JPH06192786A - High strength steel excellent in brittle fracture occurrence characteristic - Google Patents

High strength steel excellent in brittle fracture occurrence characteristic

Info

Publication number
JPH06192786A
JPH06192786A JP34452992A JP34452992A JPH06192786A JP H06192786 A JPH06192786 A JP H06192786A JP 34452992 A JP34452992 A JP 34452992A JP 34452992 A JP34452992 A JP 34452992A JP H06192786 A JPH06192786 A JP H06192786A
Authority
JP
Japan
Prior art keywords
less
brittle fracture
concentration
strength steel
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34452992A
Other languages
Japanese (ja)
Inventor
Toru Hayashi
透 林
Tomoya Koseki
智也 小関
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34452992A priority Critical patent/JPH06192786A/en
Publication of JPH06192786A publication Critical patent/JPH06192786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a high strength steel plate excellent in brittle fracture occurrence characteristic by hot-rolling the continuously cast slab of a low carbon steel with a specific composition and controlling the concentrations of P and Mn in a microsegregation zone to specific values or below, respectively. CONSTITUTION:A steel which has a composition consisting of, by weight, 0.03-0.15% C, 0.02-0.50% Si, 0.5-1.9% Mn, 0.005-0.050% Al, <0.015% P, and the balance Fe or further containing one or >=2 kinds among <0.04% Nb, <0.1% V, <1.5% Ni, and <1.5% Cu or <0.02% Ti and/or <0.02% REM independently or in combination is continuously forged at about 30% draft in the course of a continuous casting, and the resulting rolling stock is heated up to 960-1150 deg.C, hot-rolled, and cooled rapidly. By this method, the high strength steel material where the concentrations of P and Mn in the microsegregation zone in the hot rolled steel plate are regulated to 0.020wt.% and >=2.0wt.%, respectively, and which has superior brittle fracture occurrence characteristic in a weld zone can be stably produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、海洋構造物の構造材
等の用途に供して好適な脆性破壊発生特性の優れた高強
度鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel excellent in brittle fracture occurrence characteristics suitable for use as a structural material for marine structures.

【0002】[0002]

【従来の技術】海洋構造物の構造材用鋼板に要求される
最も重要な特性は、溶接部の脆性破壊発生特性である。
というのは、溶接部は溶接熱履歴によって脆い組織とな
り易く、しかもその構造上応力集中を受け易いことか
ら、脆性破壊が発生し易いからである。構造部材の脆性
破壊は、重大な事故の原因となるため、発生防止の点か
ら、溶接部靭性の優れた鋼材が要求されている。
2. Description of the Related Art The most important characteristic required for a steel sheet for a structural material of an offshore structure is a brittle fracture occurrence characteristic of a welded portion.
This is because the welded portion is liable to have a brittle structure due to the heat history of the welding, and because the structure is apt to receive stress concentration, brittle fracture is likely to occur. Since brittle fracture of a structural member causes a serious accident, a steel material having excellent toughness at a welded portion is required from the viewpoint of preventing occurrence of the accident.

【0003】脆性破壊の原因は、従来から、溶接熱によ
り生成した島状マルテンサイトが分解されずに残るため
であるとされている。特開昭63−183152号公報には、脆
性破壊発生特性を改善するものとして、P含有量を 0.0
10wt%(以下単に%で示す)以下に抑制し、かつ 0.5mm
×0.5mm の面積当たりのP濃度の厚板方向の最大値を0.
08%以下とした鋼が開示されている。
The cause of brittle fracture is conventionally believed to be that island-like martensite generated by welding heat remains without being decomposed. JP-A-63-183152 discloses that the P content should be 0.0 to improve brittle fracture initiation characteristics.
Suppresses below 10wt% (hereinafter simply indicated as%) and 0.5mm
The maximum value of P concentration in the thick plate direction per area of × 0.5 mm is 0.
Steel with a content of 08% or less is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、発明者
らの研究によれば、上掲した特開昭63−183152号公報の
ように、局所的なP濃度の最大値を0.08%以下に抑制し
ただけでは不十分で、Mn含有量が高い場合にはMnの局所
偏析が 2.0%以上となる部分が多発して島状マルテンサ
イトが分解されず、その結果やはり良好な脆性破壊発生
特性が得られないことが判明した。この発明の目的は、
上記の問題を有利に解決し、脆性破壊発生特性を効果的
に改善した高強度鋼を提案するところにある。
However, according to the study by the inventors, the maximum value of the local P concentration is suppressed to 0.08% or less as in the above-mentioned Japanese Patent Laid-Open No. 183152/1988. However, when the Mn content is high, the local segregation of Mn is 2.0% or more frequently and the island martensite is not decomposed. As a result, good brittle fracture initiation characteristics are obtained. Turned out not. The purpose of this invention is
This is to propose a high-strength steel in which the above problems are advantageously solved and brittle fracture initiation characteristics are effectively improved.

【0005】[0005]

【課題を解決のための手段】上記の目的は、以下の要旨
構成により達成される。 (1) C:0.03〜0.15%、 Si:0.02〜0.50%、Mn:0.
5 〜1.9 %、 Al:0.005 〜0.050 %、P:0.015 %
以下を含有し、残部はFeおよび不可避的不純物の組成に
なり、ミクロ偏析部のP濃度およびMn濃度の最大値がそ
れぞれ 0.020%以下および 2.0%以下であることを特徴
とする脆性破壊発生特性の優れた高強度鋼(第1発
明)。
The above object can be achieved by the following gist structure. (1) C: 0.03 to 0.15%, Si: 0.02 to 0.50%, Mn: 0.
5 to 1.9%, Al: 0.005 to 0.050%, P: 0.015%
The following are contained, and the balance is composed of Fe and unavoidable impurities, and the maximum values of P concentration and Mn concentration in the microsegregated portion are 0.020% or less and 2.0% or less, respectively. Excellent high-strength steel (first invention).

【0006】(2) C:0.03〜0.15%、 Si:0.02〜0.
50%、Mn:0.5 〜1.9 %、 Al:0.005 〜0.050 %、
P:0.015 %以下を含み、かつNb:0.04%以下、
V:0.1 %以下、Ni:1.5 %以下、 Cu:1.5 %以
下のうちから選んだ1種または2種以上を含有し、残部
はFeおよび不可避的不純物の組成になり、ミクロ偏析部
のP濃度およびMn濃度の最大値がそれぞれ 0.020%以下
および 2.0%以下であることを特徴とする脆性破壊発生
特性の優れた高強度鋼(第2発明)。
(2) C: 0.03 to 0.15%, Si: 0.02 to 0.
50%, Mn: 0.5-1.9%, Al: 0.005-0.050%,
P: 0.015% or less, and Nb: 0.04% or less,
V: 0.1% or less, Ni: 1.5% or less, Cu: 1.5% or less, and one or more kinds selected, with the balance being Fe and inevitable impurities, and the P concentration in the microsegregated portion. A high-strength steel excellent in brittle fracture initiation characteristics characterized by having a maximum value of 0.020% or less and an Mn concentration of 2.0% or less (second invention).

【0007】(3) C:0.03〜0.15%、 Si:0.02〜0.
50%、Mn:0.5 〜1.9 %、 Al:0.005 〜0.050 %、
P:0.015 %以下を含み、かつTi:0.02%以下、 R
EM:0.02%以下のうちから選んだ1種または2種を含有
し、残部はFeおよび不可避的不純物の組成になり、ミク
ロ偏析部のP濃度およびMn濃度の最大値がそれぞれ 0.0
20%以下および 2.0%以下であることを特徴とする脆性
破壊発生特性の優れた高強度鋼(第3発明)。
(3) C: 0.03 to 0.15%, Si: 0.02 to 0.
50%, Mn: 0.5-1.9%, Al: 0.005-0.050%,
P: 0.015% or less is included, and Ti: 0.02% or less, R
EM: Contains one or two selected from 0.02% or less, the balance is Fe and inevitable impurities, and the maximum values of P concentration and Mn concentration in the microsegregated portion are 0.0
A high-strength steel excellent in brittle fracture initiation characteristics characterized by 20% or less and 2.0% or less (third invention).

【0008】(4) C:0.03〜0.15%、 Si:0.02〜0.
50%、Mn:0.5 〜1.9 %、 Al:0.005 〜0.050 %、
P:0.015 %以下を含み、かつNb:0.04%以下、
V:0.1 %以下、Ni:1.5 %以下、 Cu:1.5 %以
下のうちから選んだ1種または2種以上と、Ti:0.02%
以下、 REM:0.02%以下のうちから選んだ1種また
は2種とを含有し、残部はFeおよび不可避的不純物の組
成になり、ミクロ偏析部のP濃度およびMn濃度の最大値
がそれぞれ 0.020%以下および 2.0%以下であることを
特徴とする脆性破壊発生特性の優れた高強度鋼(第4発
明)。
(4) C: 0.03 to 0.15%, Si: 0.02 to 0.
50%, Mn: 0.5-1.9%, Al: 0.005-0.050%,
P: 0.015% or less, and Nb: 0.04% or less,
V: 0.1% or less, Ni: 1.5% or less, Cu: 1.5% or less, one or more selected, and Ti: 0.02%
Below, REM: Contains one or two selected from 0.02% or less, the balance is Fe and unavoidable impurities composition, and the maximum values of P concentration and Mn concentration of the microsegregated portion are 0.020%, respectively. Or less and 2.0% or less, a high-strength steel excellent in brittle fracture initiation characteristics (fourth invention).

【0009】以下、この発明を由来するに至った実験結
果について説明する。さて、発明者らは、まず、C:O.
08%、Si:0.38%、Mn: 0.5〜1.8 %、P:0.002 〜0.
005 %、S: 0.009%、Al:0.033 %、Ti:0.006 %お
よびN:0.0030%の組成になり、形状が50mm×150 mm×
150 mmの供試鋼を作成した。この試験片を中央部で切断
しK型開先加工を施し、この部分を多層溶接した。つい
で、この溶接継手から溶融線(Fusion−line)にノッチ
を入れた亀裂先端開口変位(CTOD)試験片を採取し、CT
OD試験に供した。試験温度は−30℃とした。CTOD試験後
の試験片を、図1のように破壊の起点を通る面で切断
し、この面をX線マイクロアナライザー(ビーム径:1
μm)でマッピングし、PとMnの起点における濃度を調
べた。得られた結果を図2(a),(b)にそれぞれ示
す。
The experimental results that led to the invention will be described below. Now, the inventors first of all, C: O.
08%, Si: 0.38%, Mn: 0.5 to 1.8%, P: 0.002 to 0.
The composition is 005%, S: 0.009%, Al: 0.033%, Ti: 0.006% and N: 0.0030%, and the shape is 50 mm × 150 mm ×
A 150 mm sample steel was prepared. This test piece was cut at the central portion, subjected to K-shaped groove processing, and this portion was multi-layer welded. Then, a crack tip opening displacement (CTOD) test piece with a notch in the fusion line was taken from this welded joint, and CT
It was subjected to the OD test. The test temperature was -30 ° C. After the CTOD test, the test piece is cut along the plane that passes through the fracture starting point as shown in Fig. 1, and this plane is cut by an X-ray microanalyzer (beam diameter: 1
μm) and the concentrations at the starting points of P and Mn were examined. The obtained results are shown in FIGS. 2 (a) and 2 (b), respectively.

【0010】同図から明らかなように、起点におけるMn
濃度およびP濃度がそれぞれ、Mn≦2.0 %、P≦0.020
%であれば、CTOD値は安定して高い値を呈し、良好な靭
性破壊発生特性が得られることが判明した。
As is clear from the figure, Mn at the starting point
Concentration and P concentration are Mn ≦ 2.0% and P ≦ 0.020, respectively
%, It was found that the CTOD value stably exhibited a high value, and good toughness fracture initiation characteristics were obtained.

【0011】[0011]

【作用】以下、この発明において成分組成を前記の範囲
に限定した理由を述べる。 C:0.03〜0.15% Cは、海洋構造物構造材用鋼板として必要な強度を得る
ためには、少なくとも0.03%の含有を必要とするが、0.
15%を超えて含有されると溶接硬化性および溶接割れ感
受性が増加するため、0.03〜0.15%の範囲に限定した。
The reason why the component composition is limited to the above range in the present invention will be described below. C: 0.03 to 0.15% C needs to be contained at least 0.03% in order to obtain the strength required as a steel plate for offshore structure materials, but 0.
If the content exceeds 15%, the weld hardenability and the weld cracking susceptibility increase, so the content was limited to 0.03 to 0.15%.

【0012】Si:0.02〜0.50% Siは、脱酸の都合上0.02%以上が必要である。またSiの
添加は、強度の上昇にも寄与するが、0.50%を超えると
母材靭性の劣化を招くので、上限は0.50%とする。
Si: 0.02 to 0.50% Si needs to be 0.02% or more for the sake of deoxidation. The addition of Si also contributes to the increase in strength, but if it exceeds 0.50%, the toughness of the base material is deteriorated, so the upper limit is made 0.50%.

【0013】Mn:0.5 〜1.9 % Mnは、母材の強度を確保するために 0.5%以上含有させ
る必要がある。しかし、含有量が 1.9%を超えると、溶
接熱履歴で2相域に再加熱された粗粒熱影響部(ICCGHA
Z 部)に生成した島状マルテンサイトが次パスの熱影響
によっても分解されず、その結果脆性破壊発生特性が著
しく劣化するので、0.5 〜1.9 %の範囲とした。
Mn: 0.5-1.9% Mn must be contained in an amount of 0.5% or more to secure the strength of the base material. However, if the content exceeds 1.9%, the coarse-grain heat-affected zone (ICCGHA
The island-like martensite formed in (Z part) is not decomposed even by the thermal effect of the next pass, and as a result, the brittle fracture initiation characteristics are significantly deteriorated, so the range was set to 0.5-1.9%.

【0014】Al:0.005 〜0.050 % Alは、脱酸のために 0.005%以上を必要とするが、含有
量が 0.050%を超えると母材の靱性が著しく劣化するの
で、 0.005〜0.050 %の範囲に限定した。
Al: 0.005 to 0.050% Al requires 0.005% or more for deoxidation, but if the content exceeds 0.050%, the toughness of the base material deteriorates significantly, so the range of 0.005 to 0.050% Limited to.

【0015】P:0.015 %以下 Pは、ICCGHAZ 部に生成した島状マルテンサイトが次パ
スで分解するのを阻害するだけでなく、結晶粒界に偏析
して粒界破壊の原因ともなり、靱性を大幅に劣化させる
ので、 0.015%以下で含有されるものとした。
P: 0.015% or less P not only prevents the island-like martensite formed in the ICCGHAZ part from decomposing in the next pass, but also segregates at the grain boundaries to cause grain boundary fracture, resulting in toughness. However, the content of 0.015% or less is included.

【0016】以上、基本成分について説明したが、この
発明ではさらに、強度改善成分としてNb,V,Niおよび
Cuのうちから選んだ1種または2種以上を、また粒成長
抑制成分としてTiおよびREM のうちから選んだ1種また
は2種を、以下の組成範囲で添加することもできる。
The basic components have been described above. However, in the present invention, Nb, V, Ni and
It is also possible to add one or more selected from Cu and one or two selected from Ti and REM as grain growth suppressing components in the following composition ranges.

【0017】Nb:0.04%以下 Nbは、熱間圧延において、未再結晶領域を拡大してオー
ステナイト中に変態後のフェライト粒を小さくして靭性
を向上させるだけでなく、熱間圧延後の加速冷却におい
てベイナイト、マルテンサイト等の低温変態生成物の量
を増加して強度を大幅に上昇させる有用元素である。し
かし、0.04%を超えて含有させると溶接割れ性が劣化す
ると共に溶接部の応力除去焼鈍後の靭性が劣化するの
で、0.04%以下で含有させるものとした。
Nb: 0.04% or less Nb not only improves the toughness by expanding the unrecrystallized region in hot rolling to reduce ferrite grains after transformation in austenite, but also accelerates after hot rolling. During cooling, it is a useful element that increases the amount of low-temperature transformation products such as bainite and martensite to significantly increase the strength. However, if the content exceeds 0.04%, the weld cracking property deteriorates and the toughness of the welded part after stress relief annealing deteriorates, so the content was made 0.04% or less.

【0018】V:0.1 % Vは、Nbと同様、強度および靭性の向上に有用な元素で
あるが、含有量が 0.1%を超えると溶接部の応力除去焼
鈍後の靭性を劣化させるので、 0.1%以下で含有させる
ものとした。
V: 0.1% V, like Nb, is an element useful for improving strength and toughness, but if the content exceeds 0.1%, the toughness of the welded portion after stress relief annealing is deteriorated, so V is 0.1%. % Or less.

【0019】Ni:1.5 %以下 Niは、溶接熱影響部の硬化性および靭性に悪影響を与え
ることなく、鋼の強度および靭性を向上させる有用元素
であるが、コスト面よりその上限を 1.5%とした。
Ni: 1.5% or less Ni is a useful element that improves the strength and toughness of steel without adversely affecting the hardenability and toughness of the heat-affected zone of welding, but its upper limit is 1.5% from the viewpoint of cost. did.

【0020】Cu:1.5 %以下 Cuは、Niと同じ作用効果を奏するほか、耐食性の向上に
も有効に寄与するが、1.5 %を超えて含有されると熱間
脆性が生じ易くなるので、その上限を 1.5%とした。
Cu: 1.5% or less Cu has the same function and effect as Ni and also contributes effectively to the improvement of corrosion resistance, but if it is contained in excess of 1.5%, hot brittleness tends to occur, The upper limit was 1.5%.

【0021】Ti:0.02%以下 Tiは、鋼中にTiNとして存在し、溶接熱影響部における
オーステナイト粒の成長を効果的に抑制する有用元素で
ある。しかしながら、含有量が0.02%を超えると、次パ
スにより融点付近まで急熱されるボンド部でTiNが分解
して固溶Tiとなった場合、溶接熱影響部の硬度が上昇し
CTOD値が低下する。このため、Tiの含有量は0.02%以下
に制限した。
Ti: 0.02% or less Ti exists as TiN in the steel and is a useful element that effectively suppresses the growth of austenite grains in the heat-affected zone of welding. However, if the content exceeds 0.02%, if TiN decomposes into solid solution Ti at the bond part that is rapidly heated to near the melting point in the next pass, the hardness of the weld heat affected zone increases.
CTOD value decreases. Therefore, the Ti content is limited to 0.02% or less.

【0022】希土類金属(REM):0.02%以下 REM は、鋼中にREM(O,S)として存在し、このREM の硫化
物、酸化物は溶接部のボンド部においても安定してお
り、TiN と同様にオーステナイト粒の成長を抑制して、
靭性を向上させる作用がある。しかし、REM 含有量が0.
02%を超えると、鋼の清浄度が低下し、鋼の靭性が劣化
するので、0.02%以下で含有させるものとした。
Rare earth metal (REM): 0.02% or less REM exists as REM (O, S) in steel, and the sulfides and oxides of this REM are stable even in the bond part of the welded part. In the same manner as above, suppressing the growth of austenite grains,
It has the effect of improving toughness. However, the REM content is 0.
If it exceeds 02%, the cleanliness of the steel will deteriorate and the toughness of the steel will deteriorate, so the content was made 0.02% or less.

【0023】以上、この発明における好適成分組成範囲
について説明したが、この発明で所期した目的を達成す
るためには、成分組成を上記の範囲に限定しただけでは
不十分で、ミクロ偏析部のP濃度およびMn濃度の最大値
をそれぞれ、 0.020%以下および 2.0%以下に抑制する
ことが肝要である。さて、脆性破壊発生特性は最も脆性
破壊特性が悪いとされている ICCGHAZ部での島状マルテ
ンサイトの存在に大きく依存する。とくに、かかる島状
マルテンサイトが、 ICCGHAZ部のPやMnの濃化部と一致
する場所に形成された場合、この島状マルテンサイト
は、その後の溶接パスの熱サイクルによっても分解せ
ず、その結果脆性破壊発生特性は劣化する。しかしなが
ら、前掲図2にも示したとおり、P濃度およびMn濃度の
最大値が、それぞれ 0.020%以下, 2.0%以下であれ
ば、上記の弊害は解消される。そこで、この発明では、
ミクロ偏析部のP濃度およびMn濃度の最大値につき、そ
れぞれ 0.020%以下, 2.0%以下に限定したのである。
Although the preferable component composition range in the present invention has been described above, in order to achieve the intended object of the present invention, it is not sufficient to limit the component composition to the above range, and the microsegregation portion of It is important to control the maximum P concentration and Mn concentration to 0.020% or less and 2.0% or less, respectively. The brittle fracture initiation characteristics depend largely on the existence of island martensite in the ICCGHAZ part, which is said to have the worst brittle fracture characteristics. In particular, when such island martensite is formed at a location that coincides with the P and Mn enrichment in the ICCGHAZ part, the island martensite does not decompose even in the subsequent heat cycle of the welding pass, and As a result, the brittle fracture initiation characteristics deteriorate. However, as shown in FIG. 2 above, if the maximum values of the P concentration and the Mn concentration are 0.020% or less and 2.0% or less, respectively, the above-mentioned adverse effects are eliminated. So, in this invention,
The maximum values of P concentration and Mn concentration in the microsegregated portion were limited to 0.020% or less and 2.0% or less, respectively.

【0024】なお、P濃度やMn濃度の最大値は、次の要
領で測定することができる。PおよびMn濃度は、測定部
を切断, 研磨しEPMAによりマッピングあるいはライ
ン分析することで測定することができる。
The maximum values of P concentration and Mn concentration can be measured in the following manner. The P and Mn concentrations can be measured by cutting and polishing the measurement part and mapping or line analysis by EPMA.

【0025】また、この発明鋼の製造に当たっては、連
続鋳造時に、クレーターエンド部を上下あるいは左右か
ら連続的に鍛圧し、P,Mnの濃化した液相を排出する連
続鍛圧法を適用して製造することが好ましい。
Further, in the production of the steel of the present invention, during continuous casting, a continuous forging method is applied in which the crater end portion is continuously forged from above and below or left and right and the liquid phase enriched in P and Mn is discharged. It is preferable to manufacture.

【0026】[0026]

【実施例】表1に示す組成になる鋼板を、それぞれ以下
の条件で製造した。No.1〜16を、連続鋳造によりスラ
ブとした。このうち、 No.1,2,3は、常法に従って
連続鋳造したスラブを圧延用素材とし、一方、 No.4〜
16は、連続鋳造中にクレーターエンド部で連続鍛圧を施
しつつ連続鋳造したスラブを圧延用素材とした。
EXAMPLES Steel sheets having the compositions shown in Table 1 were manufactured under the following conditions. Nos. 1 to 16 were made into slabs by continuous casting. Among them, Nos. 1, 2 and 3 are slabs that are continuously cast according to the usual method, and are used as rolling materials, while Nos. 4 to
For No. 16, a slab that was continuously cast while applying continuous forging pressure at the crater end during continuous casting was used as the rolling material.

【0027】すなわち、 No.4〜16のスラブは、連続鋳
造中に30%の圧下率で連続鍛圧を施し、定常部を圧延用
素材として用いた。これらの圧延用素材を、 960〜1150
℃の温度に加熱し、 740℃までに熱間圧延を終了し、板
厚:50mmの鋼板とした後、直ちに5℃/sの冷却速度で 5
00℃以下まで加速冷却した。
That is, the slabs of Nos. 4 to 16 were subjected to continuous forging at a reduction rate of 30% during continuous casting, and the steady portion was used as a material for rolling. These rolling materials were
After heating to a temperature of ℃, finishing the hot rolling up to 740 ℃ and making a steel plate with a plate thickness of 50 mm, immediately cool it at a cooling rate of 5 ℃ / s.
Accelerated cooling to below 00 ° C.

【0028】以上のようにして得られた供試材から、50
mm× 150mm× 500mmの板を切出し、K型開先加工を施し
て入熱5kJ/mmのサブマージアーク溶接で多層溶接し
た。試験片は、Fusion−lineが試験片の中央にくるよう
にして50mm×100mm ×450mm の形状とした。疲労ノッチ
の導入および試験方法はBS5762;1979に従った。CTOD
試験片は、 No.1,2,3,5〜16の供試材からは各3
本、 No.4の供試材からは9本採取し、それぞれにつき
CTOD値、破壊起点でのMn量およびP量を測定した。ま
た、溶接部から充分に離れた位置から引張試験片を採取
し、引張試験を行った。各鋼板の母材の強度、局所的な
Mn,P濃度の最大値、CTOD値、引張特性および母材靱性
について調べた結果を、表2に示す。
From the test materials thus obtained, 50
A plate of mm × 150 mm × 500 mm was cut out, subjected to K-shaped groove processing, and subjected to multi-layer welding by submerged arc welding with a heat input of 5 kJ / mm. The test piece had a shape of 50 mm × 100 mm × 450 mm so that the Fusion-line was located at the center of the test piece. Fatigue notch introduction and test method was in accordance with BS5762; 1979. CTOD
Test pieces are 3 from each of the No. 1, 2, 3, 5 to 16 test materials.
9 pieces from the No. 4 test material
The CTOD value, Mn amount and P amount at the fracture starting point were measured. Further, a tensile test piece was sampled from a position sufficiently distant from the welded portion and a tensile test was performed. Strength of base metal of each steel sheet, local
Table 2 shows the results of examining the maximum Mn and P concentrations, the CTOD value, the tensile properties and the toughness of the base material.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】No.1は、Mn含有量がこの発明の適正範囲
から外れた比較例、 No.2は同じくP含有量が外れた比
較例、さらに No.3はMn含有量およびP含有量が共に外
れた比較例であるが、いずれも−30℃におけるCTOD特性
は劣っている。これに対し、Mn含有量およびP含有量は
いうまでもなく、破壊の起点でのMn濃度およびP濃度も
この発明の適正範囲を満足する No.15, 16は、いずれも
優れたCTOD特性を示している。また、 No.4〜7はTi
を、 No.8はVおよびNbを、 No.9はNiを、 No.10はRE
M を、 No.11はTi, Nb, NiおよびREM を、 No.12はVお
よびNbを、 No.13はVを、 No.14はCuを、それぞれこの
発明で規定する範囲内で添加したものであるが、いずれ
の鋼板についてもCTOD特性が優れており、また、Cu, N
i, NbおよびVなどを添加することによって強度が向上
している。
No. 1 is a comparative example in which the Mn content is out of the proper range of the present invention, No. 2 is a comparative example in which the P content is also out, and No. 3 is in the Mn content and P content. Although both are comparative examples, the CTOD characteristics at -30 ° C are both inferior. On the other hand, not only Mn content and P content but also Mn concentration and P concentration at the starting point of fracture satisfy the appropriate range of the present invention, Nos. 15 and 16 have excellent CTOD characteristics. Shows. In addition, No. 4 to 7 are Ti
No. 8 for V and Nb, No. 9 for Ni, No. 10 for RE
M, No. 11 was added with Ti, Nb, Ni and REM, No. 12 was added with V and Nb, No. 13 was added with V, and No. 14 was added with Cu within the ranges specified in the present invention. However, all the steel sheets have excellent CTOD characteristics, and Cu, N
The strength is improved by adding i, Nb and V.

【0032】[0032]

【発明の効果】かくしてこの発明に従い、単にMnおよび
P含有量のみならず、ミクロ偏析部のP濃度およびMn濃
度の最大値を適正範囲に制限することにより、溶接部の
CTOD特性が優れる、換言すれば溶接部の脆性破壊発生特
性の優れた高強度鋼を安定して得ることができる。
As described above, according to the present invention, not only the Mn and P contents but also the maximum values of the P concentration and the Mn concentration of the microsegregated portion are limited to an appropriate range, so that
It is possible to stably obtain a high-strength steel having excellent CTOD characteristics, in other words, excellent characteristics of occurrence of brittle fracture in the welded portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】ミクロ偏析部のP濃度およびMn濃度を測定する
好適位置を示した図である。
FIG. 1 is a diagram showing suitable positions for measuring P concentration and Mn concentration in a microsegregated portion.

【図2】破壊起点におけるP濃度およびMn濃度とCTOD値
との関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the P concentration and Mn concentration at the fracture starting point and the CTOD value.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.03〜0.15wt%、 Si:0.02〜0.50
wt%、 Mn:0.5 〜1.9 wt%、 Al:0.005 〜0.050 wt%、 P:0.015 wt%以下 を含有し、残部はFeおよび不可避的不純物の組成にな
り、ミクロ偏析部のP濃度およびMn濃度の最大値がそれ
ぞれ 0.020wt%以下および 2.0wt%以下であることを特
徴とする脆性破壊発生特性の優れた高強度鋼。
1. C: 0.03 to 0.15 wt%, Si: 0.02 to 0.50
wt%, Mn: 0.5 to 1.9 wt%, Al: 0.005 to 0.050 wt%, P: 0.015 wt% or less, the balance being Fe and inevitable impurities, and the P concentration and Mn concentration in the microsegregation Of maximum strength of 0.020 wt% or less and 2.0 wt% or less, respectively, of high strength steel with excellent brittle fracture initiation characteristics.
【請求項2】C:0.03〜0.15wt%、 Si:0.02〜0.50wt
%、 Mn:0.5 〜1.9 wt%、 Al:0.005 〜0.050 wt%、 P:0.015 wt%以下 を含み、かつ Nb:0.04wt%以下、 V:0.1 wt%以下、 Ni:1.5 wt%以下、 Cu:1.5 wt%以下 のうちから選んだ1種または2種以上を含有し、残部は
Feおよび不可避的不純物の組成になり、ミクロ偏析部の
P濃度およびMn濃度の最大値がそれぞれ 0.020wt%以下
および2.0 wt%以下であることを特徴とする脆性破壊発
生特性の優れた高強度鋼。
2. C: 0.03-0.15 wt%, Si: 0.02-0.50 wt
%, Mn: 0.5 to 1.9 wt%, Al: 0.005 to 0.050 wt%, P: 0.015 wt% or less, and Nb: 0.04 wt% or less, V: 0.1 wt% or less, Ni: 1.5 wt% or less, Cu : Contains 1 or 2 or more selected from 1.5 wt% or less, the balance is
High-strength steel with excellent brittle fracture initiation characteristics, characterized by the composition of Fe and unavoidable impurities, and the maximum P and Mn concentrations in the microsegregated portion being 0.020 wt% or less and 2.0 wt% or less, respectively. .
【請求項3】C:0.03〜0.15wt%、 Si:0.02〜0.50wt
%、 Mn:0.5 〜1.9 wt%、 Al:0.005 〜0.050 wt%、 P:0.015 wt%以下 を含み、かつ Ti:0.02wt%以下、 REM:0.02wt%以下 のうちから選んだ1種または2種を含有し、残部はFeお
よび不可避的不純物の組成になり、ミクロ偏析部のP濃
度およびMn濃度の最大値がそれぞれ 0.020wt%以下およ
び2.0 wt%以下であることを特徴とする脆性破壊発生特
性の優れた高強度鋼。
3. C: 0.03-0.15 wt%, Si: 0.02-0.50 wt
%, Mn: 0.5-1.9 wt%, Al: 0.005-0.050 wt%, P: 0.015 wt% or less, and one or two selected from Ti: 0.02 wt% or less and REM: 0.02 wt% or less. Occurrence of brittle fracture characterized by containing seeds, the balance being Fe and inevitable impurities, and the maximum P concentration and Mn concentration in the microsegregated portion being 0.020 wt% or less and 2.0 wt% or less, respectively. High strength steel with excellent properties.
【請求項4】C:0.03〜0.15wt%、 Si:0.02〜0.50wt
%、 Mn:0.5 〜1.9 wt%、 Al:0.005 〜0.050 wt%、 P:0.015 wt%以下 を含み、かつ Nb:0.04wt%以下、 V:0.1 wt%以下、 Ni:1.5 wt%以下、 Cu:1.5 wt%以下 のうちから選んだ1種または2種以上と、 Ti:0.02wt%以下、 REM:0.02wt%以下 のうちから選んだ1種または2種とを含有し、残部はFe
および不可避的不純物の組成になり、ミクロ偏析部のP
濃度およびMn濃度の最大値がそれぞれ 0.020wt%以下お
よび2.0 wt%以下であることを特徴とする脆性破壊発生
特性の優れた高強度鋼。
4. C: 0.03-0.15 wt%, Si: 0.02-0.50 wt
%, Mn: 0.5 to 1.9 wt%, Al: 0.005 to 0.050 wt%, P: 0.015 wt% or less, and Nb: 0.04 wt% or less, V: 0.1 wt% or less, Ni: 1.5 wt% or less, Cu : 1 or 2 or more selected from 1.5 wt% or less and 1 or 2 selected from Ti: 0.02 wt% or less and REM: 0.02 wt% or less, with the balance being Fe
And the composition of unavoidable impurities, P of the microsegregation part
A high-strength steel with excellent brittle fracture initiation characteristics characterized by maximum concentrations of 0.020 wt% or less and 2.0 wt% or less, respectively.
JP34452992A 1992-12-24 1992-12-24 High strength steel excellent in brittle fracture occurrence characteristic Pending JPH06192786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34452992A JPH06192786A (en) 1992-12-24 1992-12-24 High strength steel excellent in brittle fracture occurrence characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34452992A JPH06192786A (en) 1992-12-24 1992-12-24 High strength steel excellent in brittle fracture occurrence characteristic

Publications (1)

Publication Number Publication Date
JPH06192786A true JPH06192786A (en) 1994-07-12

Family

ID=18369987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34452992A Pending JPH06192786A (en) 1992-12-24 1992-12-24 High strength steel excellent in brittle fracture occurrence characteristic

Country Status (1)

Country Link
JP (1) JPH06192786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363687A (en) * 2001-06-06 2002-12-18 Kawasaki Steel Corp Steel for high heat input welding and method for refining steel for high heat input welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363687A (en) * 2001-06-06 2002-12-18 Kawasaki Steel Corp Steel for high heat input welding and method for refining steel for high heat input welding
JP4608813B2 (en) * 2001-06-06 2011-01-12 Jfeスチール株式会社 Steel material for large heat input welding and method for melting steel for large heat input welding

Similar Documents

Publication Publication Date Title
KR101846759B1 (en) Steel plate and method for manufacturing same
EP2272994A1 (en) High-tensile strength steel and manufacturing method thereof
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
EP1435399A1 (en) High strength steel weld having improved resistance to cold cracking and a welding method
CN113631321A (en) Method for manufacturing high-strength welded joint for extremely low temperature
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP3893921B2 (en) Low temperature Ni-containing steel and method for producing the same
JP2688312B2 (en) High strength and high toughness steel plate
JPH09296253A (en) Extremely thick high strength steel pipe excellent in low temperature toughness
JP2002224835A (en) Method of welding high toughness high tension steel having excellent weld heat influence zone toughness
JPS59136418A (en) Preparation of high toughness and high strength steel
JPH11172374A (en) Bent pipe with high strength and high toughness, and its production
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JP3736209B2 (en) High tensile steel with excellent weld toughness and manufacturing method thereof
JPH06192786A (en) High strength steel excellent in brittle fracture occurrence characteristic
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPH07278653A (en) Production of steel excellent in cold toughness on welding heat affected zone
JP6835054B2 (en) High-strength steel plate and its manufacturing method
JP2573109B2 (en) Method for producing high-strength steel for Zn plating crack resistant structure
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JPH05179344A (en) Production of high tensile steel having excellent low-temperature toughness of multilayer weld zone
JP7091612B2 (en) Welding method of steel materials and manufacturing method of welded joints