JPH06193574A - Reversible rotation type compressor and reversible freezing cycle - Google Patents

Reversible rotation type compressor and reversible freezing cycle

Info

Publication number
JPH06193574A
JPH06193574A JP5269112A JP26911293A JPH06193574A JP H06193574 A JPH06193574 A JP H06193574A JP 5269112 A JP5269112 A JP 5269112A JP 26911293 A JP26911293 A JP 26911293A JP H06193574 A JPH06193574 A JP H06193574A
Authority
JP
Japan
Prior art keywords
rolling piston
dead center
rotary compressor
cylinder
reversible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5269112A
Other languages
Japanese (ja)
Other versions
JP3538864B2 (en
Inventor
Fumio Matsuoka
文雄 松岡
Kisuke Yamazaki
起助 山崎
Yofumi Tezuka
與文 手塚
Tetsuya Mochizuki
哲哉 望月
Yoshihiro Tanabe
義浩 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26911293A priority Critical patent/JP3538864B2/en
Priority to EP94106619A priority patent/EP0652372B1/en
Priority to DE69411351T priority patent/DE69411351T2/en
Priority to TW084215221U priority patent/TW380663U/en
Priority to US08/235,640 priority patent/US5522235A/en
Priority to CN94106623A priority patent/CN1086019C/en
Priority to KR1019940009237A priority patent/KR0145366B1/en
Publication of JPH06193574A publication Critical patent/JPH06193574A/en
Priority to HK98108835A priority patent/HK1008693A1/en
Application granted granted Critical
Publication of JP3538864B2 publication Critical patent/JP3538864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a rotary type compressor to perform compression of a refrigerant both in a forward and a reverse direction without mounting a valve mechanism in a closed container. CONSTITUTION:A reversible rotation type compressor comprises a cylinder 1; a rolling piston 2: and a slide vane 3. A space is formed between the outer peripheral surface of the rolling pistons 2 and the inner peripheral surface of the cylinder 1 with the slide vane 3 therebetween and closed with the rolling piston 2 when the rolling piston 2 is at a top dead center. Further, the compressor comprises two delivery and suction ports C and D which are fully opened when the piston is at a bottom dead center; side walls with which the two ends of the cylinder 1 are closed; and two refrigerant pipes 6 and 7 which are coupled to respective two delivery and suction ports C and D fully opened when the piston is at a bottom dead point and closed with the rolling piston 2 when the rolling piston 2 is at a top dead center and opened when it is at a bottom dead center.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、圧縮機自体が正逆両
方向に回転が可能な可逆回転式圧縮機と、その可逆回転
式圧縮機を使用した四方弁の不要な冷凍サイクルに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reversible rotary compressor in which the compressor itself can rotate in both forward and reverse directions, and a refrigeration cycle using the reversible rotary compressor which does not require a four-way valve. .

【0002】[0002]

【従来の技術】図12は例えば特開昭62−3196号
公報に示された従来の可逆冷凍サイクル用回転式圧縮機
であり、図において、112はモータのロータ、107
は回転軸、118は弁機構、114は主軸受、116は
シリンダ、Paは第1の冷媒管、119aは第1の吸入
孔、106は密閉容器である。
2. Description of the Related Art FIG. 12 shows a conventional rotary compressor for a reversible refrigeration cycle disclosed in, for example, Japanese Patent Application Laid-Open No. 62-3196, in which 112 is a rotor of a motor and 107 is a rotor.
Is a rotating shaft, 118 is a valve mechanism, 114 is a main bearing, 116 is a cylinder, Pa is a first refrigerant pipe, 119a is a first suction hole, and 106 is a closed container.

【0003】次に動作について説明する。図12におい
て、ロータ112は回転軸107を正逆転可能なように
制御されている。又、弁機構118はたとえば第1の冷
媒管Paから吸込まれた冷媒ガスは、弁機構118を経
て主軸受114のフランジ部及びシリンダ116に設け
られる吸入路である第1の吸入孔119aからシリンダ
116内に吸入され、圧縮されて吐出孔を経由して、弁
機構118を経て第2の冷媒管Pbに吐出される。
Next, the operation will be described. In FIG. 12, the rotor 112 is controlled so that the rotating shaft 107 can rotate forward and backward. Further, in the valve mechanism 118, for example, the refrigerant gas sucked from the first refrigerant pipe Pa is passed through the valve mechanism 118 and the first suction hole 119a, which is a suction passage provided in the flange portion of the main bearing 114 and the cylinder 116, from the cylinder 119a. The gas is sucked into 116, compressed, discharged through the discharge hole, and discharged through the valve mechanism 118 to the second refrigerant pipe Pb.

【0004】逆の運転の場合、弁機構118は第2の冷
媒管Pbから吸込まれた冷媒ガスは、弁機構118を経
て、第2の吸入孔からシリンダ116内に吸入され、圧
縮されて吐出孔119aを経由して、弁機構118を経
て第1の冷媒管Paに吐出される。
In the reverse operation, the refrigerant gas sucked from the second refrigerant pipe Pb in the valve mechanism 118 is sucked into the cylinder 116 from the second suction hole through the valve mechanism 118, compressed, and discharged. It is discharged to the first refrigerant pipe Pa via the valve mechanism 118 via the hole 119a.

【0005】[0005]

【発明が解決しようとする課題】従来の可逆冷凍サイク
ル用回転式圧縮機は以上のように構成されているので、
密閉容器6内に弁機構を設けねばならず、工作性が悪
く、価格が高くなり、信頼性が低いという問題点があっ
た。
Since the conventional rotary compressor for a reversible refrigeration cycle is constructed as described above,
A valve mechanism must be provided in the closed container 6, resulting in poor workability, high cost, and low reliability.

【0006】この発明は前記のような問題点を解消する
ためになされたもので、弁機構を備えないシンプルな構
造により、工作性が良く、かつ価格も安く原価低減効果
もあり、信頼性が向上する可逆回転式圧縮機及び可逆冷
凍サイクルを得ることを目的としている。
The present invention has been made to solve the above-mentioned problems, and has a simple structure without a valve mechanism, which has good workability, is inexpensive, has a cost-reducing effect, and is reliable. The objective is to obtain an improved reversible rotary compressor and a reversible refrigeration cycle.

【0007】[0007]

【課題を解決するための手段】請求項1の可逆回転式圧
縮機は、シリンダと、ローリングピストンと、スライド
ベーンとを有する回転式圧縮機において、前記スライド
ベーンを挟んで前記ローリングピストンの外周面とシリ
ンダの内周面と間に形成され、前記ローリングピストン
が上死点の時該ローリングピストンで閉塞され、下死点
の時全開する二個の吐吸ポートと、前記シリンダの両端
を閉塞する側壁の少なくとも何れか一方に前記二個の吐
吸ポートとそれぞれ連結する二個の冷媒管を備えたもの
である。
A reversible rotary compressor according to claim 1 is a rotary compressor having a cylinder, a rolling piston, and a slide vane, and an outer peripheral surface of the rolling piston sandwiching the slide vane. And an inner peripheral surface of the cylinder, two discharge ports that are closed by the rolling piston when the rolling piston is at top dead center and fully open when the rolling piston is at bottom dead center, and side walls that close both ends of the cylinder. At least one of the two refrigerant pipes is connected to the two discharge ports.

