JPH06192462A - Expanded polyolefin resin particle and its production - Google Patents

Expanded polyolefin resin particle and its production

Info

Publication number
JPH06192462A
JPH06192462A JP35664092A JP35664092A JPH06192462A JP H06192462 A JPH06192462 A JP H06192462A JP 35664092 A JP35664092 A JP 35664092A JP 35664092 A JP35664092 A JP 35664092A JP H06192462 A JPH06192462 A JP H06192462A
Authority
JP
Japan
Prior art keywords
polyolefin resin
resin particles
particles
temperature
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35664092A
Other languages
Japanese (ja)
Other versions
JP3198469B2 (en
Inventor
Toru Yamaguchi
徹 山口
Kazuhiko Omori
和彦 大森
Wataru Kikuchi
渉 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP35664092A priority Critical patent/JP3198469B2/en
Publication of JPH06192462A publication Critical patent/JPH06192462A/en
Application granted granted Critical
Publication of JP3198469B2 publication Critical patent/JP3198469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a resin particle having a large cell diameter and excellent in-mold moldability and to provide a process for its production. CONSTITUTION:The resin particle contains an inorganic gas therein and a blowing aid and a magnesium salt of a higher fatty acid are incorporated in the resin. The process comprises infiltrating an inorganic gas blowing agent into polyolefin resin particles under pressure and releasing the particles into a lower-pressure zone, and polyolefin resin particles impregnated with a blowing aid and a magnesium salt of a higher fatty acid are used as the polyolefin resin particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリオレフィン系樹脂発
泡粒子及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to expanded polyolefin resin particles and a method for producing the same.

【0002】[0002]

【従来技術及びその問題点】ポリオレフィン系樹脂粒子
に加圧下で無機ガス系発泡剤を圧入させて低圧下に放出
させることにより発泡粒子を製造する方法は公知である
(特公昭62−61227号、特開昭60−22993
6号、特開昭60−245650号)。この場合、無機
粉体や結晶核剤等の発泡助剤を含有するポリオレフィン
系樹脂粒子を用いることにより高発泡倍率の発泡粒子を
得ることができる(特開昭61−4738号、特開昭6
1−2741号)。ところで、発泡助剤を含有するポリ
オレフィン系樹脂に無機ガス系発泡剤を圧入させた後、
低圧帯域に放出させて発泡粒子を得る場合、得られる発
泡粒子の気泡径が微細になりすぎ、型内成形性が低下す
るという問題がある。この気泡径の微細化は、発泡倍率
に対する寄与度の高い発泡助剤及び発泡剤を用いる程、
例えば、発泡助剤として有機リン系の造核剤を用い、発
泡剤として二酸化炭素を用いる場合には、顕著になる。
そして、このような微細気泡径の発泡粒子を型内成形す
ると、得られる成形体は、収縮を生じやすく、寸法精度
の悪いものとなってしまう。
2. Description of the Related Art A method for producing foamed particles by press-fitting an inorganic gas type foaming agent into a polyolefin resin particle under pressure and releasing it under low pressure is known (Japanese Patent Publication No. 62-61227). Japanese Patent Laid-Open No. 60-22993
6, JP-A-60-245650). In this case, expanded resin particles having a high expansion ratio can be obtained by using polyolefin resin particles containing an inorganic powder or a foaming aid such as a crystal nucleating agent (Japanese Patent Laid-Open Nos. 61-4738 and 6-6).
1-2741). By the way, after press-fitting the inorganic gas type foaming agent into the polyolefin resin containing the foaming aid,
When the foamed particles are obtained by discharging into the low pressure zone, there is a problem that the foamed particles of the obtained foamed particles become too fine and the moldability in the mold is lowered. As for the miniaturization of the cell diameter, the higher the contribution of the foaming aid and the foaming agent to the expansion ratio is,
For example, when an organic phosphorus-based nucleating agent is used as a foaming aid and carbon dioxide is used as a foaming agent, it becomes remarkable.
Then, when the foamed particles having such a fine bubble diameter are molded in the mold, the obtained molded body is liable to shrink, resulting in poor dimensional accuracy.

【0003】[0003]

【発明が解決しようとする課題】本発明は、気泡径が大
きく、型内成形性にすぐれたポリオレフィン系樹脂発泡
粒子及びその製造方法を提供することをその課題とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a polyolefin resin expanded particle having a large cell diameter and excellent moldability in a mold, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、意外にも、ポリオ
レフィン系樹脂粒子として、発泡助剤とともに高級脂肪
酸のマグネシウム塩を含有させたものを用いることによ
り、前記課題を解決し得ることを見出し、本発明を完成
するに至った。即ち、本発明によれば、内部に無機ガス
を含有するポリオレフィン系樹脂発泡粒子において、該
樹脂中に発泡助剤とともに高級脂肪酸のマグネシウム塩
を含有することを特徴とするポリオレフィン系樹脂発泡
粒子が提供される。また、本発明によれば、ポリオレフ
ィン系樹脂粒子内に加圧下で無機ガス系発泡剤を含浸さ
せた後、低圧帯域に放出させるポリオレフィン系樹脂発
泡粒子の製造方法において、該ポリオレフィン系樹脂粒
子として、発泡助剤とともに高級脂肪酸のマグネシウム
塩を含有させたポリオレフィン系樹脂粒子を用いること
を特徴とするポリオレフィン系樹脂発泡粒子の製造方法
が提供される。
Means for Solving the Problems As a result of earnest studies to solve the above problems, the present inventors have surprisingly found that a polyolefin resin particle containing a magnesium salt of a higher fatty acid together with a foaming aid. The inventors have found that the above problems can be solved by using the above materials, and have completed the present invention. That is, according to the present invention, there is provided a polyolefin resin foamed particle containing an inorganic gas therein, wherein the resin contains a magnesium salt of a higher fatty acid together with a foaming aid in the resin. To be done. Further, according to the present invention, after impregnating an inorganic gas-based foaming agent under pressure into the polyolefin-based resin particles, in the method for producing the polyolefin-based resin foamed particles to be released in the low-pressure zone, the polyolefin-based resin particles, Provided is a method for producing expanded polyolefin resin particles, which comprises using polyolefin resin particles containing a magnesium salt of a higher fatty acid together with a foaming aid.

【0005】本発明で用いるポリオレフィン系樹脂粒子
用樹脂としては、プロピレン単独重合体、プロピレン−
エチレンランダム共重合体、プロピレン−エチレンブロ
ック共重合体、プロピレン−ブテンランダム共重合体、
プロピレン−エチレン−ブテンランダム共重合体等のプ
ロピレン系重合体、或いは高密度ポリエチレンや、エチ
レンと少量のα−オレフィン(炭素数4、6、8等)と
の共重合体である直鎖状低密度ポリエチレン等のエチレ
ン系共重合体等を挙げることができる。これらの中でも
特にプロピレン−エチレンランダム共重合体、プロピレ
ン−ブテンランダム共重合体、プロピレン−エチレン−
ブテンランダム共重合体等のプロピレン系ランダム共重
合体樹脂粒子の使用が好ましい。これらの重合体は架橋
したものであっても良いが、無架橋のものが特に良く、
無架橋プロピレン系ランダム共重合体の使用が特に好ま
しい。
As the resin for polyolefin resin particles used in the present invention, propylene homopolymer, propylene-
Ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer,
Propylene-based polymers such as propylene-ethylene-butene random copolymers, high-density polyethylene, and linear low-chain copolymers of ethylene and a small amount of α-olefins (C 4, 6, 8, etc.) Examples thereof include ethylene-based copolymers such as density polyethylene. Among these, especially propylene-ethylene random copolymer, propylene-butene random copolymer, propylene-ethylene-
It is preferable to use propylene-based random copolymer resin particles such as butene random copolymer. These polymers may be crosslinked, but non-crosslinked ones are particularly preferable,
The use of non-crosslinked propylene random copolymers is particularly preferred.

【0006】本発明で用いるポリオレフィン系樹脂粒子
(以下、単に樹脂粒子とも言う)は、従来公知の方法に
従って、ポリオレフィン系樹脂を粒子状に成形すること
により得られるが、本発明の場合、その際、発泡助剤と
高級脂肪酸のマグネシウム塩を樹脂中に混入させる。こ
の場合、それら添加剤は、粒径0.1〜150μm、好
ましくは1〜100μmの粉体として添加するのが一般
的であるが、より粒径の大きな粒状で添加しても良い。
要するに、任意の形状で樹脂中にそれら添加剤を添加す
れば良い。本発明で用いる原料樹脂粒子を得るには、樹
脂と発泡助剤と高級脂肪酸のマグネシウム塩を溶融混練
してから粒状に成形しても良いし、あらかじめ大量のそ
れら添加剤を含有した樹脂ペレットと、それら添加剤を
含まない樹脂ペレットを、溶融混練してから成形しても
良い。
The polyolefin resin particles used in the present invention (hereinafter also simply referred to as resin particles) can be obtained by molding a polyolefin resin into particles according to a conventionally known method. In the case of the present invention, , A foaming aid and a magnesium salt of a higher fatty acid are mixed in the resin. In this case, the additives are generally added as powder having a particle size of 0.1 to 150 μm, preferably 1 to 100 μm, but may be added in the form of particles having a larger particle size.
In short, these additives may be added to the resin in any shape. In order to obtain the raw material resin particles used in the present invention, the resin, the foaming aid, and the magnesium salt of the higher fatty acid may be melt-kneaded and then molded into granules, or resin pellets containing a large amount of those additives in advance. Alternatively, resin pellets containing no such additives may be melt-kneaded and then molded.

【0007】本発明で用いる発泡助剤としては、樹脂粒
子の発泡を促進させ得る微粉末であれば任意のものを用
いることができる。このようなものとしては、例えば、
タルク、クレー、カオリン、シリカ、水酸化アルミニウ
ム、水酸化カルシウム、水酸化マグネシウム、炭酸カル
シウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシ
ウム、硫酸マグネシウム、硫酸アルミニウム、亜硫酸カ
ルシウム、亜硫酸マグネシウム、酸化カルシウム、酸化
アルミニウム、合成ゼオライト等の無機粉体や、有機ア
ルミニウム系、有機リン系等の造核剤が例示されるが、
中でも発泡粒子の発泡倍率向上に対する寄与度の高い有
機リン系の造核剤、特に、リン酸2,2−メチレンビス
(4,6−ジ−tert−ブチルフェニル)ナトリウ
ム、リン酸ビス(4−tert−ブチルフェニル)ナト
リウム等の使用が好ましい。発泡助剤の樹脂粒子中の含
有量は、通常、0.001重量%〜2重量%の範囲であ
る。
As the foaming aid used in the present invention, any powder can be used as long as it is a fine powder capable of promoting foaming of the resin particles. As such, for example,
Talc, clay, kaolin, silica, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, magnesium sulfate, aluminum sulfate, calcium sulfite, magnesium sulfite, calcium oxide, aluminum oxide, Inorganic powders such as synthetic zeolite, and organic aluminum-based, organic phosphorus-based nucleating agents are exemplified,
Among them, an organophosphorus nucleating agent having a high contribution to the improvement of the expansion ratio of the expanded particles, particularly 2,2-methylenebis (4,6-di-tert-butylphenyl) sodium phosphate, bis (4-tert) phosphate. -Butylphenyl) sodium and the like are preferred. The content of the foaming aid in the resin particles is usually in the range of 0.001% by weight to 2% by weight.

【0008】本発明で用いる高級脂肪酸のマグネシウム
塩において、その高級脂肪酸成分としては、炭素数8以
上の飽和又は不飽和の直鎖もしくは分岐鎖状の各種脂肪
酸を用いることができる。また、この高級脂肪酸成分は
多価脂肪酸であってもよい。このような高級脂肪酸成分
としては、例えば、パルミチン酸、ステアリン酸、オレ
イン酸、リノール酸、リノレン酸、ベヘン酸、セバシン
酸等が挙げられる。高級脂肪酸マグネシウム塩は、樹脂
粒子中、通常、0.02〜5重量%、好ましくは0.0
5〜1重量%の割合である。
In the magnesium salt of higher fatty acid used in the present invention, as the higher fatty acid component, various saturated or unsaturated straight chain or branched chain fatty acids having 8 or more carbon atoms can be used. Further, the higher fatty acid component may be a polyvalent fatty acid. Examples of such higher fatty acid component include palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, sebacic acid and the like. The higher fatty acid magnesium salt is usually contained in the resin particles in an amount of 0.02 to 5% by weight, preferably 0.0
The ratio is 5 to 1% by weight.

【0009】本発明のポリオレフィン系樹脂発泡粒子
は、高圧帯域において樹脂粒子に無機ガス系発泡剤を圧
入する発泡剤含浸工程と、発泡剤を含浸した樹脂粒子を
低圧帯域に放出して発泡させる発泡工程からなる。この
場合の原料樹脂の粒径は、0.3〜5mm、好ましくは
0.5〜3mmである。
The foamed polyolefin resin particles of the present invention are foamed by a foaming agent impregnating step of injecting an inorganic gas foaming agent into the resin particles in a high pressure zone, and the resin particles impregnated with the foaming agent are discharged into a low pressure zone to foam. Consists of steps. In this case, the particle size of the raw material resin is 0.3 to 5 mm, preferably 0.5 to 3 mm.

【0010】樹脂粒子に無機ガス系発泡剤を加圧下で含
浸する工程は、従来公知の方法、例えば、密閉容器内に
おいて、樹脂粒子を分散媒に分散させ、無機ガス系発泡
剤の加圧下で、所定時間加熱することによって実施され
る。
The step of impregnating the resin particles with the inorganic gas type foaming agent under pressure is carried out by a conventionally known method, for example, by dispersing the resin particles in a dispersion medium in a closed container and applying pressure with the inorganic gas type foaming agent. , By heating for a predetermined time.

【0011】分散媒としては、樹脂粒子を溶解しないも
のであれば任意のものが用いられ、このようなものとし
ては、例えば、水、エチレングリコール、グリセリン、
メタノール、エタノール等が挙げられるが、水を使用す
るのが一般的である。
Any dispersion medium can be used as long as it does not dissolve the resin particles, and examples of such dispersion media include water, ethylene glycol, glycerin,
Methanol, ethanol and the like can be mentioned, but it is common to use water.

【0012】無機ガス系発泡剤としては、窒素、二酸化
炭素、アルゴン、空気等の無機ガス又はこれを含むもの
が用いられるが、特に二酸化炭素が好適であり、これら
ガスは容器内圧力60kg/cm2・G以下となるよう
に供給するのが一般的である。なお、プロパン、ブタ
ン、ペンタン、ヘキサン、シクロヘキサン、ジクロロジ
フロロメタン、トリクロロフロロメタン等の揮発性有機
発泡剤を、50重量%程度まで併用しても特に問題はな
いが、これらの揮発性有機発泡剤は、一般には、全発泡
剤の25重量%以下、好ましくは20重量%以下に留め
るべきである。また、この無機ガス系発泡剤による加圧
は、少なくとも15kg/cm2・G、好ましくは20
kg/cm2・G以上である。発泡剤により加圧する時
間は、加圧する圧力によっても変るが、樹脂の融点以上
においては数秒〜1時間程度であり、通常は、5〜30
分程度で十分である。この発泡剤による容器内容物の加
圧は、任意の時期に行うことができ、容器内容物の充填
直後や、昇温中、あるいは発泡温度に達した時期に行う
ことができる。特に、発泡剤として二酸化炭素を使用す
る場合には、ドライアイスの形態で容器内に導入するこ
とができ、この際には、ドライアイスを樹脂粒子と分散
媒等と共に容器内に供給し、容器を密閉した後、加熱す
る方法が採用される。なお、加熱による容器内容物の昇
温速度は、通常、1〜10℃/分、好ましくは2〜5℃
/分である。
As the inorganic gas type foaming agent, an inorganic gas such as nitrogen, carbon dioxide, argon, air or the like is used, but carbon dioxide is particularly suitable, and these gases are suitable for the pressure inside the container of 60 kg / cm. It is common to supply it so that it does not exceed 2.G. There is no particular problem if a volatile organic foaming agent such as propane, butane, pentane, hexane, cyclohexane, dichlorodifluoromethane, trichlorofluoromethane is used in combination up to about 50% by weight. The agent should generally remain below 25% by weight of the total blowing agent, preferably below 20%. The pressure applied by the inorganic gas type foaming agent is at least 15 kg / cm 2 · G, preferably 20
It is at least kg / cm 2 · G. The time for applying pressure with the foaming agent varies depending on the pressure applied, but it is about several seconds to 1 hour above the melting point of the resin, and usually 5 to 30.
Minutes are enough. The pressurization of the contents of the container with the foaming agent can be performed at any time, and can be performed immediately after the contents of the container are filled, during the temperature rise, or when the foaming temperature is reached. In particular, when carbon dioxide is used as the foaming agent, it can be introduced into the container in the form of dry ice, in which case dry ice is supplied into the container together with resin particles and a dispersion medium, After sealing, the method of heating is adopted. The heating rate of the contents of the container by heating is usually 1 to 10 ° C / min, preferably 2 to 5 ° C.
/ Min.

【0013】分散媒中で発泡剤ガスの加圧下で樹脂粒子
を加熱する温度(発泡温度)は、一般的には樹脂の軟化
点以上の温度であるが、使用する樹脂粒子の融点付近が
特に好適である。好ましい発泡温度範囲は樹脂の種類に
よって異なり、無架橋ポリプロピレン系樹脂を使用する
場合は、融点より5℃低い温度から融点より15℃高い
温度までの範囲、特に融点より3℃低い温度から10℃
高い温度までの範囲、ポリエチレン系樹脂では融点より
10℃低い温度から融点より5℃高い温度までの範囲が
最適である。発泡温度にまで加熱する際の昇温速度は、
1〜10℃/分、好ましくは2〜5℃/分である。な
お、本明細書でいう樹脂の融点とは、示差走査熱量計に
よってサンプル約6mgを10℃/分の速度で220℃
まで昇温し、その後10℃/分で約50℃まで降温し、
再度10℃/分の速度で220℃まで昇温した時に得ら
れる吸熱曲線のピーク(固有ピーク)の温度であり、ま
た、樹脂の融解終了温度とは、その第2回目の吸熱曲線
の終了温度を意味する。
The temperature at which the resin particles are heated in the dispersion medium under the pressure of the blowing agent gas (foaming temperature) is generally a temperature above the softening point of the resin, but especially near the melting point of the resin particles used. It is suitable. The preferred foaming temperature range depends on the type of resin, and when non-crosslinked polypropylene resin is used, it ranges from 5 ° C lower than the melting point to 15 ° C higher than the melting point, particularly 3 ° C to 10 ° C lower than the melting point.
The optimum range is a high temperature, that is, a temperature of 10 ° C. lower than the melting point to 5 ° C. higher than the melting point of the polyethylene resin. The heating rate when heating to the foaming temperature is
It is 1 to 10 ° C / min, preferably 2 to 5 ° C / min. The melting point of the resin as used herein means about 6 mg of a sample measured by a differential scanning calorimeter at 220 ° C. at a rate of 10 ° C./min.
Up to 50 ° C at 10 ° C / min,
It is the temperature of the peak (specific peak) of the endothermic curve obtained when the temperature is raised again to 220 ° C. at a rate of 10 ° C./minute, and the melting end temperature of the resin is the end temperature of the second endothermic curve. Means

【0014】樹脂粒子内に無機ガス系発泡剤を含浸させ
るに際し、加熱時における樹脂粒子の融着を防止するた
めに、分散媒中に樹脂粒子融着防止剤を添加することが
できる。この樹脂粒子融着防止剤は、実質的に非可溶性
でかつ加熱時において非溶融性のものであれば、有機及
び無機系を問わず使用可能であるが、一般には無機系の
ものの使用が好ましい。代表的な融着防止剤の例を示す
と、例えば、酸化アルミニウム、酸化チタン、水酸化ア
ルミニウム、塩基性炭酸マグネシウム、塩基性炭酸亜
鉛、炭酸カルシウム、リン酸三カルシウム、ピロリン酸
マグネシウム等が挙げられる。このような融着防止剤
は、通常、粒径0.001〜100μm、好ましくは
0.001〜30μmの微粒子状で用いられる。この融
着防止剤の添加量は、樹脂粒子100重量部に対し、通
常、0.01〜10重量部程度である。なお、融着防止
剤使用時は分散媒中に乳化剤を併用するのが望ましく、
乳化剤としてはドデシルベンゼンスルホン酸ナトリウム
やオレイン酸ナトリウムのようなアニオン系界面活性剤
が好適である。乳化剤の添加量は、樹脂粒子100重量
部当り0.001〜5.0重量部程度とすれば良い。
When impregnating the resin particles with the inorganic gas type foaming agent, a resin particle anti-fusion agent may be added to the dispersion medium in order to prevent fusion of the resin particles during heating. This resin particle anti-fusing agent can be used regardless of whether it is organic or inorganic, as long as it is substantially insoluble and non-melting upon heating, but it is generally preferable to use an inorganic one. . Examples of typical anti-fusing agents include aluminum oxide, titanium oxide, aluminum hydroxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, tricalcium phosphate, magnesium pyrophosphate and the like. . Such an anti-fusing agent is usually used in the form of fine particles having a particle size of 0.001 to 100 μm, preferably 0.001 to 30 μm. The amount of the anti-fusing agent added is usually about 0.01 to 10 parts by weight with respect to 100 parts by weight of the resin particles. When using the anti-fusion agent, it is desirable to use an emulsifier together in the dispersion medium,
As the emulsifier, anionic surfactants such as sodium dodecylbenzenesulfonate and sodium oleate are suitable. The addition amount of the emulsifier may be about 0.001 to 5.0 parts by weight per 100 parts by weight of the resin particles.

【0015】本発明において、樹脂粒子に発泡剤を含浸
させて得られる発泡性樹脂粒子中には、二次結晶が含ま
れているのが好ましい。この二次結晶の存在する発泡性
樹脂粒子は、成形性の良好な発泡粒子を与える。原料樹
脂として、無架橋ポリプロピレン系樹脂や無架橋の直鎖
状ポリエチレン系樹脂を用いる場合、この発泡性樹脂粒
子中に二次結晶を存在させることは特に有利である。
In the present invention, the expandable resin particles obtained by impregnating the resin particles with the foaming agent preferably contain secondary crystals. The expandable resin particles in which the secondary crystals are present give expanded particles having good moldability. When a non-crosslinked polypropylene resin or a non-crosslinked linear polyethylene resin is used as the raw material resin, it is particularly advantageous to allow secondary crystals to be present in the expandable resin particles.

【0016】なお、樹脂粒子中における二次結晶の存在
は、樹脂発泡粒子の示差走査熱量測定によつて得られる
DSC曲線によつて判定することができる。この場合、
樹脂発泡粒子の示差走査熱量測定によつて得られるDS
C曲線とは、ポリオレフィン系樹脂発泡粒子1〜3mg
を示差走査熱量計によつて10℃/分の昇温速度で22
0℃まで昇温したときに得られるDSC曲線であり、例
えば、試料を室温から220℃まで10℃/分の昇温速
度で昇温した時に得られるDSC曲線を第1回のDSC
曲線とし、次いで220℃から10℃/分の降温速度で
40℃付近まで降温し、再度10℃/分の昇温速度で2
20℃まで昇温した時に得られるDSC曲線を第2回の
DSC曲線とし、これらのDSC曲線から固有ピ−ク、
高温ピ−クを求めることができる。また、この場合、固
有ピ−クとは、発泡粒子を構成するポリオレフィン系樹
脂の、いわゆる融解時の吸熱によるものであると考えら
れる。この固有ピ−クは第1回目のDSC曲線にも第2
回目のDSC曲線にも現われ、ピ−ク頂点の温度は第1
回目と第2回目で多少異なる場合があるが、その差は5
℃未満、通常は2℃未満である。一方、高温ピ−クと
は、第1回目のDSC曲線で上記固有ピ−クより高温側
に現われる吸熱ピ−クである。樹脂粒子中における二次
結晶の存在は、DSC曲線にこの高温ピ−クが現われる
か否かで判定され、実質的な高温ピ−クが現われない場
合には、樹脂中には二次結晶が存在しないものと判定さ
れる。本発明の場合、前記第2回目のDSC曲線に現わ
れる固有ピ−クの温度と第1回目のDSC曲線に現われ
る高温ピ−クの温度との差は大きいことが望ましく、第
2回目のDSC曲線の固有ピ−クの頂点の温度と高温ピ
−クの頂点の温度との差は5℃以上、好ましくは10℃
以上である。
The presence of secondary crystals in the resin particles can be determined by the DSC curve obtained by the differential scanning calorimetry of the resin expanded particles. in this case,
DS obtained by differential scanning calorimetry of expanded resin particles
C curve means 1 to 3 mg of foamed polyolefin resin particles
22 with a differential scanning calorimeter at a temperature rising rate of 10 ° C./min.
It is a DSC curve obtained when the temperature is raised to 0 ° C., for example, the DSC curve obtained when the sample is heated from room temperature to 220 ° C. at a temperature raising rate of 10 ° C./min.
A curve is drawn, and then the temperature is lowered from 220 ° C. to about 40 ° C. at a temperature lowering rate of 10 ° C./min.
The DSC curve obtained when the temperature was raised to 20 ° C. was used as the second DSC curve. From these DSC curves, the specific peak,
A high temperature peak can be obtained. Further, in this case, the unique peak is considered to be due to the so-called heat absorption during melting of the polyolefin resin forming the expanded particles. This peculiar peak is the second one on the first DSC curve.
It appears on the DSC curve for the first time, and the peak temperature is the first
There may be some differences between the 2nd time and the 2nd time, but the difference is 5
<0 ° C, usually <2 ° C. On the other hand, the high temperature peak is an endothermic peak that appears on the higher temperature side than the above-mentioned intrinsic peak in the first DSC curve. The presence of secondary crystals in the resin particles is determined by whether or not this high-temperature peak appears on the DSC curve. If no substantial high-temperature peak appears, the secondary crystals are present in the resin. It is determined that it does not exist. In the case of the present invention, it is desirable that the difference between the temperature of the characteristic peak appearing in the second DSC curve and the temperature of the high temperature peak appearing in the first DSC curve is large, and the second DSC curve. The difference between the temperature of the peak of the specific peak and the temperature of the peak of the high temperature peak is 5 ° C or more, preferably 10 ° C.
That is all.

【0017】次に、発泡粒子に関し、示差走査熱量測定
によって得られるそのDSC曲線を図面に示す。図1は
二次結晶を含有する発泡粒子に関するもので、図2は二
次結晶を含有しない発泡粒子に関するものである。図1
及び図2において、曲線1及び曲線2は、試料としての
発泡粒子を測定(第1回目の測定)することによつて得
られたDSC曲線を示し、曲線1′及び2′は第1回目
の測定後の試料を再び測定(第2回目の測定)すること
によつて得られたDSC曲線を示す。図1と図2を対比
してわかるように、二次結晶を含有する発泡粒子の場
合、第1回目の測定結果を示す曲線1においては、固有
ピ−クBの他に、高温ピ−クAが現われ、この高温ピ−
クAの存在により、発泡粒子に二次結晶が存在すること
が確認される。一方、二次結晶を含有しない発泡粒子の
場合、第1回目の測定結果を示す曲線2においては、固
有ピ−クbが現われるのみで、高温ピ−クは現われず、
発泡粒子には二次結晶が含まれないことが確認される。
図2の発泡粒子に二次結晶が存在しない理由は、原料未
発泡樹脂粒子が、二次結晶化促進温度(融点〜融解終了
温度未満)において十分な時間熱処理を受けず、融解終
了温度以上の温度で発泡されたことによる。なお、2回
目の測定においては、図1及び図2の発泡粒子にも高温
ピ−クは現われず、固有ピ−クB′、b′のみ現われ
る。
The DSC curve of the expanded beads obtained by differential scanning calorimetry is shown in the drawing. FIG. 1 relates to expanded particles containing secondary crystals, and FIG. 2 relates to expanded particles not containing secondary crystals. Figure 1
2 and FIG. 2, curves 1 and 2 show DSC curves obtained by measuring expanded particles as a sample (first measurement), and curves 1 ′ and 2 ′ show the first measurement. The DSC curve obtained by measuring the sample after measurement again (2nd measurement) is shown. As can be seen by comparing FIGS. 1 and 2, in the case of expanded particles containing secondary crystals, in the curve 1 showing the first measurement result, in addition to the specific peak B, the high temperature peak A appears, this high temperature peak
The presence of KU A confirms the presence of secondary crystals in the expanded beads. On the other hand, in the case of expanded particles containing no secondary crystals, in curve 2 showing the first measurement result, only the specific peak b appears, but the high temperature peak does not appear,
It is confirmed that the expanded beads do not contain secondary crystals.
The secondary crystal does not exist in the expanded particles of FIG. 2 because the raw material unexpanded resin particles do not undergo the heat treatment at the secondary crystallization promoting temperature (melting point to less than melting end temperature) for a sufficient time, and the temperature is not less than the melting end temperature. Due to foaming at temperature. In the second measurement, the foamed particles shown in FIGS. 1 and 2 do not show the high temperature peaks, but only the specific peaks B'and b '.

【0018】本発明において、二次結晶を含む発泡性樹
脂粒子を得るには、無架橋のポリプロピレン系樹脂で
は、耐圧容器内において、樹脂粒子をその融解終了温度
以上に昇温することなく、融点より約20℃低い温度
(融点−20℃)以上、融解終了温度未満の温度に充分
な時間、通常5〜90分間、好ましくは15〜60分間
程度保持すればよい。また、このようにして二次結晶化
した発泡性樹脂粒子を発泡させる場合、発泡温度は固有
ピ−クの融解終了温度以上であつても、前記高温ピ−ク
以下の温度であれば成形性の良好な発泡粒子を得ること
ができる。無架橋直鎖状低密度ポリエチレンの場合も、
前記の無架橋ポリプロピレン系樹脂の場合と同様にして
二次結晶を含む発泡性樹脂粒子を得ることができるが、
この場合の熱処理温度は融点より15℃程度低い温度以
上、融解終了温度未満の温度であり、また時間は、5〜
90分、好ましくは5〜30分である。
In the present invention, in order to obtain expandable resin particles containing secondary crystals, in the case of a non-crosslinked polypropylene resin, the melting point of the resin particles in the pressure vessel is not raised above the melting end temperature thereof. The temperature may be maintained at a temperature about 20 ° C. lower (melting point −20 ° C.) or more and lower than the melting end temperature for a sufficient time, usually 5 to 90 minutes, preferably 15 to 60 minutes. Further, in the case of expanding the secondary crystallized expandable resin particles in this way, the foaming temperature is not less than the melting end temperature of the specific peak, but is the moldability as long as the temperature is at the high temperature peak or less. It is possible to obtain foamed particles of good quality. In the case of non-crosslinked linear low density polyethylene,
Although it is possible to obtain expandable resin particles containing secondary crystals in the same manner as in the case of the non-crosslinked polypropylene resin,
In this case, the heat treatment temperature is not lower than the melting point by about 15 ° C. and lower than the melting end temperature, and the time is from 5 to 5.
90 minutes, preferably 5 to 30 minutes.

【0019】前記のようにして得られる発泡剤を含浸し
た発泡性樹脂粒子は、これを加圧容器から、低圧帯域、
通常、常圧の容器内に放出させることにより、発泡粒子
とされる。本発明により得られる発泡粒子の発泡倍率
は、3倍以上、好ましくは、5〜60倍である。
The expandable resin particles impregnated with the foaming agent obtained as described above are prepared by removing the foamable resin particles from a pressure vessel,
Usually, it is made into foamed particles by discharging it into a container under normal pressure. The expansion ratio of the expanded beads obtained by the present invention is 3 times or more, preferably 5 to 60 times.

【0020】前記のようにして得られた本発明の発泡粒
子は、気泡径が0.05mm以上という大きなもので、
型内成形性において非常にすぐれたものである。このも
のを金型に充填し、水蒸気で加熱することにより、所要
形状の成形体とすることができる。本発明の発泡粒子を
用いて得られた成形体は、その収縮性が著しく抑制され
た、寸法精度の高いものである。
The expanded beads of the present invention obtained as described above have a large cell diameter of 0.05 mm or more,
It is very excellent in moldability. By filling this into a mold and heating it with steam, a molded product having a required shape can be obtained. The molded article obtained by using the expanded beads of the present invention has high dimensional accuracy with its shrinkability significantly suppressed.

【0021】[0021]

【実施例】次に、実施例によって本発明をさらに詳細に
説明するが、本発明はこの実施例に限定されるものでは
ない。
EXAMPLES Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0022】実施例1〜3 中和剤としてステアリン酸カルシウムを500wtpp
m含有する無架橋のエチレン−プロピレンランダム共重
合体(エチレン成分2.3重量%、融点146.5℃、
融解終了温度165℃)100重量部当たり、発泡助剤
としてリン酸2,2−メチレンビス(4,6−ジ−te
rt−ブチルフェニル)ナトリウムを500ppm及び
表1に示す高級脂肪酸金属塩を2000〜5000pp
m添加して押出機内で溶融混練した後、押出機先端のダ
イスからストランド状に押出し水中で急冷した後、切断
してペレット状に造粒した(長さ2.4mm、断面の直
径1.1mm)。このペレット100重量部と、微粒子
状のリン酸三カルシウム0.1重量部と、ドデシルベン
ゼンスルホン酸ナトリウム0.2重量部と、水220重
量部及びドライアイス(発泡剤)7.5重量部を配合し
て密閉容器内で撹拌しながら151℃まで昇温してこの
温度で5分間保持した。次いでこの温度で密閉容器のバ
ルブを開放して内容物を大気圧下に放出して発泡させ
た。この際、放出時の容器内圧力を、放出開始直前の容
器内圧力にほぼ一致させるために、容器内に高圧の二酸
化炭素を導入しつつ、容器内圧力を約40kg/cm2
Gに保持して放出を行った。得られた発泡粒子の平均嵩
発泡倍率及び平均気泡径を表1に示す。
Examples 1 to 3 500 wtpp of calcium stearate as a neutralizing agent
m-containing non-crosslinked ethylene-propylene random copolymer (2.3% by weight of ethylene component, melting point 146.5 ° C,
Melting end temperature of 165 ° C.) 100 parts by weight of 2,2-methylenebis (4,6-di-te phosphate) as a foaming aid.
rt-butylphenyl) sodium at 500 ppm and higher fatty acid metal salts shown in Table 1 at 2000 to 5000 pp
m, added and melt-kneaded in the extruder, extruded in a strand form from a die at the tip of the extruder, rapidly cooled in water, cut and pelletized into pellets (length: 2.4 mm, cross section diameter: 1.1 mm). ). 100 parts by weight of the pellets, 0.1 parts by weight of fine-particle tricalcium phosphate, 0.2 parts by weight of sodium dodecylbenzenesulfonate, 220 parts by weight of water and 7.5 parts by weight of dry ice (foaming agent). The ingredients were blended and the temperature was raised to 151 ° C. with stirring in a closed container, and the temperature was maintained for 5 minutes. Then, at this temperature, the valve of the closed container was opened and the contents were discharged under atmospheric pressure to foam. At this time, in order to make the pressure inside the container at the time of discharge almost equal to the pressure inside the container just before the start of discharge, while introducing high-pressure carbon dioxide into the container, the pressure inside the container was about 40 kg / cm 2.
Release was carried out by holding at G. Table 1 shows the average bulk expansion ratio and average cell diameter of the obtained expanded beads.

【0023】次に、このようにして得られた発泡粒子か
ら縦横共に30cm、厚さ5cmの板状成形体を得るた
めに、発泡粒子を金型内に充填し、約4.0kg/cm
2Gの水蒸気(温度:151.0℃)で加熱した。次い
で、この際に得られた成形体の品質を以下のようにして
調べて、発泡粒子の成形性を評価した。その結果を表1
に示す。
Next, in order to obtain a plate-shaped molded product having a length and width of 30 cm and a thickness of 5 cm from the foamed particles thus obtained, the foamed particles were filled in a mold and about 4.0 kg / cm.
It was heated with 2 G of steam (temperature: 151.0 ° C.). Then, the quality of the molded product obtained at this time was examined as follows, and the moldability of the expanded beads was evaluated. The results are shown in Table 1.
Shown in.

【0024】(発泡粒子の成形性評価) ○:金型寸法に対する成形品の収縮率が縦横共に3%以
内 ×:金型寸法に対する成形品の収縮率が縦横のすくなく
ともいずれかが3%超
(Evaluation of Formability of Expanded Particles) O: Shrinkage of the molded product with respect to the mold size is within 3% in both length and width. X: Shrinkage of the molded product with respect to the mold size is more than 3% in at least one of the length and width.

【0025】なお、表1において符号で示した高級脂肪
酸金属塩の具体的内容は以下の通りである。St−M
g:ステアリン酸マグネシウム St−Zn:ステアリン酸亜鉛 St−Ba:ステアリン酸バリウム St−Al:ステアリン酸アルミニウム
The specific contents of the higher fatty acid metal salt indicated by the symbol in Table 1 are as follows. St-M
g: Magnesium stearate St-Zn: Zinc stearate St-Ba: Barium stearate St-Al: Aluminum stearate

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明のポリオレフィン系樹脂発泡粒子
は、気泡径の大きい高発泡倍率のもので、型内成形性に
すぐれ、金型内に充填し、加熱発泡させることにより、
収縮性の著しく抑制された、寸法精度のよい高品質の発
泡成形体を与える。
EFFECT OF THE INVENTION The expanded polyolefin resin particles of the present invention have a large expansion diameter and a high expansion ratio, are excellent in in-mold moldability, and are filled in a mold and heated and foamed.
A high-quality foamed molded product having excellent dimensional accuracy with significantly suppressed shrinkage.

【図面の簡単な説明】[Brief description of drawings]

【図1】二次結晶の存在する発泡粒子について示差走査
熱量測定して得られたDSC曲線を示し、曲線1は第1
回目のDSC曲線を、曲線1′は第2回目のDSC曲線
を示している。
FIG. 1 shows a DSC curve obtained by performing differential scanning calorimetry on expanded particles in which secondary crystals are present, where curve 1 is the first
The first DSC curve is shown, and the curve 1'is the second DSC curve.

【図2】二次結晶の存在しない発泡粒子について示差走
査熱量測定して得られたDSC曲線を示し、曲線2は第
1回目のDSC曲線を、曲線2′は第2回目のDSC曲
線を示している。
FIG. 2 shows a DSC curve obtained by performing differential scanning calorimetry on expanded particles having no secondary crystals, curve 2 shows a first DSC curve, and curve 2 ′ shows a second DSC curve. ing.

【符号の説明】[Explanation of symbols]

A 高温ピーク B,B′、b,b′ 固有ピーク A High temperature peak B, B ', b, b' Unique peak

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内部に無機ガスを含有するポリオレフィ
ン系樹脂発泡粒子において、該樹脂中に発泡助剤ととも
に高級脂肪酸のマグネシウム塩を含有することを特徴と
するポリオレフィン系樹脂発泡粒子。
1. A foamed polyolefin resin particle containing an inorganic gas therein, wherein the resin contains a magnesium salt of a higher fatty acid together with a foaming aid.
【請求項2】 発泡助剤が有機リン系造核剤である請求
項1のポリオレフィン系樹脂発泡粒子。
2. The polyolefin resin foamed particles according to claim 1, wherein the foaming aid is an organic phosphorus nucleating agent.
【請求項3】 ポリオレフィン系樹脂粒子内に加圧下で
無機ガス系発泡剤を含浸させた後、低圧帯域に放出させ
るポリオレフィン系樹脂発泡粒子の製造方法において、
該ポリオレフィン系樹脂粒子として、発泡助剤とともに
高級脂肪酸のマグネシウム塩を含有させたポリオレフィ
ン系樹脂粒子を用いることを特徴とするポリオレフィン
系樹脂発泡粒子の製造方法。
3. A method for producing foamed polyolefin resin particles, which comprises impregnating a polyolefin resin particle with an inorganic gas foaming agent under pressure and then releasing the foamed material into a low pressure zone.
A method for producing expanded polyolefin resin particles, wherein polyolefin resin particles containing a magnesium salt of a higher fatty acid together with a foaming aid are used as the polyolefin resin particles.
【請求項4】 発泡助剤が有機リン系造核剤である請求
項3の方法。
4. The method according to claim 3, wherein the foaming aid is an organophosphorus nucleating agent.
JP35664092A 1992-12-22 1992-12-22 Expanded polyolefin resin particles and method for producing the same Expired - Fee Related JP3198469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35664092A JP3198469B2 (en) 1992-12-22 1992-12-22 Expanded polyolefin resin particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35664092A JP3198469B2 (en) 1992-12-22 1992-12-22 Expanded polyolefin resin particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06192462A true JPH06192462A (en) 1994-07-12
JP3198469B2 JP3198469B2 (en) 2001-08-13

Family

ID=18450043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35664092A Expired - Fee Related JP3198469B2 (en) 1992-12-22 1992-12-22 Expanded polyolefin resin particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3198469B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023172A (en) * 2005-07-19 2007-02-01 Kaneka Corp Method for producing pre-expanded particle of polypropylene resin
JP2009221451A (en) * 2008-02-21 2009-10-01 Kaneka Corp Method for manufacturing polypropylene resin foam particle, foam particle and foam molded body
WO2018193901A1 (en) 2017-04-21 2018-10-25 株式会社カネカ Polypropylene resin foamed particles and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023172A (en) * 2005-07-19 2007-02-01 Kaneka Corp Method for producing pre-expanded particle of polypropylene resin
JP2009221451A (en) * 2008-02-21 2009-10-01 Kaneka Corp Method for manufacturing polypropylene resin foam particle, foam particle and foam molded body
WO2018193901A1 (en) 2017-04-21 2018-10-25 株式会社カネカ Polypropylene resin foamed particles and method for producing same

Also Published As

Publication number Publication date
JP3198469B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
EP0168954B2 (en) Process for the production of expanded particles of a polypropylene resin
US5895614A (en) Method of forming a microcellular foam plank
JP3279382B2 (en) Non-crosslinked polyethylene resin foam particles and method for producing the same
KR960013071B1 (en) Process for production of expansion - molded article in a mold of linear low density polyethylene resins
JPS61215631A (en) Propylene random copolymer resin particle and its production
JPS63183832A (en) Manufacture of polypropylene resin in-mold foam molding
JPH0386736A (en) Production of foamed polyolefin resin particle
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JPH1077359A (en) Expanded resin bead
JPH11209502A (en) Polypropylene-based resin preexpanded particle and production of polypropylene-based resin in-mold expansion molded product using the same
JP2777429B2 (en) Pre-expanded polypropylene resin particles and method for producing the same
JP3198469B2 (en) Expanded polyolefin resin particles and method for producing the same
JPH05163381A (en) Production of expanded polymer particle
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
JP3218333B2 (en) Expanded polyolefin resin particles and method for producing the same
JP3525947B2 (en) Conductive polypropylene resin expanded particles, in-mold molded article formed from the expanded particles, and method for producing in-mold molded article
JPH0386737A (en) Production of foamed polyolefin resin particle
JP3281904B2 (en) Expanded polypropylene resin particles and molded article thereof
JPS614738A (en) Preparation of foamed polypropylene resin particle
JP3195675B2 (en) Method for producing expanded polyolefin resin particles
JP2874772B2 (en) Method for producing expanded polymer particles
JPH059329A (en) Production of crosslinked expanded polyolefinic resin particle
JP3020296B2 (en) Method for producing non-crosslinked linear low-density polyethylene resin expanded particles
JP2603858B2 (en) Method for producing spherical polyethylene expanded particles
JP2790791B2 (en) Method for producing foamed molded article in polypropylene resin mold

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees