crystal was injected as shown in the figure.

【0010】液晶材料としては、主屈折率、即ち、常光
に対する屈折率が1.486で屈折率異方性が0.07
6のものを用い、液晶セルのギャップは6.2μmとし
た。この時の液晶素子部の屈折率異方性と厚みの積(Δ
n・d)は、471nmであった。
As the liquid crystal material, the main refractive index, that is, the refractive index for ordinary light is 1.486 and the refractive index anisotropy is 0.07.
6 was used, and the gap of the liquid crystal cell was 6.2 μm. At this time, the product of the refractive index anisotropy of the liquid crystal element and the thickness (Δ
n · d) was 471 nm.

【0011】補償板1は、材料としてポリカーバネイト
を使用し、2軸延伸によりフィルム面内での屈折率異方
性がほぼなく、フィルム面に垂直な方向の屈折率が面内
の屈折率よりも小さいものを作製した。この時、補償板
の屈折率異方性とセルギャップの積(Δn・d)が約3
50nmとなるようにした。この条件は60°視角から
観察した時の黒表示の透過率が最も低い、即ち、黒の白
浮きが最も少ないように設定したものである。この実施
例による液晶表示素子と補償版を使用しない従来の液晶
表示素子の透過率とコントラスト比の上下方向の視角依
存性を、それぞれ図4と図9に示す。正面での透過率が
100%、50%、0%の透過率と、100%と0%の
コントラスト比と50%と0%のコントラスト比を示し
た。従来の液晶表示素子では、透過率が左右対称の形で
あり、視角依存性が少ないが、0%の透過率が大きく上
昇している。一方、本発明の液晶表示素子では、0%の
透過率の上昇の割合が従来に比べてはるかに小さい。ま
た、コントラスト比は全体に高くなり、広い視角範囲に
わたって、コントラストが取れていることがわかる。
The compensator 1 uses polycarbonate as a material, and has almost no refractive index anisotropy in the film plane by biaxial stretching, and the refractive index in the direction perpendicular to the film plane has an in-plane refractive index. The smaller one was produced. At this time, the product (Δn · d) of the refractive index anisotropy of the compensator and the cell gap is about 3
It was set to 50 nm. This condition is set so that the black display has the lowest transmittance when observed from a 60 ° viewing angle, that is, the black whitening is minimized. The vertical viewing angle dependence of the transmittance and the contrast ratio of the liquid crystal display device according to this example and the conventional liquid crystal display device not using the compensation plate are shown in FIGS. 4 and 9, respectively. The transmittance on the front side was 100%, 50% and 0%, the contrast ratio was 100% and 0%, and the contrast ratio was 50% and 0%. In the conventional liquid crystal display device, the transmissivity is symmetrical, and the viewing angle dependency is small, but the transmissivity of 0% is greatly increased. On the other hand, in the liquid crystal display device of the present invention, the rate of increase in the transmittance of 0% is much smaller than that in the conventional case. Further, it can be seen that the contrast ratio becomes high as a whole, and the contrast is obtained over a wide viewing angle range.

