JPH05163381A - Production of expanded polymer particle - Google Patents

Production of expanded polymer particle

Info

Publication number
JPH05163381A
JPH05163381A JP35264991A JP35264991A JPH05163381A JP H05163381 A JPH05163381 A JP H05163381A JP 35264991 A JP35264991 A JP 35264991A JP 35264991 A JP35264991 A JP 35264991A JP H05163381 A JPH05163381 A JP H05163381A
Authority
JP
Japan
Prior art keywords
temperature
polymer particles
particles
polymer
foaming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35264991A
Other languages
Japanese (ja)
Other versions
JP3171272B2 (en
Inventor
Hideki Kuwabara
英樹 桑原
Kazuo Tsurugai
和男 鶴飼
Masaharu Oikawa
政春 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP35264991A priority Critical patent/JP3171272B2/en
Publication of JPH05163381A publication Critical patent/JPH05163381A/en
Application granted granted Critical
Publication of JP3171272B2 publication Critical patent/JP3171272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To easily produce the title particles having a high expansion ratio without making cells fine even when an inorg. gaseous blowing agent, such as carbon dioxide, is used in a process wherein polymer particles are impregnated with a blowing agent and spouted out of a hermetically sealed container into a low-pressure atmosphere to expand the particles. CONSTITUTION:Polymer particles contg. 0.02-5.0wt.% inorg. substance such as a metal carbonate, bisulfate, sulfate, oxide, or chloride, clay, or a natural mineral and 0.02-5.0wt.% polypropylene glycol-polyethylene glycol copolymer are impregnated with a blowing agent and spouted out of a hermetically sealed container into a low-pressure atmosphere to expand the particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は重合体発泡粒子の製造方
法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing expanded polymer particles.

【0002】[0002]

【従来の技術】従来、揮発性発泡剤を含浸させた発泡性
の重合体粒子を密閉容器内で水等の分散媒に分散させ、
容器内圧力を発泡剤の蒸気圧以上に保持しつつ重合体粒
子の軟化温度以上の温度に加熱し、次いで容器の一端を
開放して重合体粒子と分散媒とを容器内よりも低圧の雰
囲気下に放出することにより重合体粒子を発泡させる方
法は知られている。
2. Description of the Related Art Conventionally, foamable polymer particles impregnated with a volatile foaming agent are dispersed in a dispersion medium such as water in a closed container,
An atmosphere of a pressure lower than that in the container by heating one of the container particles to a temperature not lower than the softening temperature of the polymer particles while maintaining the pressure in the container at the vapor pressure of the foaming agent or higher, and then opening one end of the container. Methods of foaming polymer particles by releasing below are known.

【0003】この方法において用いられる揮発性発泡剤
としては、例えばプロパン、ブタン、ペンタン等の炭化
水素類や、トリクロロフロロメタン、ジクロロジフロロ
メタン等のハロゲン化炭化水素類がこれまで用いられて
いた。しかしながら、従来から揮発性発泡剤として使用
されている上記化合物は、毒性や可燃性等の危険性を有
していたり、フロン類のようにオゾン層破壊という問題
を有していたり、或いは危険性や環境破壊という点では
それほど問題を有さなくとも、高価で実用的ではない等
の問題を有するものが多いのが現状である。
Hydrocarbons such as propane, butane and pentane, and halogenated hydrocarbons such as trichlorofluoromethane and dichlorodifluoromethane have been used as volatile blowing agents in this method. .. However, the above compounds conventionally used as a volatile foaming agent have a risk of toxicity and flammability, or have a problem of depletion of the ozone layer like CFCs, or a danger. In reality, many of them have problems such as being expensive and impractical even though they are not so problematic in terms of environmental damage.

【0004】このような問題を解決するために多くの研
究がなされ、本出願人もかかる課題を解決するために鋭
意研究した結果、従来発泡剤としては全く顧みられてい
なかった無機ガス系発泡剤を用いて重合体発泡粒子を得
る方法を先に提案した(例えば特公昭62−61227
号公報、特開昭61−2741号公報、特開昭61−4
738号公報等)。
Much research has been done to solve such problems, and as a result of intensive research by the applicant of the present invention to solve these problems, an inorganic gas-based foaming agent that has never been considered as a foaming agent has been obtained. A method for obtaining polymer expanded particles by using the above has been previously proposed (for example, Japanese Patent Publication No. 62-61227).
JP-A-61-2741 and JP-A-61-4
No. 738, etc.).

【0005】しかしながら、無機ガス系発泡剤を用いた
場合、揮発性発泡剤と比べて重合体の可塑化効果や、ガ
スの浸透速度の違い等により、安定して高発泡倍率の発
泡粒子を得難いという問題があった。
However, when an inorganic gas type foaming agent is used, it is difficult to stably obtain expanded particles having a high expansion ratio due to the plasticizing effect of the polymer and the difference in gas permeation rate as compared with the volatile foaming agent. There was a problem.

【0006】本発明者等は上記課題を解決するために鋭
意研究した結果、硼砂、硫酸ニッケル、塩化ナトリウム
等の無機物を重合体粒子中に含有させておくことによ
り、無機ガス系発泡剤を用いて工業的規模で重合体発泡
粒子を製造した場合にも、高発泡倍率の重合体発泡粒子
を得ることができ、更に従来の揮発性発泡剤を用いた場
合でも発泡剤の使用量を少なくできるとともに、少ない
使用量で特開昭61−4738号公報に記載されている
方法よりも更に安定して高発泡倍率の発泡粒子を得るこ
とができることを見出し先に出願を行った(特開平3−
166238号公報、特開平3−223347号公報
等)。
The present inventors have conducted extensive studies to solve the above problems, and as a result, by using an inorganic gas-based foaming agent by incorporating an inorganic substance such as borax, nickel sulfate and sodium chloride in the polymer particles. Even when polymer expanded particles are produced on an industrial scale, polymer expanded particles with a high expansion ratio can be obtained, and the amount of the foaming agent used can be reduced even when a conventional volatile foaming agent is used. At the same time, the inventors filed an application for finding that it is possible to obtain expanded particles having a high expansion ratio more stably than in the method described in JP-A-61-2738 with a small amount of use (JP-A-3-1).
166238, JP-A-3-223347, etc.).

【0007】しかしながら、上記無機物を含有する重合
体粒子に無機ガス系発泡剤、特に二酸化炭素を含浸させ
て発泡を行った場合、得られる発泡粒子の気泡が微細化
し易く、このような発泡粒子を用いて得た成型体は、寸
法精度が低下したものであったり、成型時の二次発泡性
不良等の問題を有していた。
However, when polymer particles containing the above-mentioned inorganic material are impregnated with an inorganic gas-based foaming agent, particularly carbon dioxide for foaming, the bubbles of the resulting foamed particles are likely to become fine, and such foamed particles are The molded product obtained by using had problems such as reduced dimensional accuracy and poor secondary foamability during molding.

