JPH06190574A - Laser beam welding method for copper structure - Google Patents

Laser beam welding method for copper structure

Info

Publication number
JPH06190574A
JPH06190574A JP4347316A JP34731692A JPH06190574A JP H06190574 A JPH06190574 A JP H06190574A JP 4347316 A JP4347316 A JP 4347316A JP 34731692 A JP34731692 A JP 34731692A JP H06190574 A JPH06190574 A JP H06190574A
Authority
JP
Japan
Prior art keywords
copper
welding
wire
laser beam
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4347316A
Other languages
Japanese (ja)
Inventor
Masanori Moribe
正典 森部
Yasusuke Kawamura
康亮 川村
Takatoo Mizoguchi
孝遠 溝口
Masataka Noguchi
昌孝 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4347316A priority Critical patent/JPH06190574A/en
Publication of JPH06190574A publication Critical patent/JPH06190574A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain stable penetration and besides, to obtain a weld zone without failure by using a wire having specified content of Si, Mn, Fe and Al at the time of subjecting the copper structure to laser beam welding. CONSTITUTION:When a lap part, etc., of a copper pipe 2 and a copper mesh fin 1 are subjected to laser beam welding, the wire 8 having the content of Si, Mn, Fe, Al and Ni >=0.4% in total and having the composition consisting of each content of Si, Mn, Fe and Al <=15% is supplied. Consequently, base metals melt stably and the weld zone without failure such as blowholes is obtained. When a solution of this wire 8 drops on the welding point surface of the copper base metals 2, since reflectance of the solution is low, laser beam energy is absorbed, this energy is transmitted to the copper base metals, melting and penetration of the base metals are obtained and welding is attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅製の構造体、例えば
家庭用エアコン等の熱交換器等に用いられる、銅管とメ
ッシュフィンとの接合構造体等の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a structure made of copper, for example, a bonded structure of a copper pipe and a mesh fin used for a heat exchanger of a home air conditioner or the like.

【0002】[0002]

【従来の技術】従来から家庭用エアコンなどで多く用い
られている熱交換器の伝熱部は、一定の間隔をもって重
ねられたアルミニウムの薄板フィンに穴を明け、この穴
の中に銅管を通し、拡管加工を行うことによって銅管と
アルミフィンとを密着させて構成し、それによって効率
の良い熱伝達を行わせるクロスフィン方式が主流であっ
た。
2. Description of the Related Art The heat transfer portion of a heat exchanger that has been widely used in conventional home air conditioners has holes formed in thin aluminum fins stacked at regular intervals, and a copper tube is placed in the holes. The mainstream method is a cross fin method in which a copper tube and an aluminum fin are closely adhered to each other by performing a pipe expanding process to thereby perform efficient heat transfer.

【0003】また最近では、より熱伝達効率を上げる方
法として、図2に示すような薄板に多数の切れ目を入
れ、これを引っ張って編み目状にしたもの、さらには編
み目の板を折り曲げることによって空気との熱伝達効率
の向上を図った方式のフィンが開発されており、このフ
ィンをここではメッシュフィンと呼ぶこととする。図2
において、1はメッシュフィンである。メッシュフィン
の材質としては、一般に伝熱管と同種の材料が用いら
れ、熱交換器の場合は銅管を中央に配置し、その両面か
らメッシュフィンで挟んだ構造となる。
Recently, as a method of further increasing the heat transfer efficiency, a thin plate as shown in FIG. 2 is provided with a large number of cuts, and the cuts are pulled to form a knitted shape, and further, the knitted plate is bent to produce air. A fin of a system aiming to improve the heat transfer efficiency with is developed, and this fin will be referred to as a mesh fin here. Figure 2
In, 1 is a mesh fin. The material of the mesh fin is generally the same as that of the heat transfer tube. In the case of a heat exchanger, a copper tube is arranged in the center and sandwiched by mesh fins from both sides.

【0004】伝熱管とメッシュフィンとの接合体外観の
一例を図3に示す。図3において、2は銅管、3は溶接
ビードである。このメッシュフィン1は現在開発中の新
しい方式であり、実用化された例はあまり見られない
が、接合方法としては、従来の熱交換器の接合方法から
判断して、接合部にろう材またははんだを配置し、バー
ナーもしくは雰囲気炉中において加熱することが考えら
れる。
FIG. 3 shows an example of the appearance of a joined body of a heat transfer tube and mesh fins. In FIG. 3, 2 is a copper pipe and 3 is a weld bead. This mesh fin 1 is a new method currently under development, and there are not many examples in which it has been put to practical use. However, as a joining method, it is judged from the joining method of the conventional heat exchangers that brazing filler metal or It is conceivable to arrange the solder and heat it in a burner or an atmosphere furnace.

【0005】[0005]

【発明が解決しようとする課題】本願発明者等は、熱交
換器の性能向上を目指し、一般に使用される材料のアル
ミと銅の中から、銅を対象として選び研究開発に取り組
んだ。まず、伝熱管とフィンとの接合方法としてペース
ト状および線状のはんだを銅管と銅のメッシュフィンと
の間に配置しアルゴン雰囲気炉中による加熱、およびバ
ーナ加熱を試みた。その結果、いずれの加熱方法におい
ても、はんだは溶融流動し、メッシュフィンと銅管とは
接合された。しかしながら、はんだは過剰に流動し、メ
ッシュフィンの目の中にまで流れ込み、フィンの目詰ま
りが発生した。
DISCLOSURE OF THE INVENTION The inventors of the present application have aimed at improving the performance of a heat exchanger and have conducted research and development on copper as a target from among aluminum and copper which are commonly used materials. First, as a method of joining the heat transfer tube and the fin, paste-like and linear solder was placed between the copper tube and the copper mesh fin, and heating in an argon atmosphere furnace and burner heating were tried. As a result, in any heating method, the solder melted and flowed, and the mesh fin and the copper tube were joined. However, the solder excessively flowed and flowed into the mesh fin eyes, and the fins were clogged.

【0006】フィンの目詰まりは通風抵抗を増加させる
とともに、フィンと空気との接触面積を減少させる。そ
のため、熱伝達効率の低下をきたし、熱交換器としては
致命的な不具合を有することになる。
The clogging of the fins increases ventilation resistance and reduces the contact area between the fins and air. As a result, the heat transfer efficiency is lowered and the heat exchanger has a fatal defect.

【0007】また、銅管と銅メッシュフィンとを、銅よ
りも熱伝導率の低いはんだもしくはろう材で接合するこ
とは銅管と銅メッシュフィンとを直接接合した場合に比
較し、必然的に熱伝導率が低下する。このため、さらに
より良い熱伝達率を得るためには、銅管とメッシュフィ
ンとを直接接合する方法が望ましい。この方法として
は、銅母材の熱伝導率が良いこと、また銅管および銅メ
ッシュフィンの熱容量が小さいことから、高エネルギ密
度溶接方法、即ち電子ビーム溶接、レーザ溶接およびプ
ラズマ溶接が考えられる。
In addition, joining the copper pipe and the copper mesh fin with a solder or a brazing material having a lower thermal conductivity than copper is inevitable as compared with the case where the copper pipe and the copper mesh fin are directly joined. The thermal conductivity decreases. Therefore, in order to obtain an even better heat transfer coefficient, a method of directly joining the copper pipe and the mesh fin is desirable. As this method, a high energy density welding method, that is, electron beam welding, laser welding and plasma welding is conceivable because the copper base material has a good thermal conductivity and the copper tubes and the copper mesh fins have a small heat capacity.

【0008】このなかで、電子ビーム溶接は真空雰囲気
が必要であり、またプラズマはエネルギ密度が比較的小
さいことから、大気中溶接が可能であり、かつエネルギ
密度の高いレーザ溶接の適用が適当であると判断した。
Among these, electron beam welding requires a vacuum atmosphere, and plasma has a relatively low energy density. Therefore, it is possible to perform welding in the atmosphere and it is appropriate to apply laser welding having a high energy density. I decided it was.

【0009】[0009]

【発明が解決しようとする課題】溶接、切断加工の分野
において、レーザビームは通常のアーク溶接に比較し、
エネルギ密度が格段に高く、また炭酸ガスレーザ、YA
Gレーザでは1kWを越えるパワーが得られることか
ら、特に鉄鋼材料において、溶接にまた切断に多用され
ており、溶接については高速溶接が可能であり、また幅
の狭い深溶込みのビードが得られることが特徴とされて
いる。
In the field of welding and cutting, the laser beam is more advantageous than ordinary arc welding.
Remarkably high energy density, carbon dioxide laser, YA
Since the G laser can obtain a power of more than 1 kW, it is often used for welding and cutting, especially for steel materials, high-speed welding is possible for welding, and a narrow deep-penetration bead can be obtained. It is characterized.

【0010】ところが、母材が銅の場合、レーザの反射
率が極端に高く、入射したビームの90数%が反射さ
れ、先に述べたように、9mmφ×0.3mmtの銅管
に、図2に示した銅メッシュフィンを重ね、5kWの炭
酸ガスレーザを照射したが、銅管およびメッシュフィン
ともに全く溶融が生じなかった。
However, when the base material is copper, the reflectance of the laser is extremely high, and 90% or more of the incident beam is reflected. As described above, a copper tube of 9 mmφ × 0.3 mmt is When the copper mesh fins shown in 2 were stacked and irradiated with a 5 kW carbon dioxide laser, melting did not occur at all in the copper tube and the mesh fins.

【0011】このためレーザの吸収率を上げるべく、溶
接開始位置のメッシュフィン表面に黒色の塗料を塗り、
同様の条件で溶接したところ、溶接開始位置では銅は溶
融し深い溶込みが得られたが、溶接が進行するに従い、
溶込みは浅くなった。これは溶接開始時は黒色塗料がレ
ーザを吸収し、溶融が生じたが、溶接が進行すると銅の
溶湯の吸収率となり、溶込みが浅くなったものである。
Therefore, in order to increase the absorption rate of the laser, a black paint is applied to the mesh fin surface at the welding start position,
When welding under the same conditions, copper melted and a deep penetration was obtained at the welding start position, but as the welding progressed,
The penetration became shallow. This is because the black paint absorbed the laser and melted at the start of welding, but when the welding progressed, it became the absorption rate of the molten copper and the penetration became shallow.

【0012】このため、次に、メッシュフィンの溶接部
全長に黒色塗料を塗り溶接した。その結果、溶接線全長
において、安定した溶込みが得られた。しかしながら、
X線透過試験を行ったところ、黒色塗料を塗らなかった
ところでは観察されなかったブローホール(欠陥)が黒
色塗料を塗ったところで発生していた。
Therefore, next, black paint was applied and welded to the entire length of the welded portion of the mesh fin. As a result, stable penetration was obtained over the entire welding line length. However,
When an X-ray transmission test was carried out, blow holes (defects) which were not observed in the case where the black paint was not applied were found in the case where the black paint was applied.

【0013】熱交換器では銅管に生じるピット、ブロー
ホール等の不具合はフロンガスの漏れの発生につながる
ため、皆無としなければならない不具合である。このよ
うに、従来のレーザ溶接法では、溶込みが生じにくく、
また溶込みが得られた場合にも不具合が発生し易いとい
う不都合を有していた。本発明は、このような現状に鑑
みてなされたもので、簡潔な構成によって安定した溶込
みが得られ、かつ不具合のない溶接部が得られる溶接方
法を提供することを目的としている。
In the heat exchanger, defects such as pits and blow holes formed in the copper pipe lead to the leakage of CFC gas, which is a problem that must be eliminated. As described above, in the conventional laser welding method, penetration hardly occurs,
Further, there is a problem that a defect is likely to occur even when the penetration is obtained. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a welding method that can obtain stable penetration with a simple configuration and that can obtain a weld portion without a defect.

【0014】[0014]

【課題を解決するための手段】上記の目的は、前記特許
請求の範囲に記載された接合方法によって達成される。
すなわち、銅からなる構造物をレーザ溶接する場合にお
いて、Si,Mn,Fe,Al,Niの含有量の合計が
0.4%以上で、かつSi,Mn,Fe,Alそれぞれ
の含有量が15%以下となるワイヤを供給しながら、溶
接することに趣旨が存在する。以下、本発明の作用等に
ついて実施例に基づいて説明する。
The above object can be achieved by the joining method described in the claims.
That is, when laser welding a structure made of copper, the total content of Si, Mn, Fe, Al, and Ni is 0.4% or more, and the content of each of Si, Mn, Fe, and Al is 15% or more. %, There is a purpose in welding while supplying a wire of not more than%. Hereinafter, the operation and the like of the present invention will be described based on Examples.

【0015】[0015]

【実施例】純銅に微量の添加元素を加えると、その物理
的性質が急激に変化することは、よく知られている。例
えば、図4に無酸素銅中の不純物量が電気伝導率に及ぼ
す影響を示すが、FeやSi等を0.01〜0.1%程
度添加するだけで、電気伝導率は極端に低下する。それ
と同時に電気伝導率と同様の傾向を示す熱伝導率もまた
同様に低下しているものと推定される。
EXAMPLES It is well known that the addition of a trace amount of additive element to pure copper causes a rapid change in its physical properties. For example, FIG. 4 shows the effect of the amount of impurities in oxygen-free copper on the electrical conductivity, but the electrical conductivity is extremely reduced only by adding about 0.01 to 0.1% of Fe, Si, or the like. . At the same time, it is estimated that the thermal conductivity, which shows the same tendency as the electrical conductivity, also decreases.

【0016】本願発明者等は、これ等微量の添加元素
が、銅のレーザ溶接で問題となっている、反射率にも大
きく影響するのではないかと考え、先に示したように、
銅にSi,Mn,Fe,Al,Niを添加したワイヤを
試作した。これ等の元素は溶接中のブローホール等の不
具合を防止するための脱酸効果と、更には銅合金母材の
特性を溶接部でも生かすというようなことを考慮して、
選択したものである。
The inventors of the present application have thought that these trace amounts of additional elements may greatly affect the reflectivity, which is a problem in laser welding of copper, and as described above,
A wire in which Si, Mn, Fe, Al, and Ni were added to copper was prototyped. These elements take into consideration the deoxidizing effect for preventing problems such as blowholes during welding, and that the characteristics of the copper alloy base material are also utilized in the welded portion,
It is a choice.

【0017】種々の添加量の試作ワイヤを送給しなが
ら、先に示した、銅管と銅メッシュフィンの重ね部をレ
ーザ溶接を行ったところ、添加元素の合計量を0.4%
以上とするこにより、母材が安定して溶融し、かつブロ
ーホール等の不具合のない溶接部が得られた。
Laser welding of the copper pipe and the copper mesh fin shown above was carried out while feeding trial wires of various addition amounts, and the total amount of added elements was 0.4%.
By the above, the base material was stably melted, and a welded portion free from defects such as blowholes was obtained.

【0018】上記の溶接プロセスについて更に詳述す
る。先ず合金元素が添加された溶接ワイヤは、レーザビ
ームが照射される溶接部表面に、溶接線前方側の上方約
30°の方向から、溶接点に供給される。溶接点に照射
されたレーザビームは、銅母材とワイヤとを加熱するこ
ととなるが、銅母材は反射率が高く、ほとんどレーザの
エネルギは吸収されず、母材は溶融しない。しかし溶接
点に供給されたワイヤは上記の添加元素を含有している
ため、レーザの反射率が低下し、また熱伝導率も低下
し、かつワイヤの直径が1mmφ程度と小さいため、ワ
イヤが溶融することとなる。
The above welding process will be described in more detail. First, the welding wire to which the alloying element has been added is supplied to the welding point surface irradiated with the laser beam from the direction of about 30 ° above the front side of the welding line to the welding point. The laser beam applied to the welding point heats the copper base material and the wire, but the copper base material has a high reflectance, almost no laser energy is absorbed, and the base material does not melt. However, since the wire supplied to the welding point contains the above-mentioned additional elements, the reflectance of the laser decreases, the thermal conductivity also decreases, and the wire diameter is as small as about 1 mmφ, so the wire melts. Will be done.

【0019】このワイヤの融液が銅母材の溶接点表面に
落ちると、融液の反射率が低いためレーザのエネルギを
吸収し、このエネルギが銅母材に伝達され、母材の溶
融、溶込みが得られ、溶接が達成されるものと考えられ
る。
When the melt of this wire falls on the welding point surface of the copper base material, the energy of the laser is absorbed due to the low reflectivity of the melt, and this energy is transmitted to the copper base material to melt the base material. It is considered that penetration is obtained and welding is achieved.

【0020】ワイヤへの添加物の量が少ない場合、ワイ
ヤの反射率の低下および熱伝導率の低下が不十分である
ため、レーザ照射時に初期のワイヤの溶融が発生せず、
銅母材の溶融も生じないものと考えられる。
When the amount of the additive to the wire is small, the decrease in the reflectance and the decrease in the thermal conductivity of the wire are insufficient, so that the initial melting of the wire does not occur during laser irradiation,
It is considered that melting of the copper base material does not occur.

【0021】本願発明者等は、以上詳述した本願発明の
効果を確認するために、下記のような実験を行った。先
ず図1に示すように、9mmφ×0.3mmtの銅管2
と図2に示した銅メッシュフィン1とを重ね、これを押
さえ治具4で固定し、溶接方向前方の30°上方から、
各種成分で試作した、0.8mmφのワイヤ8を供給し
ながら、炭酸ガス溶接を行った。図1において、5はレ
ーザノズル、6はレーザビーム、7はワイヤノズルであ
る。その実験の結果を表1〜表2(表2は表1の続
き。)に示す。
The present inventors conducted the following experiments in order to confirm the effects of the present invention described in detail above. First, as shown in FIG. 1, a 9 mmφ × 0.3 mmt copper tube 2
2 and the copper mesh fin 1 shown in FIG.
Carbon dioxide welding was carried out while supplying the 0.8 mmφ wire 8 produced by trial with various components. In FIG. 1, 5 is a laser nozzle, 6 is a laser beam, and 7 is a wire nozzle. The results of the experiment are shown in Tables 1 and 2 (Table 2 is a continuation of Table 1).

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】尚、溶接条件は予備試験を行い最適条件と
して求めたものであり、レーザパワー4.5kW、溶接
速度5m/分、焦点距離10インチの放物面鏡を用い、
焦点位置を溶接物表面に合わせた。シールドガスはAr
とし、20リットル/分供給した。ワイヤの直径は、
0.8mmφであり、5m/分の一定速度で供給した。
The welding conditions were determined as optimum conditions by performing a preliminary test. A parabolic mirror having a laser power of 4.5 kW, a welding speed of 5 m / min and a focal length of 10 inches was used.
The focus position was adjusted to the surface of the work piece. Shield gas is Ar
And supplied 20 liters / minute. The diameter of the wire is
It was 0.8 mmφ and was supplied at a constant speed of 5 m / min.

【0025】表1〜表2において、No.1,4,7,
10,13,16,17,18,25は添加物の合計量
が0.4%未満の比較材であり、上記の条件で溶接して
も、ワイヤ、メッシュフィン、銅管ともに溶融せず、溶
接出来なかった。
In Tables 1 and 2, No. 1, 4, 7,
Nos. 10, 13, 16, 17, 18, and 25 are comparative materials in which the total amount of additives is less than 0.4%, and even if welding is performed under the above conditions, neither the wire, the mesh fins, nor the copper pipe melts, I couldn't weld.

【0026】それに対し、Si,Mn,Fe,Al,N
iの添加量の合計が0.4%以上のものについては、い
ずれも図5に示すように外観が良好で、かつX線透過試
験でも不具合のない溶接部が得られた。
On the other hand, Si, Mn, Fe, Al, N
With respect to those having a total addition amount of i of 0.4% or more, as shown in FIG. 5, a welded portion having a good appearance and no defect in the X-ray transmission test was obtained.

【0027】ワイヤの成分において、Si,Mn,F
e,Alそれぞれの含有量が15%を越えた場合には伸
線加工時に硬化し、断線を生じて加工困難になることか
ら、上記各成分の含有量の上限値をそれぞれ15%とし
た。但しこの範囲内であっても含有量が大きくなるに伴
なって銅母材と溶接部の特性(熱伝導性、電気伝導性、
対蝕性等)の差異が大きくなるため、成分の添加量は溶
接のし易さ、あるいは溶接継手部の性能等を考慮して選
定する必要がある。
In the composition of the wire, Si, Mn, F
When the content of each of e and Al exceeds 15%, the content of each of the above components is set to 15%. However, even within this range, as the content increases, the characteristics of the copper base material and the welded portion (thermal conductivity, electrical conductivity,
Corrosion resistance, etc.) becomes large, so it is necessary to select the addition amount of the components in consideration of the ease of welding or the performance of the welded joint.

【0028】さらに比較例として、ワイヤを供給しない
場合の溶接結果について示すと、前述の溶接条件に対
し、レーザパワー5kW,溶接速度10m/分とし、ワ
イヤなしで溶接した。その結果、母材の反射率が高くメ
ッシュフィン、銅管とも全く溶融しなかった。そのため
メッシュフィン表面に溶接線全長にわたり、黒色のマジ
ックインクを塗って、溶接したところ、母材が溶融し溶
接が行われたが、表面にはピットが散見され、X線透過
試験においても、ブローホール欠陥が観察された。
Further, as a comparative example, welding results when no wire is supplied are shown. Under the above-mentioned welding conditions, laser power was 5 kW and welding speed was 10 m / min. As a result, the reflectance of the base material was high, and neither the mesh fin nor the copper tube was melted at all. Therefore, when the black magic ink was applied to the surface of the mesh fin over the entire length of the welding line and welding was performed, the base material melted and welding was performed, but pits were scattered on the surface and blown even in the X-ray transmission test. Hole defects were observed.

【0029】[0029]

【発明の効果】このように本願発明によれば、上記実施
例において詳述したように、銅からなる構造物、例えば
熱交換器等に用いられる、銅管とメッシュフィンとの接
合構造物をレーザ溶接するにあたり、安定した溶込みが
得られ、かつ不具合のない溶接部を得ることが可能にな
る。
As described above, according to the present invention, as described in detail in the above embodiment, a structure made of copper, for example, a joint structure of a copper pipe and a mesh fin used for a heat exchanger or the like is provided. In laser welding, it is possible to obtain a stable penetration and to obtain a welded portion having no defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の溶接方法の効果を確認するために実
施した実験装置の斜視図である。
FIG. 1 is a perspective view of an experimental device carried out to confirm the effect of the welding method of the present invention.

【図2】銅メッシュフィンの斜視図である。FIG. 2 is a perspective view of a copper mesh fin.

【図3】伝熱管とメッシュフィンとの接合体の一例を示
す斜視図である。
FIG. 3 is a perspective view showing an example of a joined body of a heat transfer tube and a mesh fin.

【図4】無酸素銅中の不純物量が電気伝導率に及ぼす影
響を示す図である。
FIG. 4 is a diagram showing the influence of the amount of impurities in oxygen-free copper on the electrical conductivity.

【図5】本願発明に基づく方法によって溶接した銅構造
物の外観の一例を示す図である。
FIG. 5 is a diagram showing an example of the appearance of a copper structure welded by the method according to the present invention.

【符合の説明】[Explanation of sign]

1 メッシュフィン 2 銅管 3 溶接ビード 4 押さえ治具 5 レーザノズル 6 レーザビーム 7 ワイヤノズル 8 ワイヤ 1 mesh fin 2 copper pipe 3 welding bead 4 holding jig 5 laser nozzle 6 laser beam 7 wire nozzle 8 wire

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月4日[Submission date] February 4, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】 本願発明者等は、熱交換器の性能向上を
目指し、一般に使用される材料のアルミと銅の中から、
銅を対象として選び研究開発に取り組んだ。まず、伝熱
管とフィンとの接合方法としてペースト状および線状の
はんだを銅管と銅のメッシュフィンとの間に配置しアル
ゴン雰囲気炉中による加熱、およびバーナ加熱を試み
た。その結果、いずれの加熱方法においても、はんだは
溶融流動し、メッシュフィンと銅管とは接合された。し
かしながら、はんだは過剰に流動し、メッシュフィンの
目の中にまで流れ込み、フィンの目詰まりが発生した。
The inventors of the present application have aimed to improve the performance of the heat exchanger by selecting from the commonly used materials aluminum and copper.
We selected copper as the target and worked on research and development. First, as a method of joining the heat transfer tube and the fin, paste-like and linear solder was placed between the copper tube and the copper mesh fin, and heating in an argon atmosphere furnace and burner heating were tried. As a result, in any heating method, the solder melted and flowed, and the mesh fin and the copper tube were joined. However, the solder excessively flowed and flowed into the mesh fin eyes, and the fins were clogged.

フロントページの続き (72)発明者 野口 昌孝 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内Front Page Continuation (72) Inventor Masataka Noguchi 65 Hirasawa, Hadano City, Kanagawa Prefecture Kobe Steel Works Hadano Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 銅からなる構造物をレーザ溶接する場合
において、Si,Mn,Fe,Al,Niの含有量の合
計が0.4%以上で、かつSi,Mn,Fe,Alそれ
ぞれの含有量が15%以下となるワイヤを供給しなが
ら、溶接することを特徴とする銅構造物のレーザ溶接方
法。
1. When laser welding a structure made of copper, the total content of Si, Mn, Fe, Al and Ni is 0.4% or more, and the content of each of Si, Mn, Fe and Al is contained. A laser welding method for a copper structure, which comprises welding while supplying a wire having an amount of 15% or less.
JP4347316A 1992-12-25 1992-12-25 Laser beam welding method for copper structure Pending JPH06190574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4347316A JPH06190574A (en) 1992-12-25 1992-12-25 Laser beam welding method for copper structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4347316A JPH06190574A (en) 1992-12-25 1992-12-25 Laser beam welding method for copper structure

Publications (1)

Publication Number Publication Date
JPH06190574A true JPH06190574A (en) 1994-07-12

Family

ID=18389400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4347316A Pending JPH06190574A (en) 1992-12-25 1992-12-25 Laser beam welding method for copper structure

Country Status (1)

Country Link
JP (1) JPH06190574A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229739A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Laser brazing method of high-strength steel sheet
JP2008133497A (en) * 2006-11-27 2008-06-12 Matsushita Electric Works Ltd Method for producing three-dimensional structure
US20220118543A1 (en) * 2020-10-16 2022-04-21 Dalian University Of Technology Welding wire for dissimilar welding of cu and steel and preparation method thereof and method for welding cu and steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229739A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Laser brazing method of high-strength steel sheet
JP2008133497A (en) * 2006-11-27 2008-06-12 Matsushita Electric Works Ltd Method for producing three-dimensional structure
US20220118543A1 (en) * 2020-10-16 2022-04-21 Dalian University Of Technology Welding wire for dissimilar welding of cu and steel and preparation method thereof and method for welding cu and steel

Similar Documents

Publication Publication Date Title
EP2692476B1 (en) Method for producing laser-welded steel tube
KR101436705B1 (en) Laser/arc hybrid welding method and method of producing welded member using same
CN101811231B (en) Method for welding with laser-cold metal transferred arc composite heat source
EP2614916A1 (en) Method for joining metallic members and brazing filler metal
WO1983002414A1 (en) Welding method using laser beam
CN110576263B (en) Dissimilar metal laser cladding welding method for copper pipe and steel pipe
JP2006224134A (en) Structure, method, and equipment for joining different kind of metals by high energy beam
EP2703112B1 (en) Method for producing laser welded steel pipe
KR100307039B1 (en) Welding method of conductors
JP4978121B2 (en) Butt joining method of metal plates
JP4308124B2 (en) Laser beam brazing method and laser irradiation apparatus
JPH06190574A (en) Laser beam welding method for copper structure
JP2007260701A (en) Method for joining different kinds of materials
CN208772728U (en) Laser argon arc Combined Welding picks
US5343015A (en) Laser assisted high frequency welding
JP2003170285A (en) Welding method for aluminum
JP2006088175A (en) Method for joining different materials
JP2006116600A (en) Method for joining different materials
JP3309309B2 (en) Brazing electrode parts and brazing electrodes for discharge lamps
JPH09248668A (en) Gas shielded consumable electrode arc brazing method
JPH09122958A (en) Pulse laser beam welding method of aluminum alloy
JPS617088A (en) Aluminum brazing filler metal for fluxless brazing in non-oxidizing atmosphere
JP3767359B2 (en) Butt welding method and welded thin steel plate
JP2010052007A (en) Laser brazing method
JPH06190546A (en) Method for joining steel tube with mesh fin