【0012】更に、本発明の第2の実施例として、液晶
パネル部は第一の実施例と同様に作製し、補償板の屈折
率異方性とセルギャップの積(Δn・d)が約235n
mとなるようにしたものを作製した。本実施例において
は、黒表示の透過率の上昇は第一の実施例より大きくな
るが、階調間の透過率の差の比が保たれるような条件と
した。図5と図10に、本実施例と従来の素子のコント
ラスト比と、階調間の透過率の差の視角による変化の様
子を示す。階調間の透過率の差の比としては、100%
の透過率から50%の透過率をひいたものを、50%の
透過率から0%の透過率をひいたもので割った値を示し
た。従来の素子では、この階調間の比は視角30°程度
までしか保たれていない。一方、本実施例の素子では、
視角を60°まで傾けても、この階調間の透過率の比が
正面での値に保たれており、階調が正しく認識できるこ
とを示している。このように、補償板の条件の設定によ
り、広い視角範囲に渡って、階調が正しく認識できるよ
うにすることが可能である。
Further, as a second embodiment of the present invention, the liquid crystal panel section is manufactured in the same manner as in the first embodiment, and the product (Δn · d) of the refractive index anisotropy of the compensator and the cell gap is approximately. 235n
A product having a thickness of m was produced. In this embodiment, the increase in the transmittance of black display is larger than that in the first embodiment, but the conditions are such that the ratio of the difference in transmittance between gradations is maintained. FIG. 5 and FIG. 10 show changes in contrast ratio between the present embodiment and the conventional device and the difference in transmittance between gradations depending on the viewing angle. The ratio of the difference in transmittance between gradations is 100%
The value obtained by subtracting the transmittance of 50% from the transmittance of No. 1 was divided by the value of the transmittance of 50% minus 0%. In the conventional device, the ratio between the gradations is maintained only up to a viewing angle of about 30 °. On the other hand, in the device of this example,
Even if the viewing angle is tilted up to 60 °, the ratio of the transmittance between the gradations is kept at the value at the front, which shows that the gradation can be recognized correctly. As described above, by setting the conditions of the compensator, it is possible to correctly recognize the gradation over a wide viewing angle range.

【0013】更に、本発明の第3の実施例として、液晶
パネル部は第1の実施例と同様に作製し、組み合せ補償
板を用いた例を示す。組み合せ補償板は、光学的に二軸
を有する補償板を2枚組み合せることにより、全体とし
て、組み合せ補償板面内で屈折率異方性がほぼなく、組
み合せ補償板面に垂直な方向の屈折率が面内の屈折率よ
り小さくなるようにした。この時、補償板の屈折率異方
性とセルギャップの積(Δn・d)は第1の実施例と同
様に約350nmとなるようにした。この実施例による
組み合せ補償板は第一の実施例による補償板とほぼ同様
の特性を示した。 更に、本発明の第4の実施例とし
て、液晶パネル部は第一の実施例と同様に作製し、組み
合せ補償板として、2枚の一軸性フィルムを配置し、各
一軸性フィルム等の光軸を90°の角度を成す方向に配
置した組み合わせ補償板を使用した例を示す。この時、
補償板の屈折率異方性とセルギャップの積(Δn・d)
は第1の実施例と同様に約350nmとなるようにし
た。この実施例による組み合せ補償板は第1の実施例に
よる補償板とほぼ同様の特性を示した。組み合わせ補償
板としては、上記の第3及び第4の実施例の他に、3枚
以上の補償板で、一組の組み合わせ補償板を作製するこ
とも可能である。
Further, as a third embodiment of the present invention, an example in which a liquid crystal panel section is manufactured in the same manner as in the first embodiment and a combination compensating plate is used is shown. The combined compensator is a combination of two optically compensating biaxial compensators, and as a whole, there is almost no refractive index anisotropy in the plane of the combined compensator and refraction in the direction perpendicular to the combined compensator plane. The refractive index is smaller than the in-plane refractive index. At this time, the product (Δn · d) of the refractive index anisotropy of the compensator and the cell gap was set to about 350 nm as in the first embodiment. The combined compensating plate according to this embodiment showed almost the same characteristics as the compensating plate according to the first embodiment. Furthermore, as a fourth embodiment of the present invention, a liquid crystal panel section is manufactured in the same manner as in the first embodiment, two uniaxial films are arranged as a combination compensating plate, and an optical axis of each uniaxial film or the like is provided. An example using a combination compensating plate in which is arranged in a direction forming an angle of 90 ° is shown. At this time,
Product of refractive index anisotropy of compensator and cell gap (Δn · d)
Is about 350 nm as in the first embodiment. The combined compensating plate according to this embodiment exhibited almost the same characteristics as the compensating plate according to the first embodiment. As the combination compensator, in addition to the third and fourth embodiments described above, it is also possible to fabricate a set of combination compensators with three or more compensators.

【0014】更に、他の実施例として液晶材を変え、実
施例1、及び、実施例2と同様な条件を持つようにした
時の補償板の屈折率異方性と厚みの積の値を以下の表1
に示す。
Furthermore, as another embodiment, the value of the product of the refractive index anisotropy and the thickness of the compensating plate when the liquid crystal material is changed and the same conditions as those of the first and second embodiments are provided is shown. Table 1 below
Shown in.

【0015】[0015]

【表1】 [Table 1]

【0016】いずれの条件においても、それぞれの条件
で意図した良好な表示が得られた。
Under any of the conditions, good display intended under each condition was obtained.

【0017】上記全ての実施例において、補償板あるい
は組み合せ補償板の厚みと屈折率異方性の積をここで示
した値の約5倍から8倍程度にしても同様の効果が得ら
れる条件が存在したが、補償板の厚みが著しく増し、実
用上において若干の支障を来した。また、補償板あるい
は組み合せ補償板の厚みと屈折率異方性の積(Δn・
d)が、液晶層の厚みとその屈折率異方性の積と同じか
2倍程度の範囲であると、100%の透過率の著しい減
少が発生し、100%の透過率と50%の透過率の値が
逆転するなどの現象が発生し、良好な視角特性が得られ
なかった。そこで、補償板の厚みと屈折率異方性の積
(Δn・d)は、上記の実施例で使用したように液晶層
の厚みと屈折率異方性の積より小さいことが望まれる。
In all of the above embodiments, the same effect can be obtained even if the product of the thickness of the compensating plate or the combination compensating plate and the refractive index anisotropy is about 5 to 8 times the value shown here. However, the thickness of the compensator was significantly increased, which caused some trouble in practical use. Further, the product of the thickness of the compensating plate or the combination compensating plate and the refractive index anisotropy (Δn ·
When d) is equal to or twice the product of the thickness of the liquid crystal layer and its refractive index anisotropy, a significant decrease in transmittance of 100% occurs, and a transmittance of 100% and 50%. Phenomena such as inversion of the transmittance value occurred, and good viewing angle characteristics could not be obtained. Therefore, it is desired that the product (Δn · d) of the thickness of the compensator and the refractive index anisotropy is smaller than the product of the thickness of the liquid crystal layer and the refractive index anisotropy as used in the above-mentioned examples.

【0018】更に、本実施例においては、補償板を液晶
素子部の上部に配置したが、これは液晶素子部の下部で
も、あるいは、複数の補償板に分割し液晶素子部の上下
に配置しても同様の効果が得られた。但し、補償板ある
いは組み合せ補償板の厚みと屈折率異方性の積の値につ
いてはそれぞれの構成で最適値が存在するので若干の変
更が必要となった。
Further, in this embodiment, the compensating plate is arranged above the liquid crystal element part, but it may be arranged below the liquid crystal element part or divided into a plurality of compensating plates and arranged above and below the liquid crystal element part. However, the same effect was obtained. However, since there is an optimum value for the product of the thickness of the compensating plate or the combination compensating plate and the refractive index anisotropy, there is an optimum value, so some changes are necessary.

【0019】また、上記実施例においては外部に配置す
る偏光板の吸収軸を直交させるノーマリホワイトの構成
としたが、偏光板の吸収軸を平行とするノーマリブラッ
クの構成においても同様の効果が得られた。
Further, in the above-mentioned embodiment, the normally white constitution is adopted in which the absorption axes of the polarizing plates arranged outside are orthogonal to each other, but the same effect is obtained in the normally black constitution in which the absorption axes of the polarizing plates are parallel. was gotten.

【0020】[0020]

【発明の効果】本発明を適用するならば、電圧の印加の
強弱により液晶の配向方向を変化させたときは画素内で
光学的に補償しあい、また、電圧印加により生じた正の
屈折率異方性は、垂直方向に負の異方性を持つ補償板が
補償するため、白黒表示・階調表示共に視角依存性の無
い広域な視角特性を持つ液晶表示素子を得ることが出来
る。
According to the present invention, when the alignment direction of the liquid crystal is changed depending on the strength of the voltage application, the liquid crystal molecules are optically compensated within the pixel, and the positive refractive index difference caused by the voltage application is compensated. Since the compensator having negative anisotropy in the vertical direction compensates for the directionality, it is possible to obtain a liquid crystal display element having a wide viewing angle characteristic with no viewing angle dependency in both monochrome display and gradation display.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶表示素子の断面図である。FIG. 1 is a cross-sectional view of a liquid crystal display element of the present invention.

【図2】本発明の液晶表示素子の電圧印加時の構成要素
の屈折率楕円体の様子を示す模式図である。
FIG. 2 is a schematic view showing a state of a refractive index ellipsoid of a constituent element of the liquid crystal display element of the present invention when a voltage is applied.

【図3】本発明による液晶表示素子の実施例を示す断面
図である。
FIG. 3 is a sectional view showing an embodiment of a liquid crystal display device according to the present invention.

【図4】本発明による液晶表示素子の第一の実施例の階
調表示時の上下方向での透過率及びコントラスト比の視
角依存性の測定結果を示す図である。
FIG. 4 is a diagram showing the measurement results of the viewing angle dependence of the transmittance and the contrast ratio in the vertical direction during gradation display in the first embodiment of the liquid crystal display device according to the present invention.

【図5】本発明による液晶表示素子の第二の実施例の階
調表示時の上下方向での階調間の透過率の差の比、及
び、コントラスト比の視角依存性の測定結果を示す図で
ある。
FIG. 5 shows the results of measurement of the viewing angle dependence of the ratio of the difference in transmittance between gray scales in the vertical direction during gray scale display of the second embodiment of the liquid crystal display device according to the present invention. It is a figure.

【図6】従来の液晶表示素子の平面図である。FIG. 6 is a plan view of a conventional liquid crystal display element.

【図7】図6のCーC’線に添って切断した断面図であ
る。
7 is a cross-sectional view taken along the line CC ′ of FIG.

【図8】従来の液晶表示素子のラビング方向の模式図で
ある。
FIG. 8 is a schematic diagram of a rubbing direction of a conventional liquid crystal display element.

【図9】従来の液晶表示素子の階調表示時の上下方向で
の透過率及びコントラスト比の視角依存性の測定結果を
示す図である。
FIG. 9 is a diagram showing measurement results of viewing angle dependence of transmittance and contrast ratio in the vertical direction during gradation display of a conventional liquid crystal display device.

【図10】従来の液晶表示素子の階調表示時の上下方向
での階調間の透過率の差の比、及び、コントラスト比の
視角依存性の測定結果を示す図である。
FIG. 10 is a diagram showing a measurement result of a viewing angle dependence of a ratio of a difference in transmittance between gray scales in a vertical direction and a contrast ratio when displaying a gray scale of a conventional liquid crystal display element.

【符号の説明】[Explanation of symbols]

1 補償板あるいは、組み合せ補償板 2 異なった配向方向を持った領域を有する液晶素子 3 偏光板 4 支持基板 5 液晶物質 6 異なった配向方向を持つ領域を有する液晶素子の電
圧印加時の屈折率楕円体 7 補償板あるいは組み合わせ補償板の屈折率楕円体 8 補償板面 9 対向電極 10 配向膜 11 絶縁膜 12 画素電極 13 薄膜トランジスタ
1 Compensation plate or combination compensation plate 2 Liquid crystal element having regions having different alignment directions 3 Polarizing plate 4 Supporting substrate 5 Liquid crystal substance 6 Elliptic index ellipse of a liquid crystal device having regions having different alignment directions when voltage is applied Body 7 Compensation plate or refractive index ellipsoid of combination compensator 8 Compensation plate surface 9 Counter electrode 10 Alignment film 11 Insulating film 12 Pixel electrode 13 Thin film transistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2枚の支持基板間に液晶物質を挟持して
あり、且つ、光学的な特性を補償する一枚以上の補償板
を有する液晶表示素子において、 前記支持基板間に液晶の配向方向が異なる領域を複数持
ち、且つ、 少なくとも一枚の補償板の屈折率に関して、補償板面と
平行な方向の面内の屈折率の異方性がほぼなく、且つ、
補償板面と垂直な方向の屈折率が面内の屈折率に比べて
小さい補償板を少なくとも一枚有するか、あるいはま
た、 補償板の組み合わせにより、組み合せ補償板面と垂直な
方向の面内の屈折率がほぼなく、且つ、組み合せ補償板
面と垂直な方向の屈折率が面内の屈折率に比べ小さくな
るように構成された少なくとも一組の組み合せ補償板を
有するような液晶表示素子。
1. A liquid crystal display device having a liquid crystal substance sandwiched between two supporting substrates and having one or more compensating plates for compensating for optical characteristics, wherein alignment of liquid crystals is provided between the supporting substrates. There are a plurality of regions having different directions, and with respect to the refractive index of at least one compensating plate, there is almost no anisotropy of the in-plane refractive index in the direction parallel to the compensating plate surface, and
There is at least one compensating plate whose refractive index in the direction perpendicular to the compensating plate surface is smaller than the in-plane refractive index, or by combining compensating plates, it is possible to combine A liquid crystal display device having almost no refractive index and having at least one combination compensating plate configured such that the refractive index in the direction perpendicular to the surface of the combination compensating plate is smaller than the in-plane refractive index.
JP4331541A 1992-12-11 1992-12-11 Liquid crystal display element Pending JPH06194645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4331541A JPH06194645A (en) 1992-12-11 1992-12-11 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4331541A JPH06194645A (en) 1992-12-11 1992-12-11 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH06194645A true JPH06194645A (en) 1994-07-15

Family

ID=18244819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4331541A Pending JPH06194645A (en) 1992-12-11 1992-12-11 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH06194645A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242437A (en) * 1993-02-18 1994-09-02 Nec Corp Liquid crystal display element
US5587821A (en) * 1993-12-27 1996-12-24 Sharp Kabushiki Kaisha Liquid crystal display device having a particular compensator
US5589963A (en) * 1994-09-30 1996-12-31 Gunning, Iii; William J. Pixelated compensators for twisted nematic liquid crystal displays
US5844649A (en) * 1996-04-19 1998-12-01 Sharp Kabushiki Kaisha Liquid crystal display
US6084652A (en) * 1997-08-29 2000-07-04 Sharp Kabushiki Kaisha Liquid crystal display with the pre-tilt angle set within a range that gray scale inversion is prevented
US6137556A (en) * 1997-04-07 2000-10-24 Sharp Kabushiki Kaisha Liquid crystal display device
KR100300399B1 (en) * 1997-12-23 2001-09-03 김순택 Liquid crystal display
US6356329B1 (en) 1997-07-14 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Liquid crystal display apparatus with reduced visual angle degradation
US6373542B1 (en) 1997-08-28 2002-04-16 Sharp Kabushiki Kaisha Liquid crystal display device free from viewing-angle-dependent coloring of an image displayed on liquid crystal element
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106624A (en) * 1986-10-22 1988-05-11 Fujitsu Ltd Liquid crystal display panel
JPH0215239A (en) * 1988-07-04 1990-01-18 Stanley Electric Co Ltd Compensated twisted nematic liquid crystal display device
JPH03226713A (en) * 1990-02-01 1991-10-07 Asahi Glass Co Ltd Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106624A (en) * 1986-10-22 1988-05-11 Fujitsu Ltd Liquid crystal display panel
JPH0215239A (en) * 1988-07-04 1990-01-18 Stanley Electric Co Ltd Compensated twisted nematic liquid crystal display device
JPH03226713A (en) * 1990-02-01 1991-10-07 Asahi Glass Co Ltd Liquid crystal display device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242437A (en) * 1993-02-18 1994-09-02 Nec Corp Liquid crystal display element
US5587821A (en) * 1993-12-27 1996-12-24 Sharp Kabushiki Kaisha Liquid crystal display device having a particular compensator
US5589963A (en) * 1994-09-30 1996-12-31 Gunning, Iii; William J. Pixelated compensators for twisted nematic liquid crystal displays
KR100266149B1 (en) * 1996-04-19 2000-09-15 마찌다 가쯔히꼬 Lcd device
US5844649A (en) * 1996-04-19 1998-12-01 Sharp Kabushiki Kaisha Liquid crystal display
US6137556A (en) * 1997-04-07 2000-10-24 Sharp Kabushiki Kaisha Liquid crystal display device
US6535258B1 (en) 1997-04-07 2003-03-18 Sharp Kabushiki Kaisha Liquid crystal display device with low dispersion LC and high dispersion compensator
US6937309B2 (en) 1997-04-07 2005-08-30 Sharp Kabushiki Kaisha Liquid crystal display/optical retardation compensator combination in which variations in the dispersion of light in the liquid crystal and/or in the compensator materials minimize undesired screen coloration
US7245340B2 (en) 1997-04-07 2007-07-17 Sharp Kabushiki Kaisha Liquid crystal display device having controlled refractive index anisotropy of the liquid crystal layer and the retardation compensator plate
US6356329B1 (en) 1997-07-14 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Liquid crystal display apparatus with reduced visual angle degradation
US6373542B1 (en) 1997-08-28 2002-04-16 Sharp Kabushiki Kaisha Liquid crystal display device free from viewing-angle-dependent coloring of an image displayed on liquid crystal element
US6084652A (en) * 1997-08-29 2000-07-04 Sharp Kabushiki Kaisha Liquid crystal display with the pre-tilt angle set within a range that gray scale inversion is prevented
KR100300399B1 (en) * 1997-12-23 2001-09-03 김순택 Liquid crystal display
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device

Similar Documents

Publication Publication Date Title
US6285429B1 (en) Liquid crystal display device and method for its production
KR100209531B1 (en) Liquid crystal display device
KR100233187B1 (en) Liquid crystal display with an improved optical compensation layer
US5541753A (en) Liquid crystal display and device having a total retardance of (M+1) λ/2 and (Mλ/2) at first and second operating voltages
US5184236A (en) Twisted nematic liquid crystal display device with retardation plates having phase axis direction within 15° of alignment direction
KR100241815B1 (en) Liquid crystal electronic optical apparatus
US6052168A (en) Active matrix liquid-crystal display with verticle alignment, positive anisotropy and opposing electrodes below pixel electrode
JP2014215347A (en) Liquid crystal panel
JPH06194645A (en) Liquid crystal display element
JP2856188B2 (en) Active matrix liquid crystal display panel
JP3130682B2 (en) Liquid crystal display device
JP3681775B2 (en) Liquid crystal display element
JPH09179123A (en) Liquid crystal display element and production of liquid crystal display element.
JPH05232474A (en) Liquid crystal display element
JPH09105957A (en) Liquid crystal display element
JP3207374B2 (en) Liquid crystal display device
US7369197B2 (en) Polarizer, panel for a liquid crystal display, and liquid crystal display, including a scattering layer
JPH06242437A (en) Liquid crystal display element
JPH0749509A (en) Liquid crystal display device and liquid crystal element
JP3130686B2 (en) Liquid crystal display device
KR100943466B1 (en) Method for Manufacturing of Twisted Nematic Mode liquid crystal display device
JP3643439B2 (en) Liquid crystal display element
JP3452482B2 (en) Liquid crystal display
JP3896135B2 (en) Liquid crystal display element and optical anisotropic element
US6233032B1 (en) Liquid crystal display apparatus having improved viewing characteristics

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19951114