【0008】本発明者等は上記問題を解決すべく鋭意研
究した結果、無機物とともにポリプロピレングリコール
・ポリエチレングリコール重合体を重合体粒子に含有さ
せることにより、両者が相乗的に作用して無機物の添加
量が少ない場合でも、二酸化炭素等の無機ガスを用いて
高発泡倍率の発泡粒子を得ることができるとともに、得
られる発泡粒子中の気泡の微細化問題を解決し得ること
を見出し本発明を完成するに至った。
The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, by incorporating a polypropylene glycol / polyethylene glycol polymer in the polymer particles together with the inorganic substance, the two act synergistically and the added amount of the inorganic substance is increased. Even when the amount is small, it is possible to obtain expanded particles having a high expansion ratio by using an inorganic gas such as carbon dioxide, and it is possible to solve the problem of micronization of bubbles in the obtained expanded particles, thereby completing the present invention. Came to.

【0009】[0009]

【課題を解決するための手段】即ち本発明の重合体発泡
粒子の製造方法は、無機物とポリプロピレングリコール
・ポリエチレングリコール重合物とを含有する重合体粒
子を、発泡剤の存在下に密閉容器内で分散媒に分散せし
めて該重合体粒子の軟化温度以上の温度に加熱し、次い
で発泡剤が含浸された重合体粒子と分散媒とを容器内よ
りも低圧の雰囲気下に放出して重合体粒子を発泡させる
ことを特徴とする。
That is, the method for producing expanded polymer particles of the present invention is to prepare a polymer particle containing an inorganic substance and a polypropylene glycol / polyethylene glycol polymer in a closed container in the presence of a foaming agent. Polymer particles dispersed in a dispersion medium and heated to a temperature equal to or higher than the softening temperature of the polymer particles, and then the polymer particles impregnated with a foaming agent and the dispersion medium are discharged under an atmosphere at a pressure lower than that in the container, and the polymer particles are discharged. Is foamed.

【0010】本発明方法においては、重合体粒子中に、
無機物0.02〜5.0重量%、ポリプロピレングリコール
・ポリエチレングリコール重合物0.02〜5.0重量%を
含有することが好ましい。また本発明方法では発泡剤と
して無機ガス系発泡剤が好ましい。
In the method of the present invention, in the polymer particles,
It is preferable to contain 0.02 to 5.0% by weight of an inorganic substance and 0.02 to 5.0% by weight of a polypropylene glycol / polyethylene glycol polymer. Further, in the method of the present invention, an inorganic gas type foaming agent is preferable as the foaming agent.

【0011】本発明において用いる重合体粒子として
は、プロピレン単独重合体、プロピレン−エチレンラン
ダム共重合体、プロピレン−エチレンブロック共重合
体、プロピレン−ブテンランダム共重合体、プロピレン
−エチレン−ブテンランダム共重合体等のプロピレン系
重合体、或いは低密度ポリエチレン、高密度ポリエチレ
ンや、エチレンと少量のα−オレフィン(炭素数4、
6、8等)との共重合体である直鎖状低密度ポリエチレ
ン等のエチレン系共重合体等が挙げられる。
The polymer particles used in the present invention include propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer and propylene-ethylene-butene random copolymer. Propylene-based polymers such as coalesce, low-density polyethylene, high-density polyethylene, ethylene and a small amount of α-olefin (carbon number 4,
6, 8, etc.) and ethylene-based copolymers such as linear low-density polyethylene.

【0012】これらのうち、殊にプロピレン−エチレン
ランダム共重合体、プロピレン−ブテンランダム共重合
体、プロピレン−エチレン−ブテンランダム共重合体等
のプロピレン系重合体、直鎖状低密度ポリエチレンが好
ましい。これらの重合体は架橋したものであっても良い
が、無架橋のものが特に好ましい。
Of these, propylene-based polymers such as propylene-ethylene random copolymers, propylene-butene random copolymers, propylene-ethylene-butene random copolymers, and linear low-density polyethylene are particularly preferred. Although these polymers may be crosslinked, non-crosslinked ones are particularly preferable.

【0013】上記重合体粒子に含有される無機物として
は、例えば水酸化アルミニウム、水酸化カルシウム、水
酸化マグネシウム等の無機水酸化物、炭酸カルシウム、
炭酸マグネシウム、炭酸バリウム等の無機炭酸塩、亜硫
酸カルシウム、亜硫酸マグネシウム等の無機亜硫酸塩、
硫酸カルシウム、硫酸アルミニウム、硫酸マンガン、硫
酸ニッケル等の無機硫酸塩、酸化カルシウム、酸化アル
ミニウム、酸化ケイ素等の無機酸化物、塩化ナトリウ
ム、塩化マグネシウム、塩化カルシウム等の無機塩化
物、硼砂、タルク、クレー、カオリン、ゼオライト等の
粘土または天然鉱物等が挙げられる。
Examples of the inorganic substance contained in the polymer particles include inorganic hydroxides such as aluminum hydroxide, calcium hydroxide and magnesium hydroxide, calcium carbonate,
Inorganic carbonates such as magnesium carbonate and barium carbonate, inorganic sulfites such as calcium sulfite and magnesium sulfite,
Inorganic sulfates such as calcium sulfate, aluminum sulfate, manganese sulfate and nickel sulfate, inorganic oxides such as calcium oxide, aluminum oxide and silicon oxide, inorganic chlorides such as sodium chloride, magnesium chloride and calcium chloride, borax, talc and clay , Clay such as kaolin and zeolite, natural minerals and the like.

【0014】上記無機物は1種又は2種以上混合して用
いることができ、上記重合体粒子の造粒時に添加してお
けば良い。無機物は通常、粉粒体として添加されるが粒
径は特に限定されない。しかしながら、一般的に、粒径
0.1〜150μm、特に1〜100μmのものを用いる
ことが好ましい。
The above inorganic substances may be used alone or in combination of two or more, and may be added at the time of granulating the polymer particles. The inorganic substance is usually added as a granular material, but the particle size is not particularly limited. However, in general, the particle size
It is preferable to use one having a thickness of 0.1 to 150 μm, particularly 1 to 100 μm.

【0015】本発明では重合体粒子中に上記無機物とと
もに、ポリプロピレングリコール・ポリエチレングリコ
ール重合物(以下、PPG・PEG重合物と略称す
る。)を含有する。このPPG・PEG重合物とは、親
水性のPEGと親油性のPPGとが重合したノニオン系
界面活性剤で、ブロックコポリマーが一般的である。ま
たPPG・PEG重合物のうち、PPG重量平均分子量
が2000以上のものがブリードが少なく、予備発泡粒
子の成型性が特に良好なものとなる。一方、混練分散性
の面からPPG・PEG重合物としては、重量平均分子
量が8000以上、特に10000以上のものが好まし
い。
In the present invention, the polymer particles contain a polypropylene glycol / polyethylene glycol polymer (hereinafter abbreviated as PPG / PEG polymer) together with the above-mentioned inorganic material. The PPG / PEG polymer is a nonionic surfactant obtained by polymerizing a hydrophilic PEG and a lipophilic PPG, and is generally a block copolymer. Further, among the PPG / PEG polymers, those having a PPG weight average molecular weight of 2000 or more have less bleeding, and the prefoamed particles have particularly good moldability. On the other hand, from the viewpoint of kneading dispersibility, the PPG / PEG polymer having a weight average molecular weight of 8,000 or more, particularly 10,000 or more is preferable.

【0016】上記無機物の重合体粒子中における含有量
は、0.02〜5.0重量%、特に0.05〜1重量%が好ま
しく、またPPG・PEG重合物の重合体粒子中におけ
る含有量は、0.02〜5.0重量%、特に0.1〜1重量%
が好ましい。無機物の含有量が5.0重量%を超えると、
得られる発泡粒子が収縮し易くなり発泡成型性の上で好
ましくない。一方、無機物の含有量が0.02重量%未満
であると本発明の効果が得られなくなる。またPPG・
PEG重合物の添加量が5.0重量%を超えると成型時の
融着不良や機械的強度の低下等が問題となり、0.02重
量%未満であると得られる発泡粒子の気泡が微細とな
り、このような発泡粒子を用いて得た成型体は寸法精度
が低く、成型時の二次発性も良くない。本発明において
無機物とPPG・PEG重合体とを含有する重合体粒子
としては、一般に粒径が0.3〜5mm、特に0.5〜3mmの
ものが好ましい。
The content of the above inorganic substance in the polymer particles is preferably 0.02 to 5.0% by weight, particularly preferably 0.05 to 1% by weight, and the content of the PPG / PEG polymer in the polymer particles is preferable. Is 0.02 to 5.0% by weight, especially 0.1 to 1% by weight
Is preferred. When the content of the inorganic substance exceeds 5.0% by weight,
The resulting foamed particles tend to shrink, which is not preferable in terms of foaming moldability. On the other hand, if the content of the inorganic substance is less than 0.02% by weight, the effect of the present invention cannot be obtained. Also PPG
If the amount of the PEG polymer added exceeds 5.0% by weight, problems such as defective fusion during molding and deterioration of mechanical strength will occur, and if it is less than 0.02% by weight, the bubbles of the resulting expanded particles will be fine. The molded product obtained by using such expanded particles has low dimensional accuracy and poor secondary property during molding. In the present invention, the polymer particles containing an inorganic substance and a PPG / PEG polymer generally have a particle size of 0.3 to 5 mm, and particularly preferably 0.5 to 3 mm.

【0017】本発明において重合体粒子に発泡剤を含浸
させる工程は、重合体粒子を密閉容器内で分散媒に分散
させる工程の前・後のいずれでも良いが、通常は重合体
粒子を分散させる工程において同時に行う。この場合に
は、発泡剤は分散媒に一旦溶解又は分散した後に重合体
粒子に含浸され、発泡剤は密閉容器中に重合体粒子と発
泡剤及び分散媒を入れて攪拌しながら加熱、加圧する等
の方法により重合体粒子中に含浸させることができる。
In the present invention, the step of impregnating the polymer particles with the foaming agent may be either before or after the step of dispersing the polymer particles in a dispersion medium in a closed container, but usually the polymer particles are dispersed. Simultaneous in the process. In this case, the foaming agent is once dissolved or dispersed in the dispersion medium and then impregnated into the polymer particles, and the foaming agent is heated and pressurized with stirring while placing the polymer particles, the foaming agent and the dispersion medium in a closed container. The polymer particles can be impregnated by the method described above.

【0018】本発明において用いる発泡剤は、プロパ
ン、ブタン、ペンタン、ヘキサン、シクロブタン、シク
ロヘキサン、トリクロロフロロメタン、ジクロロジフロ
ロメタン等の揮発性発泡剤や、窒素、二酸化炭素、アル
ゴン、空気等の無機ガス系発泡剤のいずれでも良いが、
無機ガス系発泡剤が好ましく、なかでも二酸化炭素、窒
素、空気が好ましい。これら無機ガス系発泡剤を用いる
場合、容器内圧力が50kg/cm2 ・G以下となるように
供給することが好ましい。
The foaming agent used in the present invention is a volatile foaming agent such as propane, butane, pentane, hexane, cyclobutane, cyclohexane, trichlorofluoromethane, dichlorodifluoromethane, or an inorganic material such as nitrogen, carbon dioxide, argon or air. Any gas type foaming agent may be used,
Inorganic gas type foaming agents are preferable, and carbon dioxide, nitrogen and air are particularly preferable. When these inorganic gas type foaming agents are used, it is preferable to supply them so that the pressure inside the container is 50 kg / cm 2 · G or less.

【0019】重合体粒子を分散させるための分散媒とし
ては、重合体粒子を溶解しないものであれば良く、この
ような分散媒としては例えば水、エチレングリコール、
グリセリン、メタノール、エタノール等が挙げられる
が、通常は水が使用される。
The dispersion medium for dispersing the polymer particles may be one that does not dissolve the polymer particles, and examples of such a dispersion medium include water, ethylene glycol, and the like.
Glycerin, methanol, ethanol and the like can be mentioned, but water is usually used.

【0020】発泡剤を含浸させた発泡性の重合体粒子を
分散媒に分散せしめて発泡温度に加熱するに際し、重合
体粒子の融着を防止するために融着防止剤を用いること
ができる。融着防止剤としては水等の分散媒に溶解せ
ず、加熱によって溶融しないものであれば無機系、有機
系を問わず使用可能であるが、一般には無機系のものが
好ましい。無機系の融着防止剤としては、酸化アルミニ
ウム、酸化チタン、水酸化アルミニウム、塩基性炭酸マ
グネシウム、塩基性炭酸亜鉛、炭酸カルシウム、リン酸
三カルシウム、ピロリン酸マグネシウム等が挙げられ
る。
When the foamable polymer particles impregnated with the foaming agent are dispersed in the dispersion medium and heated to the foaming temperature, a fusion preventing agent can be used to prevent the polymer particles from being fused. As the anti-fusing agent, an inorganic type or an organic type can be used as long as it does not dissolve in a dispersion medium such as water and does not melt by heating, but an inorganic type is generally preferable. Examples of the inorganic anti-fusing agent include aluminum oxide, titanium oxide, aluminum hydroxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, tricalcium phosphate, magnesium pyrophosphate and the like.

【0021】上記融着防止剤としては粒径0.001〜1
00μm、特に0.001〜30μmのものが好ましい。
融着防止剤の添加量は重合体粒子100重量部に対し、
通常は0.01〜10重量部が好ましい。
The fusion preventing agent has a particle size of 0.001-1.
It is preferably 00 μm, particularly 0.001 to 30 μm.
The amount of the anti-fusion agent added is 100 parts by weight of the polymer particles,
Usually, 0.01 to 10 parts by weight is preferable.

【0022】上記無機系の融着防止剤は、乳化剤と併用
することが好ましい。乳化剤としてはドデシルベンゼン
スルフォン酸ナトリウム、オレイン酸ナトリウム等のア
ニオン系界面活性剤が好適である。乳化剤は重合体粒子
100重量部当たり、通常、0.001〜5重量部添加す
ることが好ましい。
The above-mentioned inorganic anti-fusing agent is preferably used in combination with an emulsifier. As the emulsifier, anionic surfactants such as sodium dodecylbenzene sulfonate and sodium oleate are suitable. Generally, it is preferable to add 0.001 to 5 parts by weight of the emulsifier per 100 parts by weight of the polymer particles.