【0008】請求項2の可逆回転式圧縮機は、前記二個
の吐吸ポートとそれぞれ連結する前記二個の冷媒管はシ
リンダの両端を閉塞する異なる側壁にそれぞれ備えたも
のである。
In the reversible rotary compressor according to a second aspect of the present invention, the two refrigerant pipes respectively connected to the two discharge / suction ports are provided on different side walls closing both ends of the cylinder.

【0009】請求項3の可逆回転式圧縮機は、前記シリ
ンダの両端を閉塞する両側壁に前記二個の吐吸ポートと
それぞれ連結する二個の冷媒管をそれぞれに設け、同一
吐吸ポートに連結された冷媒管はそれぞれ一本の冷媒管
に連結される構成にしたものである。
In the reversible rotary compressor according to a third aspect of the present invention, two refrigerant pipes that are respectively connected to the two discharge ports are provided on both side walls that close both ends of the cylinder, and are connected to the same discharge port. Each of the refrigerant pipes is connected to one refrigerant pipe.

【0010】請求項4の可逆冷凍サイクルは、膨張機構
を毛細管とし、可逆回転式圧縮機と室内熱交換器と毛細
管と室外熱交換器と前記可逆回転式圧縮機とを順次冷媒
管で直接連結して冷凍サイクルを構成したものである。
In the reversible refrigeration cycle of claim 4, the expansion mechanism is a capillary tube, and the reversible rotary compressor, the indoor heat exchanger, the capillary tube, the outdoor heat exchanger, and the reversible rotary compressor are directly connected by a refrigerant pipe. Then, the refrigeration cycle is configured.

【0011】請求項5の可逆冷凍サイクルは、可逆回転
式圧縮機を駆動するモータを3相モータで構成し、この
3相モータの電源入力結線を3相のうち2組の結線を入
れ換えるスイッチを設け、このスイッチが冷房と暖房を
切り換えるスイッチと連動する構成としたものである。
In the reversible refrigeration cycle of claim 5, the motor for driving the reversible rotary compressor is composed of a three-phase motor, and the power input connection of this three-phase motor is a switch for switching two sets of three phases. This switch is provided so as to interlock with a switch for switching between cooling and heating.

【0012】請求項6の可逆冷凍サイクルは、可逆回転
式圧縮機を駆動する3相モータの電源入力結線を3相の
うち2組の結線を入れ換えるスイッチを設け、このスイ
ッチが冷房と暖房を切り換えるスイッチを兼用する構成
としたものである。
According to a sixth aspect of the reversible refrigeration cycle, a switch for switching the power input connection of the three-phase motor for driving the reversible rotary compressor between two sets of three phases is provided, and this switch switches between cooling and heating. The configuration is such that it also serves as a switch.

【0013】[0013]

【作用】請求項1の可逆回転式圧縮機は、弁機構を有さ
ずに正・逆どちらの回転方向でも、冷媒を圧縮する。
In the reversible rotary compressor according to the first aspect of the present invention, the refrigerant is compressed in both forward and reverse rotation directions without a valve mechanism.

【0014】請求項2の可逆回転式圧縮機は、弁機構を
有さずに正・逆どちらの回転方向でも、冷媒を圧縮し、
また冷媒はシリンダの一方の側壁から流入し、シリンダ
の他方の側壁から吐出する。
A reversible rotary compressor according to a second aspect of the present invention has no valve mechanism and compresses the refrigerant in both forward and reverse rotation directions,
The refrigerant flows in from one side wall of the cylinder and is discharged from the other side wall of the cylinder.

【0015】請求項3の可逆回転式圧縮機は、弁機構を
有さずに正・逆どちらの回転方向でも、冷媒を圧縮し、
また冷媒はシリンダの両方の側壁から流入し、シリンダ
の両方の側壁から吐出する。
A reversible rotary compressor according to a third aspect of the present invention has no valve mechanism and compresses the refrigerant in both forward and reverse rotation directions,
Also, the refrigerant flows in from both sidewalls of the cylinder and is discharged from both sidewalls of the cylinder.

【0016】請求項4の可逆冷凍サイクルは、可逆回転
式圧縮機を正・逆回転することができるので、四方弁の
不要なヒートポンプ装置を構成でき、また可逆回転式圧
縮機は室内熱交換器及び室外熱交換器と冷媒管で直接連
結されているので流入冷媒を湿り圧縮する。
In the reversible refrigeration cycle of claim 4, since the reversible rotary compressor can be rotated normally and reversely, it is possible to construct a heat pump device which does not require a four-way valve, and the reversible rotary compressor is an indoor heat exchanger. Also, since it is directly connected to the outdoor heat exchanger by the refrigerant pipe, the inflowing refrigerant is wetted and compressed.

【0017】請求項5の可逆冷凍サイクルは、冷房と暖
房を切り換えるスイッチに連動して可逆回転式圧縮機を
駆動する3相モータの電源入力結線が3相のうち2組の
結線が入れ換わり、可逆回転式圧縮機が正・逆回転す
る。
According to a fifth aspect of the reversible refrigeration cycle, two sets of three-phase power input connections of the three-phase motor for driving the reversible rotary compressor in conjunction with a switch for switching between cooling and heating are switched, The reversible rotary compressor rotates forward and backward.

【0018】請求項6の可逆冷凍サイクルは、可逆回転
式圧縮機を回転する3相モータの電源入力結線を3相の
うち2組の結線を入れ換えるスイッチの動作により可逆
回転式圧縮機が正・逆回転し、冷房と暖房を切り換え
る。
In the reversible refrigeration cycle of claim 6, the reversible rotary compressor is operated normally by the operation of the switch for switching the power supply input connection of the three-phase motor for rotating the reversible rotary compressor between two sets of three phases. Reverse rotation to switch between cooling and heating.

【0019】[0019]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1はこの発明の一実施例を示す可逆回転式圧縮
機の横断面図でこの図において、1はシリンダ、2はロ
ーリングピストン、3はスライドベーン、4はこのスラ
イドベーン3を前記ローリングピストン2に密接させる
スプリング、5は前記ローリングピストン2のクランク
シャフト、CとDは前記スライドベーン3を挟んで左右
対称にシリンダ1の内周面と前記ローリングピストンの
外周面との間に設けられた2個の吐吸ポート、6は吐吸
ポートCに冷媒を供給、或は吐吸ポートCから冷媒を排
出する冷媒管、7は吐吸ポートDに冷媒を供給、或は吐
吸ポートDから冷媒を排出する冷媒管である。この冷媒
管6及び7は前記ローリングピストンが上死点の時に該
ローリングピストンで閉塞され、下死点の時に開口す
る。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a reversible rotary compressor showing an embodiment of the present invention. In this figure, 1 is a cylinder, 2 is a rolling piston, 3 is a slide vane, 4 is this slide vane 3, the rolling piston 2 2 is a crankshaft of the rolling piston 2 and C and D are symmetrically disposed between the inner peripheral surface of the cylinder 1 and the outer peripheral surface of the rolling piston 2 with the slide vane 3 interposed therebetween. Refrigerant pipe for supplying refrigerant to the discharge port C or discharging refrigerant from the discharge port C, 7 for supplying refrigerant to the discharge port D or discharging refrigerant from the discharge port D Is. The refrigerant pipes 6 and 7 are closed by the rolling piston when the rolling piston is at the top dead center and open when the rolling piston is at the bottom dead center.

【0020】図2は図1のII−II断面図であり、8はシ
リンダ1の側壁、7は吐吸ポートDに冷媒を供給、或は
吐吸ポートDから冷媒を排出する冷媒管である。
FIG. 2 is a sectional view taken along the line II--II of FIG. 1. 8 is a side wall of the cylinder 1, and 7 is a refrigerant pipe for supplying the refrigerant to the discharge port D or discharging the refrigerant from the discharge port D.

【0021】図3は実施例1の可逆回転式圧縮機の外観
斜視図であり、吐吸ポートC及びDに連結される冷媒管
6及び7はシリンダ1の側壁8の一方にのみ設けられて
いる。
FIG. 3 is an external perspective view of the reversible rotary compressor of the first embodiment. The refrigerant pipes 6 and 7 connected to the discharge ports C and D are provided only on one side wall 8 of the cylinder 1. .

【0022】図4は可逆回転式圧縮機とモータを組立た
縦断面図であり、この図において、9はモータのステー
タ、10はステータコイル、11はモータのロータ、1
2はモータ冷却用ファン、13は前記クランクシャフト
5と直結するモータの回転軸、14はマフラー、15、
16はこのマフラー14及びモータを介して可逆回転式
圧縮機に冷媒を供給、或は可逆回転式圧縮機から冷媒を
排出する冷媒管、17は密閉容器である。
FIG. 4 is a vertical cross-sectional view of a reversible rotary compressor and a motor assembled. In this drawing, 9 is a motor stator, 10 is a stator coil, 11 is a motor rotor, and 1 is a motor rotor.
2 is a motor cooling fan, 13 is a rotary shaft of a motor directly connected to the crankshaft 5, 14 is a muffler, 15,
Reference numeral 16 is a refrigerant pipe for supplying a refrigerant to the reversible rotary compressor through the muffler 14 and a motor or discharging the refrigerant from the reversible rotary compressor, and 17 is a closed container.

【0023】図5は前記ローリングピストン2が上死点
に位置した時の可逆回転式圧縮機の断面図である。因み
に図1は前記ローリングピストン2が下死点に位置した
時を示す。
FIG. 5 is a sectional view of the reversible rotary compressor when the rolling piston 2 is located at the top dead center. Incidentally, FIG. 1 shows the time when the rolling piston 2 is located at the bottom dead center.

【0024】以下、実施例1の動作を説明する。図1の
可逆回転式圧縮機において、シリンダ1とローリングピ
ストン2とスライドベーン3とで構成された可逆回転式
圧縮機におけるシリンダ1の内周面とローリングピスト
ン2の外周面との間に、ローリングピストン2が上死点
に位置する時に閉鎖され、かつローリングピストン2が
下死点に位置する時に開く領域に、前記スライドベーン
3を挟んで対称な吐吸ポートCと、吐吸ポートDを設け
てある。またこの吐吸ポートCと、吐吸ポートDに連結
される冷媒管6及び7はシリンダ1の側壁8の一方にの
み設られている。
The operation of the first embodiment will be described below. In the reversible rotary compressor of FIG. 1, in the reversible rotary compressor including a cylinder 1, a rolling piston 2 and a slide vane 3, a rolling is provided between an inner peripheral surface of the cylinder 1 and an outer peripheral surface of the rolling piston 2. In a region that is closed when the piston 2 is located at the top dead center and opened when the rolling piston 2 is located at the bottom dead center, a symmetrical discharge port C and a discharge port D with the slide vane 3 interposed are provided. . Further, the refrigerant pipes 6 and 7 connected to the discharge port C and the discharge port D are provided only on one side wall 8 of the cylinder 1.

【0025】図6は、実施例1に示す可逆回転式圧縮機
の吸入工程と吐出工程の詳細な遷移図である。
FIG. 6 is a detailed transition diagram of the suction process and the discharge process of the reversible rotary compressor shown in the first embodiment.

【0026】この図では吐吸ポートCが吸入ポート、吐
吸ポートDが吐出ポートの役割をする。図6(イ)では
冷媒管6はローリングピストン2によって閉塞されてい
る。そしてローリングピストン2が回転するに従い、冷
媒管6は開口され始め、吐吸ポートCに冷媒が供給され
始める。ローリングピストン2がさらに回転し、ローリ
ングピストン2が下死点(図6(ハ))に到ると冷媒管
6と吐吸ポートCは全開され吐吸ポートCに冷媒が供給
される。ローリングピストン2がさらに回転すると、冷
媒管6は閉塞され始め、ローリングピストン2が再び上
死点に到ると冷媒管6と吐吸ポートCは閉塞され、吸入
工程が完了する。この状態が図6(ホ)である。
In this figure, the discharge port C functions as a suction port, and the discharge port D functions as a discharge port. In FIG. 6A, the refrigerant pipe 6 is closed by the rolling piston 2. Then, as the rolling piston 2 rotates, the refrigerant pipe 6 starts to be opened, and the refrigerant starts to be supplied to the discharge port C. When the rolling piston 2 further rotates and the rolling piston 2 reaches the bottom dead center (FIG. 6C), the refrigerant pipe 6 and the discharge port C are fully opened and the refrigerant is supplied to the discharge port C. When the rolling piston 2 further rotates, the refrigerant pipe 6 starts to be closed, and when the rolling piston 2 reaches the top dead center again, the refrigerant pipe 6 and the discharge port C are closed, and the suction process is completed. This state is shown in FIG.

【0027】ローリングピストン2が2回転目に移行す
る(図6(ヘ))と、シリンダ1内でスライドベーン3
の対向側にあった冷媒は圧縮されながら吐吸ポートDに
供給され始め、冷媒管7が開口され始めるので、冷媒管
7から吐出され始める。ローリングピストン2がさらに
回転し、ローリングピストン2が下死点(図6(チ))
に到ると冷媒管7と吐吸ポートDは全開され吐吸ポート
Dの冷媒は冷媒管7から吐出される。ローリングピスト
ン2がさらに回転すると、冷媒管7は閉塞され始め、ロ
ーリングピストン2が再び上死点に到ると冷媒管7と吐
吸ポートDは閉塞され、吐出工程が完了する。この状態
が図6(ヌ)である。
When the rolling piston 2 shifts to the second rotation (FIG. 6 (f)), the slide vane 3 in the cylinder 1
The refrigerant on the opposite side of is started to be supplied to the discharge port D while being compressed, and the refrigerant pipe 7 starts to be opened, so that the refrigerant is discharged from the refrigerant pipe 7. The rolling piston 2 rotates further, and the rolling piston 2 reaches the bottom dead center (Fig. 6 (H)).
At this point, the refrigerant pipe 7 and the discharge port D are fully opened, and the refrigerant in the discharge port D is discharged from the refrigerant pipe 7. When the rolling piston 2 further rotates, the refrigerant pipe 7 starts to be closed, and when the rolling piston 2 reaches the top dead center again, the refrigerant pipe 7 and the discharge port D are closed, and the discharge process is completed. This state is shown in FIG.

【0028】また冷媒が冷媒管7から吐出され始めると
同時に、冷媒管6は開口され始め、吐吸ポートCに冷媒
が供給され始めて、吐出工程と並行して、吸入工程が開
始される。この状態は図6(チ)である。
At the same time when the refrigerant starts to be discharged from the refrigerant pipe 7, the refrigerant pipe 6 starts to be opened, the refrigerant is supplied to the discharge port C, and the suction process is started in parallel with the discharge process. This state is shown in FIG.

【0029】このように、スライドベーン3を挟んでこ
の吐吸ポートCとDとが連通することなく連続的に吸入
・圧縮される。更に実施例1は左右対称なことから可逆
回転式圧縮機の逆転時も同様の機能を果たすことが示さ
れる。また、この実施例1では冷媒管6及び7はシリン
ダ1の側壁8の一方にのみ設られているので、片方の側
壁8のみ加工すればよく、加工工数が減る。
In this way, the discharge / suction ports C and D are continuously sucked / compressed with the slide vane 3 interposed therebetween, without communicating with each other. Further, since Example 1 is bilaterally symmetric, it is shown that the same function is achieved even when the reversible rotary compressor is rotated in the reverse direction. Further, in Embodiment 1, since the refrigerant tubes 6 and 7 are provided only on one side wall 8 of the cylinder 1, only one side wall 8 needs to be processed, and the number of processing steps is reduced.

【0030】実施例2.前記実施例1では吐吸ポートC
とDとに連結される冷媒管6及び冷媒管7はシリンダ1
の側壁8の一方のみに設けられているが、図7に示すよ
うに吐吸ポートCに連結される冷媒管6はシリンダ1の
側壁8の一方に、吐吸ポートDに連結される冷媒管7は
シリンダ1の側壁8の他方に設けてもよい。このように
構成すると冷媒の流れが一方向になるので、冷媒がスム
ーズに流れる効果がある。
Example 2. In the first embodiment, the discharge port C
The refrigerant pipes 6 and 7 connected to the cylinders 1 and D are cylinders 1
7, the refrigerant pipe 6 connected to the discharge port C is connected to one side wall 8 of the cylinder 1 and the refrigerant pipe 7 connected to the discharge port D is connected to one side wall 8 of the cylinder 1. It may be provided on the other side wall 8 of the cylinder 1. With this configuration, the refrigerant flows in one direction, so that the refrigerant can flow smoothly.

【0031】実施例3.図8は実施例3の可逆回転式圧
縮機の外観斜視図である。この実施例3では、吐吸ポー
トCとDとに連結される冷媒管6及び7はそれぞれシリ
ンダ1の側壁8の両方から連結される構成になつてい
る。このように構成すると冷媒のシリンダ1内への供給
が平均して行われ圧縮がスムーズに行われ、更に吸入面
積が2倍になるため吸入圧損が減る。
Example 3. FIG. 8 is an external perspective view of the reversible rotary compressor of the third embodiment. In the third embodiment, the refrigerant pipes 6 and 7 connected to the discharge ports C and D are connected from both side walls 8 of the cylinder 1, respectively. With this configuration, the refrigerant is supplied into the cylinder 1 evenly, the compression is smoothly performed, and the suction area is doubled, so that the suction pressure loss is reduced.

【0032】実施例4.図9はこの発明の可逆冷凍サイ
クルを示す。この図において91は前記実施例1〜3の
何れかに示す可逆回転式圧縮機、92は室内熱交換器、
93は室外熱交換器、 94は膨張機構であり、毛細管
を用いている。この実施例4では室内熱交換器92と可
逆回転式圧縮機91、室外熱交換器93と可逆回転式圧
縮機91は冷媒管で直接連結され、気液分離器は備えて
いない。
Example 4. FIG. 9 shows the reversible refrigeration cycle of the present invention. In this figure, 91 is the reversible rotary compressor shown in any of the first to third embodiments, 92 is an indoor heat exchanger,
Reference numeral 93 is an outdoor heat exchanger, and 94 is an expansion mechanism, which uses a capillary tube. In the fourth embodiment, the indoor heat exchanger 92 and the reversible rotary compressor 91, the outdoor heat exchanger 93 and the reversible rotary compressor 91 are directly connected by a refrigerant pipe, and no gas-liquid separator is provided.

【0033】図中実線矢印は暖房運転時の冷媒の流れを
示し、破線矢印は冷房運転時の冷媒の流れを示す。暖房
運転時は実線矢印のごとく可逆回転式圧縮機91が回転
し、順次室内熱交換器92、膨張機構94、室外熱交換
器93に循環し再び可逆回転式圧縮機91に戻る。冷房
運転時は可逆回転式圧縮機91が逆回転し、図中破線で
示すように冷媒が循環する。
In the figure, the solid line arrow indicates the flow of the refrigerant during the heating operation, and the broken line arrow indicates the flow of the refrigerant during the cooling operation. During the heating operation, the reversible rotary compressor 91 rotates as shown by the solid arrow, and sequentially circulates through the indoor heat exchanger 92, the expansion mechanism 94, and the outdoor heat exchanger 93, and returns to the reversible rotary compressor 91 again. During the cooling operation, the reversible rotary compressor 91 rotates in the reverse direction, and the refrigerant circulates as indicated by the broken line in the figure.

【0034】従来の冷凍サイクルの場合、回転圧縮機は
吐出弁を有しており、この吐出弁が液圧縮に弱く、圧縮
機吸入冷媒(1)は図13のモリエル線図のように必ずス
ーパーヒートガスでなければならなかった。これに対
し、この実施例4では可逆回転式圧縮機91に吐出弁が
ないため、故障する部位がなく液圧縮してもよいので、
図10のモリエル線図のように圧縮機吸入冷媒(1)は湿
りでよい。つまり毛細管は従来のものより抵抗の少ない
もので設計する。
In the case of the conventional refrigeration cycle, the rotary compressor has a discharge valve, and this discharge valve is vulnerable to liquid compression, and the refrigerant sucked into the compressor (1) must be super-cooled as shown in the Mollier diagram of FIG. It had to be heat gas. On the other hand, in the fourth embodiment, since the reversible rotary compressor 91 does not have the discharge valve, the liquid may be compressed because there is no malfunctioning part.
As shown in the Mollier diagram of FIG. 10, the compressor suction refrigerant (1) may be wet. In other words, the capillary tube should be designed with less resistance than the conventional one.

【0035】このようにこの実施例4は可逆回転式圧縮
機91の吸入冷媒が湿り状態でも運転可能であり、吐出
温度も低下が図れ、機器の信頼性向上に繋がる。さらに
吸入冷媒の比容積が小さくなり、冷媒循環量つまり能力
が増加し、効率が向上する。
As described above, the fourth embodiment can be operated even when the suction refrigerant of the reversible rotary compressor 91 is wet, the discharge temperature can be lowered, and the reliability of the equipment can be improved. Further, the specific volume of the sucked refrigerant is reduced, the refrigerant circulation amount, that is, the capacity is increased, and the efficiency is improved.

【0036】実施例5.図11は可逆回転式圧縮機を回
転する3相モータの回路図である。121は商用電源、
122は電流制限用インダクタ、123は商用電源12
1を直流に全波整流する全波整流回路、124はこの整
流された直流を平滑するコンデンサからなる平滑回路、
125はこの平滑された直流を120゜位相の変化した
3相交流に変換すると共に室内の熱負荷量に応じてより
周波数を制御し、3相モータ126の回転数を制御する
DC−ACインバータ回路で、1相にトランジスタとダ
イオードの組合わせ2組を有し、これが各相にそれぞれ
設けられている。
Example 5. FIG. 11 is a circuit diagram of a three-phase motor that rotates a reversible rotary compressor. 121 is a commercial power source,
122 is a current limiting inductor, and 123 is a commercial power supply 12.
1 is a full-wave rectifying circuit for full-wave rectifying DC, 124 is a smoothing circuit including a capacitor for smoothing the rectified DC,
A DC-AC inverter circuit 125 controls the frequency of the smoothed direct current into a three-phase alternating current having a phase change of 120 ° and controls the frequency according to the amount of heat load in the room. In one phase, there are two combinations of a transistor and a diode, which are provided for each phase.

【0037】a〜lはDC−ACインバータ回路125
の位相制御用及び周波数制御用信号の入力端子、U、
V、Wはインバータ回路125の出力端子で、120゜
位相の異なる3相交流電流が出力される。126は圧縮
機と直結された3相モータ、B、J、Rは3相モータの
入力端子、127は暖房運転と冷房運転と切り換えるス
イッチ(図示せず)と連動してインバータ回路の出力2
端子と3相モータの入力2端子との接続、例えばU−
B、V−JをU−J、V−Bに切り換えることにより3
相モータ126を正逆回転させるスイッチである。
The symbols a to l are DC-AC inverter circuits 125.
Phase control and frequency control signal input terminals, U,
V and W are output terminals of the inverter circuit 125, and three-phase alternating currents having different phases by 120 ° are output. Reference numeral 126 is a three-phase motor directly connected to the compressor, B, J, and R are input terminals of the three-phase motor, and 127 is an output 2 of the inverter circuit in conjunction with a switch (not shown) for switching between heating operation and cooling operation.
Connection between terminal and input 2 terminal of 3-phase motor, for example U-
3 by switching B, V-J to U-J, V-B
This is a switch for rotating the phase motor 126 in the forward and reverse directions.

【0038】次に、動作について説明する。全波整流回
路123および平滑回路124で、整流・平滑された商
用電源121の直流はDC−ACインバータ回路125
でトランジスタのオン−オフスイツチングを制御するこ
とにより120゜位相の変化した3相交流電流に変換さ
れる。この3相交流電流により3相モータ126が駆動
され、可逆回転式圧縮機を回転する。
Next, the operation will be described. The direct current of the commercial power source 121 rectified and smoothed by the full-wave rectifier circuit 123 and the smoothing circuit 124 is a DC-AC inverter circuit 125.
By controlling the on-off switching of the transistor, it is converted into a three-phase alternating current with a phase change of 120 °. This three-phase AC current drives the three-phase motor 126 to rotate the reversible rotary compressor.

【0039】また、DC−ACインバータ回路125は
熱負荷量に応じた信号が入力端子a〜lに入力し、トラ
ンジスタのオン−オフスイツチングを制御することによ
り周波数を制御して3相モータ126の回転数を制御
し、可逆回転式圧縮機の能力を制御する。
In the DC-AC inverter circuit 125, a signal according to the heat load is input to the input terminals a to l, and the frequency is controlled by controlling the on / off switching of the transistors to control the three-phase motor 126. Control the number of rotations of the reversible rotary compressor.

【0040】更にスイッチ127は暖房運転と冷房運転
と切り換えるスイッチと連動してDC−ACインバータ
回路125の出力2端子と3相モータの入力2端子との
接続、例えばU−B、V−JをU−J、V−Bに切り換
えることにより3相モータ126を正逆回転させ、可逆
回転式圧縮機を正逆回転させて、冷凍サイクルを暖房運
転と冷房運転と切り換える。
Further, the switch 127 works in conjunction with a switch for switching between heating operation and cooling operation, and connects the output 2 terminal of the DC-AC inverter circuit 125 and the input 2 terminal of the three-phase motor, for example, UB and VJ. By switching to U-J and V-B, the three-phase motor 126 is normally and reversely rotated, and the reversible rotary compressor is normally and reversely rotated to switch the refrigeration cycle between heating operation and cooling operation.

【0041】実施例6.実施例5におけるDC−ACイ
ンバータ回路125の出力2端子と3相モータ126の
入力2端子との接続を切り換え、3相モータ126を正
逆回転させるスイッチは冷凍サイクルを暖房運転と冷房
運転とに切り換えるスイッチと兼用させてもよい。
Example 6. The switch for switching the connection between the output 2 terminal of the DC-AC inverter circuit 125 and the input 2 terminal of the three-phase motor 126 in the fifth embodiment rotates the three-phase motor 126 forward and backward to switch the refrigeration cycle between heating operation and cooling operation. It may also be used as a switch.

【0042】[0042]

【発明の効果】請求項1の可逆回転式圧縮機は、シリン
ダと、ローリングピストンと、スライドベーンとを有す
る回転式圧縮機において、前記スライドベーンを挟んで
前記ローリングピストンの外周面とシリンダの内周面と
間に形成され、前記ローリングピストンが上死点の時該
ローリングピストンで閉塞され、下死点の時開く二個の
吐吸ポートを備え、前記シリンダの両端を閉塞する側壁
に前記二個の吐吸ポートとそれぞれ連結する二個の冷媒
管を備えたので、正・逆どちらの回転方向でも、弁機構
を有さずに冷媒の圧縮が可能である。
The reversible rotary compressor according to claim 1 is a rotary compressor having a cylinder, a rolling piston, and a slide vane, wherein the outer peripheral surface of the rolling piston and the inside of the cylinder are sandwiched by the slide vane. It is provided between the peripheral surface and the rolling piston, which is closed by the rolling piston at the top dead center and is opened by the rolling piston at the bottom dead center. Since the two refrigerant pipes respectively connected to the discharge and suction ports are provided, the refrigerant can be compressed in both the forward and reverse rotation directions without the valve mechanism.

【0043】請求項2の可逆回転式圧縮機は一方の吐吸
ポートに連結される冷媒管6はシリンダ1の側壁5の一
方に、他方の吐吸ポートに連結される冷媒管6はシリン
ダ1の側壁5の他方に設けているので、冷媒はシリンダ
の一方の側壁から流入し、シリンダの他方の側壁から吐
出し、冷媒がスムーズに流れる効果がある。
In the reversible rotary compressor of claim 2, the refrigerant pipe 6 connected to one discharge port is one side wall 5 of the cylinder 1, and the refrigerant pipe 6 connected to the other discharge port is the side wall of the cylinder 1. Since it is provided on the other side of 5, the refrigerant has the effect of flowing in from one side wall of the cylinder and being discharged from the other side wall of the cylinder, allowing the refrigerant to flow smoothly.

【0044】請求項3の可逆回転式圧縮機は、吐吸ポー
トCとDとに連結される冷媒管6はそれぞれシリンダ1
の側壁5の両方から連結される構成になつているので、
弁機構を有さずに正・逆どちらの回転方向でも、冷媒を
圧縮し、また冷媒はシリンダの両方の側壁から流入し、
シリンダの両方の側壁から吐出する。従って、冷媒のシ
リンダ1内への供給が平均して行われ圧縮がスムーズに
行われ、更に吸入面積が2倍になるため吸入圧損が減
る。
In the reversible rotary compressor of the third aspect, the refrigerant pipes 6 connected to the discharge ports C and D are cylinders 1 respectively.
Since it is connected from both side walls 5 of
Compresses the refrigerant in both forward and reverse rotation directions without a valve mechanism, and the refrigerant flows in from both sidewalls of the cylinder.
Discharge from both sidewalls of the cylinder. Therefore, the supply of the refrigerant into the cylinder 1 is performed evenly, the compression is smoothly performed, and the suction area is doubled, so that the suction pressure loss is reduced.

【0045】請求項4の可逆冷凍サイクルは、膨張機構
を毛細管とし、可逆回転式圧縮機と室内熱交換器と毛細
管と室外熱交換器と前記可逆回転式圧縮機とを順次冷媒
管で直接連結したので、圧縮機を正・逆回転することが
でき、四方弁の不要なヒートポンプ装置を構成でき、ま
た前記可逆回転式圧縮機は流入冷媒を湿り圧縮可能であ
るから吸入冷媒の比容積が小さくなり、冷媒循環量つま
り能力が増加し、吐出温度が下がり、効率が向上する。
In the reversible refrigeration cycle of claim 4, the expansion mechanism is a capillary tube, and the reversible rotary compressor, the indoor heat exchanger, the capillary tube, the outdoor heat exchanger, and the reversible rotary compressor are directly connected by a refrigerant pipe. As a result, the compressor can be rotated in the forward and reverse directions, and a heat pump device that does not require a four-way valve can be configured, and the reversible rotary compressor can wet and compress the inflowing refrigerant, so the specific volume of the inhaling refrigerant is small. Therefore, the refrigerant circulation amount, that is, the capacity is increased, the discharge temperature is lowered, and the efficiency is improved.

【0046】請求項5の可逆冷凍サイクルは、可逆回転
式圧縮機を駆動するモータを3相モータで構成し、この
3相モータの電源入力結線を3相のうち2組の結線を入
れ換えるスイッチを設け、このスイチの入れ換え動作が
冷房と暖房を切り換えるスイッチに連動する構成とした
ので、簡単な構成により暖房運転と冷房運転と切り換え
るスイッチの切り換えでモータを正逆回転させ、可逆回
転式圧縮機を正逆回転させて、冷凍サイクルを暖房運転
と冷房運転と切り換えることができる。
In the reversible refrigeration cycle of the fifth aspect, the motor for driving the reversible rotary compressor is constituted by a three-phase motor, and the power input connection of this three-phase motor is a switch for interchanging two sets of three phases. Since this switch is configured to interlock with the switch that switches between cooling and heating, the switch can be switched between heating and cooling operations to rotate the motor forward and reverse, and to create a reversible rotary compressor. By rotating in the normal and reverse directions, the refrigeration cycle can be switched between the heating operation and the cooling operation.

【0047】請求項6の可逆冷凍サイクルは、可逆回転
式圧縮機を回転するモータを3相モータで構成し、この
3相モータの電源入力結線を3相のうち2組の結線を入
れ換えるスイッチを設け、このスイチを冷房と暖房を切
り換えるスイッチと兼用したので、スイッチが1個不要
となる。
In the reversible refrigeration cycle of the sixth aspect, the motor for rotating the reversible rotary compressor is composed of a three-phase motor, and the power input connection of the three-phase motor is a switch for exchanging two sets of three phases. Since this switch is provided and also serves as a switch for switching between cooling and heating, one switch is not required.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による可逆回転式圧縮機の
断面図である。
FIG. 1 is a sectional view of a reversible rotary compressor according to a first embodiment of the present invention.

【図2】図1のII−II断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】この発明の実施例1による可逆回転式圧縮機の
外観斜視図である。
FIG. 3 is an external perspective view of the reversible rotary compressor according to the first embodiment of the present invention.

【図4】この発明の実施例1による可逆回転式圧縮機と
モータを組立た断面図である。
FIG. 4 is a cross-sectional view of an assembled reversible rotary compressor and motor according to the first embodiment of the present invention.

【図5】この発明の実施例1によるローリングピストン
が上死点に位置した時の可逆回転式圧縮機の断面図であ
る。
FIG. 5 is a sectional view of the reversible rotary compressor when the rolling piston according to the first embodiment of the present invention is located at the top dead center.

【図6】この発明の実施例1による可逆回転式圧縮機の
吸入工程と吐出工程の遷移図である。
FIG. 6 is a transition diagram of a suction process and a discharge process of the reversible rotary compressor according to the first embodiment of the present invention.

【図7】この発明の実施例2による可逆回転式圧縮機の
外観斜視図である。
FIG. 7 is an external perspective view of a reversible rotary compressor according to a second embodiment of the present invention.

【図8】この発明の実施例3による可逆回転式圧縮機の
外観斜視図である。
FIG. 8 is an external perspective view of a reversible rotary compressor according to a third embodiment of the present invention.

【図9】この発明の実施例4による可逆冷凍サイクルの
回路図である。
FIG. 9 is a circuit diagram of a reversible refrigeration cycle according to Embodiment 4 of the present invention.

【図10】この発明の実施例4による可逆冷凍サイクル
のモリエル線図である。
FIG. 10 is a Mollier diagram of a reversible refrigeration cycle according to Example 4 of the present invention.

【図11】この発明の実施例5による可逆冷凍サイクル
の3相モータの回路図である。
FIG. 11 is a circuit diagram of a three-phase motor in a reversible refrigeration cycle according to a fifth embodiment of the present invention.

【図12】従来の可逆回転式圧縮機の断面図である。FIG. 12 is a sectional view of a conventional reversible rotary compressor.

【図13】従来の冷凍サイクルのモリエル線図である。FIG. 13 is a Mollier diagram of a conventional refrigeration cycle.

【符号の説明】[Explanation of symbols]

1 シリンダ 2 ローリングピストン 3 スライドベーン 5 クランクシャフト 6、7 冷媒管 8 シリンダ側壁 C 吐吸ポート D 吐吸ポート 91 可逆回転式圧縮機 92 室内熱交換器 93 室外熱交換器 94 膨張機構 121 商用電源 122 電流制限用インダクタ 123 全波整流回路 124 平滑回路 125 DC−ACインバータ回路 126 3相モータ 127 切換えスイッチ 1 cylinder 2 rolling piston 3 slide vane 5 crankshaft 6, 7 refrigerant pipe 8 cylinder side wall C discharge port D discharge port 91 reversible rotary compressor 92 indoor heat exchanger 93 outdoor heat exchanger 94 expansion mechanism 121 commercial power supply 122 current limitation Inductor 123 Full-wave rectifier circuit 124 Smoothing circuit 125 DC-AC inverter circuit 126 Three-phase motor 127 Changeover switch

フロントページの続き (72)発明者 望月 哲哉 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 (72)発明者 田辺 義浩 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内Front page continuation (72) Inventor Tetsuya Mochizuki 3-18-1, Oga, Shizuoka City, Shizuoka Manufacturing Co., Ltd. (72) Yoshihiro Tanabe, 3-18-1, Oka, Shizuoka City Shizuoka Manufacturing Company, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シリンダと、ローリングピストンと、ス
ライドベーンとを有する回転式圧縮機において、前記ス
ライドベーンを挟んで前記ローリングピストンの外周面
とシリンダの内周面と間に形成され、前記ローリングピ
ストンが上死点の時に該ローリングピストンで閉塞さ
れ、下死点の時に全開する二個の吐吸ポートと、前記シ
リンダの両端を閉塞する側壁の少なくとも何れか一方に
前記二個の吐吸ポートとそれぞれ連結され、前記ローリ
ングピストンが上死点の時に該ローリングピストンで閉
塞され、下死点の時に開口する二個の冷媒管を備えたこ
とを特徴とする可逆回転式圧縮機。
1. A rotary compressor having a cylinder, a rolling piston, and a slide vane, wherein the rolling piston is formed between the outer peripheral surface of the rolling piston and the inner peripheral surface of the cylinder with the slide vane interposed therebetween. Is connected to the rolling piston at the time of top dead center and is fully opened at the time of bottom dead center, and the two discharge ports are connected to at least one of the side walls closing both ends of the cylinder. A reversible rotary compressor comprising: two refrigerant pipes which are closed by the rolling piston at the time of top dead center and open at the time of bottom dead center.
【請求項2】 シリンダと、ローリングピストンと、ス
ライドベーンとを有する回転式圧縮機において、前記ス
ライドベーンを挟んで前記ローリングピストンの外周面
とシリンダの内周面と間に形成され、前記ローリングピ
ストンが上死点の時に該ローリングピストンで閉塞さ
れ、下死点の時に全開する二個の吐吸ポートと、前記シ
リンダの両端を閉塞する側壁の一方に前記一方の吐吸ポ
ートと連結され、前記シリンダの両端を閉塞する側壁の
他方に前記他方の吐吸ポートと連結され、かつ何れも前
記ローリングピストンが上死点の時に該ローリングピス
トンで閉塞され、下死点の時に開口する冷媒管を備えた
ことを特徴とする可逆回転式圧縮機。
2. A rotary compressor having a cylinder, a rolling piston, and a slide vane, wherein the rolling piston is formed between the outer peripheral surface of the rolling piston and the inner peripheral surface of the cylinder with the slide vane interposed therebetween. Is closed by the rolling piston at the time of top dead center, two discharge ports that are fully opened at the time of bottom dead center, and one of the side walls that close both ends of the cylinder are connected to the one discharge port, and A refrigerant pipe that is connected to the other discharge port on the other side wall that closes both ends and that is closed by the rolling piston when the rolling piston is at top dead center and that is open at bottom dead center is provided. Characteristic reversible rotary compressor.
【請求項3】 シリンダと、ローリングピストンと、ス
ライドベーンとを有する回転式圧縮機において、前記ス
ライドベーンを挟んで前記ローリングピストンの外周面
とシリンダの内周面と間に形成され、前記ローリングピ
ストンが上死点の時に該ローリングピストンで閉塞さ
れ、下死点の時に全開する二個の吐吸ポートと、前記シ
リンダの両端を閉塞する両側壁に前記二個の吐吸ポート
とそれぞれ連結する二個の冷媒管をそれぞれ設け、この
冷媒管は各前記ローリングピストンが上死点の時に該ロ
ーリングピストンで閉塞され、下死点の時に開口され、
更に同一吐吸ポートに連結された冷媒管はそれぞれ一本
の冷媒管に連結されることを特徴とする可逆回転式圧縮
機。
3. A rotary compressor having a cylinder, a rolling piston, and a slide vane, the rolling piston being formed between the outer peripheral surface of the rolling piston and the inner peripheral surface of the cylinder with the slide vane interposed therebetween. Is closed by the rolling piston at the time of top dead center, and is fully opened at the time of bottom dead center. Refrigerant pipes are respectively provided, and the refrigerant pipes are closed by the rolling pistons when the rolling pistons are at the top dead center, and are opened at the bottom dead center.
Further, the refrigerant pipes connected to the same discharge / suction port are connected to one refrigerant pipe, respectively.
【請求項4】 請求項1〜3の何れかに記載の可逆回転
式圧縮機と室内熱交換器と膨張機構と室外熱交換器と前
記可逆回転式圧縮機とを順次冷媒管で直接連結して冷凍
サイクルを構成し、前記膨張機構は毛細管で構成するこ
とを特徴とする可逆冷凍サイクル。
4. The reversible rotary compressor according to claim 1, the indoor heat exchanger, the expansion mechanism, the outdoor heat exchanger, and the reversible rotary compressor are directly connected by a refrigerant pipe. A reversible refrigeration cycle characterized by comprising a refrigeration cycle, and the expansion mechanism is constituted by a capillary tube.
【請求項5】 前記可逆回転式圧縮機の駆動モータを3
相モータで構成し、この3相モータの電源入力結線を3
相のうち2組の結線を入れ換えるスイッチを設け、この
スイチの入れ換え動作が冷房と暖房を切り換えるスイッ
チに連動する構成としたことを特徴とする請求項4記載
の可逆冷凍サイクル。
5. The drive motor of the reversible rotary compressor is 3
It consists of a three-phase motor, and the power input wiring of this three-phase motor
5. The reversible refrigerating cycle according to claim 4, wherein a switch for switching the connection of two sets of phases is provided, and the switch switching operation is interlocked with the switch for switching between cooling and heating.
【請求項6】 前記3相モータの電源入力結線を3相の
うち2組の結線を入れ換えるスイッチを冷房と暖房を切
り換えるスイッチと兼用したことを特徴とする請求項5
記載の可逆冷凍サイクル。
6. The power supply input connection of the three-phase motor, wherein the switch for switching the connection of two sets of three phases is also used as a switch for switching between cooling and heating.
The reversible refrigeration cycle described.
JP26911293A 1992-10-29 1993-10-27 Reversible rotary compressor and reversible refrigeration cycle Expired - Lifetime JP3538864B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP26911293A JP3538864B2 (en) 1992-10-29 1993-10-27 Reversible rotary compressor and reversible refrigeration cycle
EP94106619A EP0652372B1 (en) 1993-10-27 1994-04-27 Reversible rotary compressor
DE69411351T DE69411351T2 (en) 1993-10-27 1994-04-27 Switchable rotary compressor
TW084215221U TW380663U (en) 1992-10-29 1994-04-28 Reversible rotating compressor and air conditioner equipped with such reversible compressor
US08/235,640 US5522235A (en) 1993-10-27 1994-04-29 Reversible rotary compressor and reversible refrigerating cycle
CN94106623A CN1086019C (en) 1993-10-27 1994-04-29 Reversible rotary compressor and reversible refrigerating cycle
KR1019940009237A KR0145366B1 (en) 1993-10-27 1994-04-29 Reversible rotary compressor and reversible refrigerating cycle
HK98108835A HK1008693A1 (en) 1993-10-27 1998-07-02 Reversible rotary compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29128392 1992-10-29
JP4-291283 1992-10-29
JP26911293A JP3538864B2 (en) 1992-10-29 1993-10-27 Reversible rotary compressor and reversible refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH06193574A true JPH06193574A (en) 1994-07-12
JP3538864B2 JP3538864B2 (en) 2004-06-14

Family

ID=26548621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26911293A Expired - Lifetime JP3538864B2 (en) 1992-10-29 1993-10-27 Reversible rotary compressor and reversible refrigeration cycle

Country Status (2)

Country Link
JP (1) JP3538864B2 (en)
TW (1) TW380663U (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295762A (en) * 2000-04-13 2001-10-26 Daikin Ind Ltd Compressor and refrigerating system
WO2003044373A1 (en) * 2001-11-23 2003-05-30 Lg Electronics Inc. Hermetic compressor
WO2008050654A1 (en) * 2006-10-25 2008-05-02 Panasonic Corporation Refrigeration cycle device and fluid machine used for the same
KR101008626B1 (en) * 2003-12-20 2011-01-17 엘지전자 주식회사 Rotary compressor having dual capacity
JP2012207664A (en) * 2007-12-26 2012-10-25 Mitsubishi Electric Corp Rotary compressor
WO2017006454A1 (en) * 2015-07-08 2017-01-12 三菱電機株式会社 Compressor and refrigeration cycle device
JP2018129957A (en) * 2017-02-09 2018-08-16 株式会社コロナ Motor controller and air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295762A (en) * 2000-04-13 2001-10-26 Daikin Ind Ltd Compressor and refrigerating system
WO2003044373A1 (en) * 2001-11-23 2003-05-30 Lg Electronics Inc. Hermetic compressor
US7344366B2 (en) 2001-11-23 2008-03-18 Lg Electronics Inc. Hermetic compressor having a high pressure chamber
CN100449150C (en) * 2001-11-23 2009-01-07 Lg电子株式会社 Hermetic compressor
KR101008626B1 (en) * 2003-12-20 2011-01-17 엘지전자 주식회사 Rotary compressor having dual capacity
WO2008050654A1 (en) * 2006-10-25 2008-05-02 Panasonic Corporation Refrigeration cycle device and fluid machine used for the same
EP2077426A1 (en) * 2006-10-25 2009-07-08 Panasonic Corporation Refrigeration cycle device and fluid machine used for the same
US8074471B2 (en) 2006-10-25 2011-12-13 Panasonic Corporation Refrigeration cycle apparatus and fluid machine used for the same
EP2077426A4 (en) * 2006-10-25 2012-03-07 Panasonic Corp Refrigeration cycle device and fluid machine used for the same
JP2012207664A (en) * 2007-12-26 2012-10-25 Mitsubishi Electric Corp Rotary compressor
WO2017006454A1 (en) * 2015-07-08 2017-01-12 三菱電機株式会社 Compressor and refrigeration cycle device
JP2018129957A (en) * 2017-02-09 2018-08-16 株式会社コロナ Motor controller and air conditioner

Also Published As

Publication number Publication date
TW380663U (en) 2000-01-21
JP3538864B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
KR0145366B1 (en) Reversible rotary compressor and reversible refrigerating cycle
JP2555464B2 (en) Refrigeration cycle equipment
US7437882B2 (en) Apparatus for driving a compressor and a refrigerating air conditioner
KR20060116868A (en) System and method for variable speed operation of a screw compressor
JPH01193089A (en) Rotary compressor
JP2701658B2 (en) Air conditioner
KR960034932A (en) Refrigerating apparatus, air conditioner using the refrigerating apparatus, and method of operating the air conditioner
CN105890081A (en) Air conditioner system and control method of air conditioner system
JP2716248B2 (en) Heat pump type air conditioner
JP3538864B2 (en) Reversible rotary compressor and reversible refrigeration cycle
JP4214021B2 (en) Engine heat pump
JPH0861790A (en) Air conditioner
KR102181650B1 (en) Inverter module for driving a plurality of compressors
JP3619657B2 (en) Multistage compression refrigeration equipment
JP2004278824A (en) Refrigeration cycle device and air conditioner
JPH03172587A (en) Compressor unit with extensive capacity control range and air-conditioning system therewith
JP2513700B2 (en) Air conditioner
JPH04251160A (en) Freezing cycle device
JPH0211886A (en) Refrigerating cycle device
JPH09145189A (en) Refrigerating cycle and air conditioner provided with the refrigerating cycle
JPH0544678A (en) Sealed type rotary compressor
JP2001349629A (en) Heat pump device
JPH062965A (en) Two-stage compression refrigerating cycle apparatus
JPS61259045A (en) Air conditioner of inverter driven type
KR920008772Y1 (en) Rotary compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

EXPY Cancellation because of completion of term