【0023】本発明方法において、発泡性の重合体粒子
中には二次結晶が存在することが好ましい。この二次結
晶が存在する発泡性の重合体粒子より得られた発泡粒子
は成型性が優れたものとなる。特に重合体粒子が無架橋
のポリプロピレン系樹脂や無架橋の直鎖状低密度ポリエ
チレン系樹脂の場合、発泡性重合体粒子中に二次結晶が
存在していることが有利である。
In the method of the present invention, secondary crystals are preferably present in the expandable polymer particles. The expandable particles obtained from the expandable polymer particles containing the secondary crystals have excellent moldability. Particularly when the polymer particles are non-crosslinked polypropylene resin or non-crosslinked linear low-density polyethylene resin, it is advantageous that the expandable polymer particles have secondary crystals.

【0024】二次結晶の存在は、得られる発泡粒子の示
差走査熱量測定によって得られるDSC曲線に、重合体
の所謂融解時の吸熱に起因する固有ピークよりも高温側
の高温ピークが現れるか否かによって判定することがで
きる。固有ピークと高温ピークとは、同一のサンプルの
示差走査熱量測定を2回行うことによって判定できる。
この方法では、まずサンプル(発泡粒子)1〜3mgを示
差走査熱量計によって10℃/分で220℃まで昇温測
定して第1回目のDSC曲線を得、次いで220℃から
40℃付近まで10℃/分の速度で降温し、再度10℃
/分で220℃まで昇温測定して第2回目のDSC曲線
を得る。
The presence of secondary crystals indicates whether or not a high temperature peak on the higher temperature side than the intrinsic peak due to the so-called endotherm at the time of melting of the polymer appears in the DSC curve obtained by the differential scanning calorimetry of the obtained expanded particles. It can be determined by The intrinsic peak and the high temperature peak can be determined by performing differential scanning calorimetry on the same sample twice.
In this method, first, 1 to 3 mg of a sample (foamed particles) was measured by a differential scanning calorimeter at a temperature of 10 ° C./minute to 220 ° C. to obtain a first DSC curve, and then from 220 ° C. to around 40 ° C. Decrease the temperature at a rate of ℃ / min, and re-heat to 10 ℃
The second DSC curve is obtained by measuring the temperature rise up to 220 ° C./min.

【0025】このようにして得た2つのDSC曲線を比
較して固有ピークと高温ピークとを判別することができ
る。固有ピークとは、重合体の所謂融解に伴う吸熱ピー
クであるから、第1回目のDSC曲線にも第2回目のD
SC曲線にも現れるピークであり、ピークの頂点の温度
は第1回目と第2回目とで多少異なる場合もあるが、そ
の差は5℃未満、通常は2℃未満である。一方、高温ピ
ークとは、第1回目のDSC曲線において上記固有ピー
クよりも高温側に現れる吸熱ピークである。二次結晶の
存在はこの高温ピークが現れることによって確認され、
実質的な高温ピークが現れない場合には二次結晶が存在
しないものと判定される。
By comparing the two DSC curves thus obtained, the characteristic peak and the high temperature peak can be discriminated. The intrinsic peak is an endothermic peak associated with so-called melting of the polymer, and therefore the first DSC curve and the second D
It is also a peak that appears in the SC curve, and the temperature at the top of the peak may be slightly different between the first time and the second time, but the difference is less than 5 ° C, usually less than 2 ° C. On the other hand, the high temperature peak is an endothermic peak that appears on the higher temperature side than the above-mentioned intrinsic peak in the first DSC curve. The presence of secondary crystals was confirmed by the appearance of this high temperature peak,
When no substantial high temperature peak appears, it is determined that the secondary crystal does not exist.

【0026】上記2つのDSC曲線において第2回目の
DSC曲線に現れる固有ピークの頂点の温度と、第1回
目のDSC曲線に現れる高温ピークの頂点の温度との差
は大きいことが望ましく、両者の温度差は5℃以上、特
に10℃以上が好ましい。
In the above two DSC curves, it is desirable that there is a large difference between the temperature at the apex of the characteristic peak appearing in the second DSC curve and the temperature at the apex of the high temperature peak appearing in the first DSC curve. The temperature difference is preferably 5 ° C or higher, and particularly preferably 10 ° C or higher.

【0027】図1、図2は発泡粒子の示差走査熱量測定
によって得られたDSC曲線を示し、図1は二次結晶を
含む発泡粒子のもの、図2は二次結晶を含まない発泡粒
子のものである。図1、図2において、曲線1及び2は
第1回目の測定によって得られたDSC曲線であり、曲
線1′、2′は第2回目の測定によって得られたDSC
曲線を示す。
FIGS. 1 and 2 show DSC curves obtained by differential scanning calorimetry of expanded particles. FIG. 1 shows expanded particles containing secondary crystals, and FIG. 2 shows expanded particles not containing secondary crystals. It is a thing. In FIGS. 1 and 2, curves 1 and 2 are DSC curves obtained by the first measurement, and curves 1 ′ and 2 ′ are DSC obtained by the second measurement.
A curve is shown.

【0028】図1に示すように、二次結晶を有する発泡
粒子では、第1回目の測定によって得られた曲線1にお
いては固有ピークBの他に、第2回目の測定によって得
られた曲線1′にはない高温ピークAが現れており(第
2回目の測定で得られた曲線1′には固有ピークB′の
みが現れる。)、この高温ピークAの存在によって二次
結晶の存在が確認される。一方、二次結晶を含有しない
発泡粒子では、図2に示すように曲線2、曲線2′のい
ずれにも固有ピークb、b′が現れるのみで高温ピーク
は現れず、このことから二次結晶が存在しないことが確
認される。
As shown in FIG. 1, in the expanded particles having secondary crystals, in addition to the characteristic peak B in the curve 1 obtained by the first measurement, the curve 1 obtained by the second measurement was obtained. There is a high temperature peak A which is not found in ′ (only the characteristic peak B ′ appears in the curve 1 ′ obtained in the second measurement), and the existence of this high temperature peak A confirms the existence of secondary crystals. To be done. On the other hand, in the case of expanded particles containing no secondary crystal, as shown in FIG. 2, only the characteristic peaks b and b ′ appear in both curve 2 and curve 2 ′, and the high temperature peak does not appear. Is not present.

【0029】図2に示す発泡粒子のように、二次結晶の
存在が認められない粒子が得られるのは、二次結晶化促
進温度(融点〜融解終了温度)において充分な時間、熱
処理を受けず、融解終了温度以上の温度で発泡されたよ
うな場合である。無機ガス系発泡剤を用いた場合には、
曲線1で示されるような二次結晶を有する発泡粒子は、
例えば次のような方法で製造することができる。
Particles in which the presence of secondary crystals are not found, such as the expanded particles shown in FIG. 2, are obtained by the heat treatment at the secondary crystallization acceleration temperature (melting point to melting end temperature) for a sufficient time. However, this is the case where foaming occurs at a temperature equal to or higher than the melting end temperature. When an inorganic gas type foaming agent is used,
Expanded particles having secondary crystals as shown by curve 1 are
For example, it can be manufactured by the following method.

【0030】無架橋のポリプロピレン系樹脂の場合で
は、一般に耐圧容器内において重合体粒子をその融解終
了温度以上に加熱することなく、融点−20℃程度以
上、融解終了温度未満の温度において充分な時間、通常
5〜90分間、好ましくは15〜60分間保持すること
によりにより得ることができる。またこのような温度に
保持して二次結晶を形成せしめた粒子の場合、重合体粒
子を容器内よりも低圧雰囲気下に放出して発泡させる際
の発泡温度(放出時の温度)は融解終了温度以上であっ
ても、前記高温ピーク以下の温度であれば成型性の良好
な発泡粒子を得ることができる。
In the case of the non-crosslinked polypropylene resin, generally, the polymer particles are not heated above the melting end temperature thereof in a pressure resistant container, but at a temperature of not less than about -20 ° C. and less than the melting end temperature for a sufficient time. , Usually for 5 to 90 minutes, preferably for 15 to 60 minutes. Also, in the case of particles that have been kept at such a temperature to form secondary crystals, the foaming temperature (temperature at the time of discharging) when polymer particles are discharged under a low pressure atmosphere than in the container and foamed is the end of melting. Even if the temperature is not less than the temperature, if the temperature is not higher than the high temperature peak, it is possible to obtain expanded particles having good moldability.

【0031】無架橋の直鎖状低密度ポリエチレンの場
合、一般には耐圧容器内で重合体粒子をその融解終了温
度以上に加熱することなく、融点−15℃程度以上、融
解終了温度未満の温度にて充分な時間、通常5〜90分
間、好ましくは5〜30分間保持すれば良い。
In the case of non-crosslinked linear low-density polyethylene, generally, the temperature of the melting point is not lower than about −15 ° C. and lower than the melting end temperature without heating the polymer particles above the melting end temperature in a pressure vessel. For a sufficient time, usually 5 to 90 minutes, preferably 5 to 30 minutes.

【0032】尚、上記温度保持においては、温度管理の
し易すさから、複数回に分割して行うことが望ましい。
この場合、先の保持温度より後の保持温度を高くする方
法が採用される。そして最終保持温度を発泡温度とする
ことが望ましい。
In addition, it is desirable that the above-mentioned temperature maintenance is performed in a plurality of times in order to facilitate temperature control.
In this case, a method of increasing the holding temperature after the first holding temperature is adopted. Then, it is desirable that the final holding temperature is the foaming temperature.

【0033】本発明方法において発泡剤として無機ガス
系発泡剤を使用する場合、発泡性の重合体粒子と分散媒
とを容器内より低圧の雰囲気下に放出して発泡せしめる
発泡温度は、重合体粒子の軟化温度以上の温度である
が、特に融点付近の温度が好ましい。好適な発泡温度範
囲は樹脂の種類によっても異なり、例えば無架橋ポリプ
ロピレン系樹脂の場合、融点−5℃以上、融点+15℃
以下、特に融点−3℃以上、融点+10℃以下が好まし
く、ポリエチレン系樹脂の場合、融点−10℃以上、融
点+5℃以下が好ましい。
When an inorganic gas type foaming agent is used as the foaming agent in the method of the present invention, the foaming temperature at which the foamable polymer particles and the dispersion medium are discharged from the container under a low pressure atmosphere to foam the polymer is The temperature is not lower than the softening temperature of the particles, but a temperature near the melting point is particularly preferable. The suitable foaming temperature range varies depending on the type of resin. For example, in the case of non-crosslinked polypropylene resin, melting point -5 ° C or higher, melting point + 15 ° C.
The melting point is preferably −3 ° C. or higher and the melting point + 10 ° C. or lower. In the case of a polyethylene resin, the melting point is −10 ° C. or higher and the melting point + 5 ° C. or lower.

【0034】更に発泡温度にまで加熱する際の昇温速度
は1〜10℃/分、特に2〜5℃/分が好ましい。発泡
性の重合体粒子と分散媒とを容器内より放出する際の雰
囲気圧力は、容器内より低圧であれば良いが、通常は大
気圧下である。
Further, the heating rate at the time of heating to the foaming temperature is preferably 1 to 10 ° C./minute, particularly preferably 2 to 5 ° C./minute. The atmospheric pressure for releasing the expandable polymer particles and the dispersion medium from the container may be lower than that in the container, but is usually atmospheric pressure.

【0035】尚、本発明において上記重合体の融点とは
示差走査熱量計によってサンプル約6mgを10℃/分の
昇温速度で220℃まで加熱し、その後10℃/分の降
温速度で約50℃まで冷却し、再度10℃/分の速度で
220℃まで昇温した時に得られるDSC曲線における
吸熱ピーク(固有ピーク)の頂点の温度である。融解終
了温度とは上記の如き測定によって得られる2回目のD
SC曲線の吸熱ピーク(固有ピーク)における融解終了
温度を意味する。また重合体粒子の軟化温度とは、ASTM
-D-648法において、荷重4.6kg/cm2 の条件で求めた軟
化温度を意味するものである。
In the present invention, the melting point of the above-mentioned polymer is the differential scanning calorimeter and about 6 mg of a sample is heated to 220 ° C. at a temperature rising rate of 10 ° C./minute, and then at a temperature lowering rate of 10 ° C./minute to about 50 ° C. It is the temperature at the apex of the endothermic peak (inherent peak) in the DSC curve obtained when the temperature is cooled to 20 ° C. and the temperature is again raised to 220 ° C. at a rate of 10 ° C./min. The melting end temperature is the second D obtained by the above measurement.
It means the melting end temperature at the endothermic peak (specific peak) of the SC curve. The softening temperature of polymer particles is
In the -D-648 method, it means a softening temperature determined under a load of 4.6 kg / cm 2 .

【0036】[0036]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0037】実施例1〜6、比較例1〜4 押出機内で下記表1に示す樹脂、無機物及びPPG・P
EG重合物を溶融混練した後、押出機先端のダイスから
ストランド状に押出し水中で急冷した後、切断してペレ
ット状に造粒した(長さ2.4 mm、断面の直径1.1mm)。
尚、PPG・PEG重合体の中のポリエチレングリコー
ル成分含有量(PEG重量%)及びPPG・PEG重合
体の重量平均分子量を表1にあわせて示した。
Examples 1 to 6 and Comparative Examples 1 to 4 Resins, inorganic substances and PPG / P shown in Table 1 below in an extruder.
After melt-kneading the EG polymer, it was extruded in a strand form from a die at the tip of the extruder, rapidly cooled in water, and then cut and pelletized into pellets (length 2.4 mm, cross-sectional diameter 1.1 mm).
The polyethylene glycol component content (PEG weight%) in the PPG / PEG polymer and the weight average molecular weight of the PPG / PEG polymer are also shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】尚、上記実施例、比較例で用いた重合体の
基材樹脂の性状及び無機物の粒径は以下の通りである。
The properties of the base resin of the polymer and the particle size of the inorganic material used in the above Examples and Comparative Examples are as follows.

【0040】基材樹脂 ・LLDPE:密度0.925g/cm3 、MI=1.0g/
10分の直鎖状低密度ポリエチレン ・Et−Prランダム共重合体:エチレン成分含有量2.
4重量%のエチレン−プロピレンランダム共重合体、M
I=10.0g/10分 ・架橋LLDPE:ゲル分率53%の架橋低密度ポリエ
チレン 無機物 ・水酸化アルミニウム:粒径3μm ・タルク:粒径2μm ・有機処理ベントナイト:粒径0.05μm、トリメチル
アンモニウムクロライドにて表面処理したもの。 ・13X型ゼオライト:粒径2μm ・シリカ:粒径1μm
Base resin: LLDPE: Density 0.925 g / cm 3 , MI = 1.0 g /
10-minute linear low-density polyethylene / Et-Pr random copolymer: ethylene content 2.
4% by weight of ethylene-propylene random copolymer, M
I = 10.0 g / 10 min-Crosslinked LLDPE: Crosslinked low-density polyethylene with 53% gel fraction-Inorganic substance-Aluminum hydroxide: Particle size 3 μm-Talc: Particle size 2 μm-Organic treated bentonite: Particle size 0.05 μm, trimethylammonium Surface treated with chloride.・ 13X type zeolite: particle size 2 μm ・ Silica: particle size 1 μm

【0041】このペレット100kgと微粒状の酸化アル
ミニウム400g、水220リットルとを配合して密閉
容器(容積400リットル)内で攪拌しながら融解温度
以上の温度に昇温することなく、表2に示す一段保持温
度に昇温保持した(実施例5、比較例3のみ、その他は
直ちに二段保持温度に保持した。)。次いで表2に示す
二段保持温度に昇温し、その直後に同表に示す発泡剤
を、容器内圧が同表に示す圧力となるように供給して同
温度に保持した。
100 kg of the pellets, 400 g of fine-grained aluminum oxide, and 220 liters of water were mixed and stirred in a closed container (volume: 400 liters) without raising the temperature to a temperature higher than the melting temperature. The temperature was held at the one-step holding temperature (only Example 5, Comparative Example 3 and others were immediately held at the two-step holding temperature). Then, the temperature was raised to the two-stage holding temperature shown in Table 2, and immediately thereafter, the foaming agent shown in the same table was supplied so that the internal pressure of the container became the pressure shown in the same table, and the same temperature was maintained.

【0042】その後、二段保持温度に保持したまま二酸
化炭素で背圧をかけて容器内を表2に示す圧力に保持し
ながら容器の一端を開放して重合体粒子と水とを大気圧
下に放出して発泡せしめた。得られた発泡粒子の平均嵩
発泡倍率、気泡径及びこれらの発泡粒子の成型性を表2
にあわせて示した。
Thereafter, while maintaining the two-stage holding temperature, a back pressure was applied with carbon dioxide to maintain the inside of the container at the pressure shown in Table 2 and one end of the container was opened to bring the polymer particles and water under atmospheric pressure. It was then discharged into a foam. Table 2 shows the average bulk expansion ratio of the obtained expanded particles, the cell diameter, and the moldability of these expanded particles.
It is also shown.

【0043】表2における成型体の寸法精度、融着性、
二次発泡性の評価は以下に示す評価基準に基いて行っ
た。尚、比較例4の発泡粒子を用いた成型体は寸法精
度、粒子の融着性ともに良好であったが、発泡倍率が低
過ぎるために総合評価を×とした。
In Table 2, the dimensional accuracy of the molded product, the fusion property,
The evaluation of the secondary foaming property was performed based on the evaluation criteria shown below. The molded body using the expanded beads of Comparative Example 4 was good in both dimensional accuracy and fusion property of the particles, but since the expansion ratio was too low, the comprehensive evaluation was evaluated as x.

【0044】寸法精度 80℃のオーブン中で、24時間養生後の面方向の収縮
率を測定し、以下の基準で評価した。 ○・・・面方向の収縮率が3%未満 △・・・面方向の収縮率が3%以上、4%未満 ×・・・面方向の収縮率が4%以上
Dimensional accuracy The shrinkage in the surface direction after curing for 24 hours in an oven at 80 ° C. was measured and evaluated according to the following criteria. A: Shrinkage in the plane direction is less than 3% B: Shrinkage in the plane direction is 3% or more and less than 4% X: Shrinkage in the plane direction is 4% or more

【0045】融着性 幅方向垂直断面が、厚さ1cm×幅5cmとなるように発泡
成型体を切断したスライス板を破断するまで長手方向に
引張り、破断面を観察して以下の基準で評価した。 ○・・・破断面の材質破壊が60%以上 △・・・破断面の材質破壊が40%以上、60%未満 ×・・・破断面の材質破壊が40%未満
Fusing Property A slice plate obtained by cutting a foamed molding so that a cross section in the width direction is 1 cm in thickness and 5 cm in width is pulled in the longitudinal direction until it is broken, and the fracture surface is observed and evaluated according to the following criteria. did. ○: Material fracture of fracture surface is 60% or more △: Material fracture of fracture surface is 40% or more and less than 60% × ・ ・ ・ Material fracture of fracture surface is less than 40%

【0046】二次発泡性 発泡成型体の表面状態を観察し、以下の基準で評価し
た。 ○・・・表面にほとんど凹凸なし。 △・・・部分的に凹凸あり。 ×・・・全面に凹凸あり。
Secondary foaming property The surface condition of the foamed molded product was observed and evaluated according to the following criteria. ○: Almost no unevenness on the surface. Δ: Partially uneven. X: There are irregularities on the entire surface.

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【発明の効果】以上説明したように本発明方法は、特定
割合の無機物とPPG・PEG重合体とを含有する重合
体粒子に発泡剤を含浸させて発泡させるようにしたた
め、無機ガス系発泡剤を用いても容易に高発泡倍率の発
泡粒子を得ることができる。また揮発性発泡剤を用いる
場合でも、従来の揮発性発泡剤を用いた方法に比べて揮
発性発泡剤の使用量を少なくすることができ、少ない揮
発性発泡剤の使用でも高発泡倍率の発泡粒子を得ること
ができる等の効果を有する。
INDUSTRIAL APPLICABILITY As described above, in the method of the present invention, since the polymer particles containing a specific ratio of the inorganic substance and the PPG / PEG polymer are impregnated with the foaming agent to foam, the inorganic gas type foaming agent is used. It is possible to easily obtain expanded particles having a high expansion ratio by using. Even when a volatile foaming agent is used, the amount of volatile foaming agent used can be reduced as compared with the conventional method using a volatile foaming agent, and even if a small amount of volatile foaming agent is used, foaming with a high expansion ratio is achieved. It has the effect that particles can be obtained.

【0049】更に無機物とPPG・PEG重合体とを併
用したことにより、得られる発泡粒子の気泡が微細化す
る虞がなく、気泡の微細化による成型体の寸法精度低
下、成型時の二次発泡性不良等を生じることのない優れ
た性状の発泡粒子を提供できる効果を有する。
Further, by using the inorganic substance and the PPG / PEG polymer in combination, there is no fear that the bubbles of the foamed particles obtained will be miniaturized, the dimensional accuracy of the molded article is reduced by the miniaturization of the bubbles, and the secondary foaming at the time of molding. It has the effect of providing expanded particles having excellent properties that do not cause poor properties and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】粒子中に二次結晶を有する発泡粒子のDSC曲
線を示すグラフである。
FIG. 1 is a graph showing a DSC curve of expanded particles having secondary crystals in the particles.

【図2】粒子中に二次結晶を有さない発泡粒子のDSC
曲線を示すグラフである。
FIG. 2 DSC of expanded particles without secondary crystals in the particles.
It is a graph which shows a curve.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月7日[Submission date] July 7, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】上記無機系の融着防止剤は、発泡剤として
二酸化炭素を使用した場合乳化剤と併用することが好ま
しい。乳化剤としてはドデシルベンゼンスルフォン酸ナ
トリウム、オレイン酸ナトリウム等のアニオン系界面活
性剤が好適である。乳化剤は重合体粒子100重量部当
たり、通常、0.001〜5重量部添加することが好まし
い。
The above-mentioned inorganic anti-fusion agent is used as a foaming agent.
When carbon dioxide is used, it is preferably used in combination with an emulsifier. As the emulsifier, anionic surfactants such as sodium dodecylbenzene sulfonate and sodium oleate are suitable. Generally, it is preferable to add 0.001 to 5 parts by weight of the emulsifier per 100 parts by weight of the polymer particles.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】尚、上記温度保持においては、結晶の形成
の為の温度管理のし易すさから、複数回に分割して行う
ことが望ましい。この場合、先の保持温度より後の保持
温度を高くする方法が採用される。そして最終保持温度
を発泡温度とすることが望ましい。
In addition, when the temperature is maintained, the formation of crystals
Therefore, it is desirable to divide the temperature into a plurality of times to facilitate temperature control. In this case, a method of increasing the holding temperature after the first holding temperature is adopted. Then, it is desirable that the final holding temperature is the foaming temperature.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】本発明方法において発泡剤として無機ガス
系発泡剤を使用する場合、発泡性の重合体粒子と分散媒
とを容器内より低圧の雰囲気下に放出して発泡せしめる
発泡温度は、重合体粒子の軟化温度以上の温度である
が、特に融点付近の温度が好ましい。好適な発泡温度範
囲は樹脂の種類によっても異なり、例えば無架橋ポリプ
ロピレン系樹脂の場合、融点−5℃以上、融点+15℃
以下、特に融点−3℃以上、融点+10℃以下が好まし
く、直鎖状低密度ポリエチレン樹脂の場合、融点−10
℃以上、融点+5℃以下が好ましい。又、架橋低密度ポ
リエチレンの場合、融点−10℃以上、融点+50℃以
下が好ましい。
When an inorganic gas type foaming agent is used as the foaming agent in the method of the present invention, the foaming temperature at which the foamable polymer particles and the dispersion medium are discharged from the container under a low pressure atmosphere to foam the polymer is The temperature is not lower than the softening temperature of the particles, but a temperature near the melting point is particularly preferable. The suitable foaming temperature range varies depending on the type of resin. For example, in the case of non-crosslinked polypropylene resin, melting point -5 ° C or higher, melting point + 15 ° C.
The melting point is preferably −3 ° C. or higher and + 10 ° C. or lower.
The temperature is preferably not lower than 0 ° C and not higher than the melting point + 5 ° C. In addition, cross-linked low density
In the case of polyethylene, melting point -10 ° C or higher, melting point + 50 ° C or higher
Lower is preferred.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0040[Item name to be corrected] 0040

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0040】基材樹脂 ・LLDPE:密度0.925g/cm3 、MI=1.0g/
10分の直鎖状低密度ポリエチレン ・Et−Prランダム共重合体:エチレン成分含有量2.
4重量%のエチレン−プロピレンランダム共重合体、M
I=10.0g/10分 ・架橋LDPE:ゲル分率53%の架橋低密度ポリエチ
レン 無機物 ・水酸化アルミニウム:粒径3μm ・タルク:粒径2μm ・有機処理ベントナイト:粒径0.05μm、トリメチル
アンモニウムクロライドにて表面処理したもの。 ・13X型ゼオライト:粒径2μm ・シリカ:粒径1μm
Base resin: LLDPE: Density 0.925 g / cm 3 , MI = 1.0 g /
10-minute linear low-density polyethylene / Et-Pr random copolymer: ethylene content 2.
4% by weight of ethylene-propylene random copolymer, M
I = 10.0 g / 10 minutes- Crosslinked LDPE : Crosslinked low-density polyethylene with a gel fraction of 53% -Inorganic substance-Aluminum hydroxide: Particle size 3 μm-Talc: Particle size 2 μm-Organic treated bentonite: Particle size 0.05 μm, trimethylammonium Surface treated with chloride.・ 13X type zeolite: particle size 2 μm ・ Silica: particle size 1 μm

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0041[Correction target item name] 0041

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0041】このペレットkgとリン酸三カルシウム7
5g、ドデシルベンゼンスルフォン酸ナトリウム0.2
、水リットルとを配合して密閉容器(容積リット
ル)内で攪拌しながら融解温度以上の温度に昇温するこ
となく、表2に示す一段保持温度に昇温保持した(実施
例5、比較例3のみ、その他は直ちに二段保持温度に保
持した。)。次いで表2に示す二段保持温度に昇温し、
同温度に保持した。尚、発泡剤としてドライアイスを使
用し、上記ペレット等の原料投入時に表2に示す量を投
入した
1 kg of this pellet and 7 parts of tricalcium phosphate
5 g, sodium dodecylbenzene sulfonate 0.2
g and 3 liters of water were mixed and stirred in a closed container (volume: 5 liters), and the temperature was raised to and maintained at the one-step holding temperature shown in Table 2 without increasing the temperature to the melting temperature or higher (Example 5 , Comparative Example 3 only, and others were immediately held at the two-stage holding temperature.). Then, the temperature is raised to the two-stage holding temperature shown in Table 2,
It was kept at the same temperature. Dry ice is used as the foaming agent.
The amount shown in Table 2 when the above raw materials such as pellets are added.
I entered .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 無機物とポリプロピレングリコール・ポ
リエチレングリコール重合物とを含有する重合体粒子
を、発泡剤の存在下に密閉容器内で分散媒に分散せしめ
て該重合体粒子の軟化温度以上の温度に加熱し、次いで
発泡剤が含浸された重合体粒子と分散媒とを容器内より
も低圧の雰囲気下に放出して重合体粒子を発泡させるこ
とを特徴とする重合体発泡粒子の製造方法。
1. Polymer particles containing an inorganic substance and a polypropylene glycol / polyethylene glycol polymer are dispersed in a dispersion medium in a closed container in the presence of a foaming agent to a temperature not lower than the softening temperature of the polymer particles. A method for producing expanded polymer particles, which comprises heating and then releasing the polymer particles impregnated with a foaming agent and the dispersion medium into an atmosphere at a pressure lower than that in the container to foam the polymer particles.
【請求項2】 重合体粒子中に無機物0.02〜5.0重量
%、ポリプロピレングリコール・ポリエチレングリコー
ル重合物0.02〜5.0重量%を含有する請求項1記載の
重合体発泡粒子の製造方法。
2. The expanded polymer particles according to claim 1, wherein the polymer particles contain 0.02 to 5.0% by weight of an inorganic substance and 0.02 to 5.0% by weight of a polypropylene glycol / polyethylene glycol polymer. Production method.
【請求項3】 発泡剤が無機ガス系発泡剤である請求項
1または2記載の重合体発泡粒子の製造方法。
3. The method for producing expanded polymer particles according to claim 1, wherein the foaming agent is an inorganic gas type foaming agent.
JP35264991A 1991-12-16 1991-12-16 Method for producing expanded polymer particles Expired - Fee Related JP3171272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35264991A JP3171272B2 (en) 1991-12-16 1991-12-16 Method for producing expanded polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35264991A JP3171272B2 (en) 1991-12-16 1991-12-16 Method for producing expanded polymer particles

Publications (2)

Publication Number Publication Date
JPH05163381A true JPH05163381A (en) 1993-06-29
JP3171272B2 JP3171272B2 (en) 2001-05-28

Family

ID=18425493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35264991A Expired - Fee Related JP3171272B2 (en) 1991-12-16 1991-12-16 Method for producing expanded polymer particles

Country Status (1)

Country Link
JP (1) JP3171272B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859695A4 (en) * 1996-08-08 1999-02-03 Tenneco Protective Packaging I Comptabilizer for carbon dioxide-blown polyolefinic foams
EP0880556A4 (en) * 1996-10-15 1999-02-03 Tenneco Protective Packaging I A short time frame process for producing extruded closed cell low density propylene polymer foams
WO2009075208A1 (en) 2007-12-11 2009-06-18 Kaneka Corporation Process for producing expanded polyolefin resin bead and expanded polyolefin resin bead
JP2009161738A (en) * 2007-12-11 2009-07-23 Kaneka Corp Method for producing thermoplastic resin foamed particles
JP2009215485A (en) * 2008-03-12 2009-09-24 Kaneka Corp Method for producing foamed polypropylenic resin particles, foamed particles of polypropylenic resin and in-mold expansion formed articles of polypropylenic resin
WO2011086938A1 (en) * 2010-01-15 2011-07-21 株式会社カネカ Expanded particle of noncrosslinked polyethylene-based resin and expansion molded article of noncrosslinked polyethylene-based resin
US20120283344A1 (en) * 2010-01-15 2012-11-08 Kiyotaka Nakayama Expanded particle of polyethylene-based resin and in-mold expansion molded article of polyethylene-based resin

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859695A4 (en) * 1996-08-08 1999-02-03 Tenneco Protective Packaging I Comptabilizer for carbon dioxide-blown polyolefinic foams
EP0880556A4 (en) * 1996-10-15 1999-02-03 Tenneco Protective Packaging I A short time frame process for producing extruded closed cell low density propylene polymer foams
US9018269B2 (en) 2007-11-12 2015-04-28 Kaneka Corporation Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
EP2754687A1 (en) 2007-12-11 2014-07-16 Kaneka Corporation Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
WO2009075208A1 (en) 2007-12-11 2009-06-18 Kaneka Corporation Process for producing expanded polyolefin resin bead and expanded polyolefin resin bead
JP2009161738A (en) * 2007-12-11 2009-07-23 Kaneka Corp Method for producing thermoplastic resin foamed particles
US20100267850A1 (en) * 2007-12-11 2010-10-21 Toru Yoshida Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
US9216525B2 (en) 2007-12-11 2015-12-22 Kaneka Corporation Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
US8901182B2 (en) 2007-12-11 2014-12-02 Kaneka Corporation Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
US8513317B2 (en) 2007-12-11 2013-08-20 Kaneka Corporation Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
JP2009215485A (en) * 2008-03-12 2009-09-24 Kaneka Corp Method for producing foamed polypropylenic resin particles, foamed particles of polypropylenic resin and in-mold expansion formed articles of polypropylenic resin
US8779019B2 (en) 2010-01-15 2014-07-15 Kaneka Corporation Expanded particle of noncrosslinked polyethylene-based resin and expansion molded article of noncrosslinked polyethylene-based resin
US20120283344A1 (en) * 2010-01-15 2012-11-08 Kiyotaka Nakayama Expanded particle of polyethylene-based resin and in-mold expansion molded article of polyethylene-based resin
CN102712777A (en) * 2010-01-15 2012-10-03 株式会社钟化 Expanded particle of noncrosslinked polyethylene-based resin and expansion molded article of noncrosslinked polyethylene-based resin
US9034933B2 (en) * 2010-01-15 2015-05-19 Kaneka Corporation Expanded particle of polyethylene-based resin and in-mold expansion molded article of polyethylene-based resin
US9193842B2 (en) 2010-01-15 2015-11-24 Kaneka Corporation Method for producing noncrosslinked polyethylene resin expanded particle (first stage expanded particle) and re-expanded noncrosslinked polyethylene resin expanded particle
WO2011086938A1 (en) * 2010-01-15 2011-07-21 株式会社カネカ Expanded particle of noncrosslinked polyethylene-based resin and expansion molded article of noncrosslinked polyethylene-based resin

Also Published As

Publication number Publication date
JP3171272B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
US5527573A (en) Extruded closed-cell polypropylene foam
US5895614A (en) Method of forming a microcellular foam plank
US20070149630A1 (en) Composition for polyolefin resin foam and foam thereof, and method for producing foam
JP4971793B2 (en) Method for producing polypropylene resin foam molding
JP3279382B2 (en) Non-crosslinked polyethylene resin foam particles and method for producing the same
JP3441165B2 (en) Flame retardant polyolefin resin foam particles
JP2887291B2 (en) Method for producing expanded polyolefin resin particles
JP3195674B2 (en) Method for producing non-crosslinked ethylene polymer expanded particles
JPH04189840A (en) Production of foamed polymer particle
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
EP0933389B1 (en) Polypropylene resin pre-expanded particles
WO1998025996A1 (en) Expanded particles of polyolefin resin and process for preparing the same
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JPH05163381A (en) Production of expanded polymer particle
JP2006213877A (en) Polypropylene resin pre-expanded particle and expanded molding obtainable therefrom
JP2006297807A (en) Polypropylene-based resin in-mold foam-molding body
JP2000129028A (en) Polypropylene resin foamed particle and molded product thereof
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
JPH0464542B2 (en)
JP3507699B2 (en) Method for producing polypropylene resin pre-expanded particles
JP3195675B2 (en) Method for producing expanded polyolefin resin particles
JP3205225B2 (en) Polypropylene resin foam
JP2874772B2 (en) Method for producing expanded polymer particles
JPH059329A (en) Production of crosslinked expanded polyolefinic resin particle
JPS612741A (en) Manufacture of polypropylene resin expanded beads

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees