JP2008133497A - Method for producing three-dimensional structure - Google Patents

Method for producing three-dimensional structure Download PDF

Info

Publication number
JP2008133497A
JP2008133497A JP2006319338A JP2006319338A JP2008133497A JP 2008133497 A JP2008133497 A JP 2008133497A JP 2006319338 A JP2006319338 A JP 2006319338A JP 2006319338 A JP2006319338 A JP 2006319338A JP 2008133497 A JP2008133497 A JP 2008133497A
Authority
JP
Japan
Prior art keywords
metal wire
wire
metal
copper
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006319338A
Other languages
Japanese (ja)
Other versions
JP5016300B2 (en
Inventor
Isao Fuwa
勲 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006319338A priority Critical patent/JP5016300B2/en
Publication of JP2008133497A publication Critical patent/JP2008133497A/en
Application granted granted Critical
Publication of JP5016300B2 publication Critical patent/JP5016300B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a three-dimensional structure by irradiating a metallic material with a light beam, which does not cause the segregation of a component in the material, makes the density of the material uniform, and makes the material to be easily handled. <P>SOLUTION: The method for producing the three-dimensional structure comprises the steps of: irradiating a metal gauze 2 formed of a metal wire with the light beam (L) to form a solidified layer or a melted layer; and stacking the layers for producing the three-dimensional structure by repeating the irradiation step on the metal gauze. Because the material has a shape of the metal gauze 2, the structure does not cause the segregation of the component in the material, gives the uniform density to the material, and is easily handled. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は金属材料に光ビームの照射を行なう三次元形状造形物の製造方法に関する。   The present invention relates to a method for manufacturing a three-dimensional shaped object in which a metal material is irradiated with a light beam.

従来から、金属材料で形成した材料層に光ビーム(指向性エネルギービーム、例えばレーザ光)を照射して焼結層又は溶融層を形成し、この焼結層又は溶融層の上に新たな材料層を形成して光ビームを照射することで焼結層又は溶融層を形成するということを繰り返して三次元形状造形物を製造する技術が知られている。この技術の特徴は、複雑な三次元形状物を短時間で製造することができることである。エネルギー密度の高い光ビームを照射することで金属材料がほぼ完全に溶融した後に固化した状態、つまり溶融後の材料密度がほぼ100%の状態となり、この高密度の造形物の表面を仕上げ加工することにより滑らかな面を形成することができ、プラスチック成形用金型などに適用される。   Conventionally, a material layer formed of a metal material is irradiated with a light beam (directional energy beam, for example, laser light) to form a sintered layer or a molten layer, and a new material is formed on the sintered layer or the molten layer. A technique for manufacturing a three-dimensional shaped object by repeating the formation of a sintered layer or a molten layer by forming a layer and irradiating a light beam is known. A feature of this technique is that a complicated three-dimensional shape can be manufactured in a short time. By irradiating a light beam with high energy density, the metal material is almost completely melted and then solidified, that is, the material density after melting is almost 100%, and the surface of this high-density model is finished. Thus, a smooth surface can be formed, which is applied to a plastic mold or the like.

金属光造形と称されるこの技術において、通常使用する金属材料は、粉末の状態で用いられている。積層する材料を金属粉末とすることで、材料の表面積が大きくなりレーザ光の吸収率も大きくなるので、エネルギー密度の低い照射条件でも材料を焼結又は溶融することが可能となり、造形速度が向上する。   In this technique called metal stereolithography, the metal material normally used is used in a powder state. By making the material to be laminated a metal powder, the surface area of the material increases and the absorption rate of the laser beam also increases, so it is possible to sinter or melt the material even under irradiation conditions with low energy density, improving the modeling speed To do.

ある程度の強度を有する造形物を得るためには、レーザ光を照射する材料層においてレーザ光走査箇所に隣接する造形部との密着強度を高めると共に、照射された造形部とその下層にある造形層との密着強度も高くしなければならない。積層する材料が金属粉末であれば、粉末間にある隙間を通してレーザ光が下層の造形層にも照射され、下層の造形層も加熱されて密着強度が向上する。   In order to obtain a modeled object having a certain level of strength, in the material layer to which the laser beam is irradiated, the adhesion strength between the modeled part adjacent to the laser beam scanning position is increased, and the modeled layer that is irradiated and the modeled layer underneath it Adhesion strength with must also be increased. If the material to be laminated is a metal powder, the lower modeling layer is irradiated with laser light through a gap between the powders, and the lower modeling layer is also heated to improve the adhesion strength.

更に、レーザ照射された箇所の上面があまり大きく盛り上がってはならない。次の層を造形するための次の材料層を形成する際に、盛り上がり高さが金属粉末を積層する厚み以上となると、材料層の形成そのものが困難となってしまう。   Furthermore, the upper surface of the laser-irradiated portion should not rise so much. When the next material layer for modeling the next layer is formed, if the raised height is equal to or greater than the thickness for laminating the metal powder, formation of the material layer itself becomes difficult.

もちろん、造形物の外観に割れが生じてはならないし、内部組織にもマイクロクラックの無いことが望まれる。   Of course, the appearance of the shaped object must not be cracked, and it is desirable that the internal structure be free of microcracks.

ここにおいて、レーザ照射された金属材料は、その一部、又は全部が一旦溶融し、その後冷却凝固されて造形物となるが、この溶融した時の濡れ性が大きいと隣接する造形部との接合面積が大きくなり、流動性が大きければ盛り上がりが小さくなることから、溶融した時の流動性が大きく、かつ、濡れ性が良いことが望まれる。   Here, a part or all of the metal material irradiated with the laser is once melted and then cooled and solidified to form a modeled object. If the wettability at the time of the melting is large, it is possible to join the adjacent modeled part. If the area is large and the fluidity is large, the rise is small. Therefore, it is desirable that the fluidity when melted is large and the wettability is good.

このような観点から、本出願人は特許文献1に示されるように、クロムモリブデン鋼からなる鉄系粉末と、ニッケル粉末と、リン銅又はマンガン銅粉末からなる金属光造形用の混合粉末を提案した。クロムモリブデン鋼粉末はその硬度や強度の点から、ニッケル粉末は強度、靭性及び加工性の点から、リン銅又はマンガン銅粉末は濡れ性及び流動性の点から採用している。   From such a viewpoint, as shown in Patent Document 1, the present applicant proposed a mixed powder for metal stereolithography made of iron-based powder made of chromium molybdenum steel, nickel powder, and phosphorous copper or manganese copper powder. did. Chrome molybdenum steel powder is adopted from the viewpoint of hardness and strength, nickel powder is adopted from the viewpoint of strength, toughness and workability, and phosphorous copper or manganese copper powder is adopted from the viewpoint of wettability and fluidity.

鉄系粉末のみにレーザ光を照射して高密度な三次元形状造形物を製造することは困難である。これは、先に形成された鉄の造形層に次の造形層を、隙間を作ることなく一体化することが困難であるからである。クロムモリブデン鋼自体は硬度が高く機械的強度に優れていても、クロムモリブデン鋼粉末のみでレーザ照射をして得られる三次元造形物の造形密度は低く、その強度も弱い。   It is difficult to produce a high-density three-dimensional shaped object by irradiating only iron-based powder with laser light. This is because it is difficult to integrate the next modeling layer into the previously formed iron modeling layer without creating a gap. Even if the chromium molybdenum steel itself has high hardness and excellent mechanical strength, the modeling density of the three-dimensional structure obtained by laser irradiation with only the chromium molybdenum steel powder is low and its strength is also weak.

鉄系粉末がニッケル成分を多く含む合金の場合、粉末の表面に形成される強固な酸化膜が鉄系粉末同士の融着一体化を阻害するため、前記の問題が甚だしくなる。鉄系金属にニッケルを含有させることは、その鉄系金属の靭性や強度及び耐食性を向上できるという利点があるが、レーザ照射による三次元造形物の製造に使用した場合には、その利点が全く発揮されない。   In the case where the iron-based powder is an alloy containing a large amount of nickel component, the above-mentioned problem becomes serious because a strong oxide film formed on the surface of the powder hinders fusion integration of the iron-based powders. Inclusion of nickel in an iron-based metal has the advantage that the toughness, strength, and corrosion resistance of the iron-based metal can be improved, but when used for the production of a three-dimensional structure by laser irradiation, the advantage is completely absent. It is not demonstrated.

レーザ照射のエネルギーを大きくすれば、クロムモリブデン鋼やニッケル成分を含む鉄系粉末でも、十分に融着一体化できるが、その場合には、レーザ光の照射装置が大掛かりになったり、過大な電力が必要となり、製造コストが高くつくという欠点がある他、レーザ光の走査速度を高められないため、製造能率が低下する。また、過大な照射エネルギー量でつくられた造形物は、熱応力により反りや変形を起こし易くなる。   If the energy of laser irradiation is increased, even iron-based powders containing chromium-molybdenum steel and nickel components can be sufficiently fused and integrated, but in that case, the laser irradiation device becomes too large or excessive power is required. In addition to the disadvantage that the manufacturing cost is high, the scanning speed of the laser beam cannot be increased, and the manufacturing efficiency is lowered. In addition, a shaped article made with an excessive amount of irradiation energy tends to warp or deform due to thermal stress.

溶融された時にその流動性が良く、溶融状態で鉄系材料との濡れ性が良く、かつ鉄系材料と合金化された場合でも特性の劣化がほとんどない金属材料が銅である。鉄系粉末と銅合金粉末からなる混合粉末にレーザ光を照射すると、この銅合金が先に溶融し、鉄系粉末間の隙間を埋めると同時に、これが結合材となって融着一体化する。レーザ光の照射エネルギーが高い場合は混合粉末を形成する全鉄系粉末及び銅合金粉末が溶融し合金となる。   Copper is a metal material that has good fluidity when melted, good wettability with an iron-based material in a molten state, and hardly deteriorates in characteristics even when alloyed with an iron-based material. When the mixed powder composed of iron-based powder and copper alloy powder is irradiated with laser light, the copper alloy is melted first to fill the gap between the iron-based powders, and at the same time, this becomes a binder and is fused and integrated. When the irradiation energy of laser light is high, all iron-based powder and copper alloy powder forming the mixed powder are melted to form an alloy.

溶融金属の流動性は、溶融時の温度と融点との差が大きいほど良くなる。純銅よりもリン銅合金やマンガン銅合金の方が融点は低く、同じエネルギーで照射した場合の流動性は、純銅よりもリン銅合金やマンガン銅合金の方が良い。   The fluidity of the molten metal becomes better as the difference between the melting temperature and the melting point increases. Phosphorous copper alloys and manganese copper alloys have lower melting points than pure copper, and the fluidity when irradiated with the same energy is better for phosphorous copper alloys and manganese copper alloys than for pure copper.

従来の金属光造形用鉄系粉末材料には、ニッケル粉末も含まれている。前述したように、鉄系粉末がニッケル成分を含む合金である場合には、粉末表面に形成される強固な酸化膜によって、粉末同士の融着一体化が阻害されるが、鉄系粉末とは別個の粉末としてニッケル粉末が銅合金と共に混合された場合には、これらの粉末同上の融着一体化は良好に行なわれる。そして、鉄系成分とニッケルと銅合金成分とからなる硬化層は、その焼結密度は高く、その結果、靭性や強度が高くなる。   The conventional iron-based powder material for metal stereolithography also includes nickel powder. As described above, when the iron-based powder is an alloy containing a nickel component, fusion integration between the powders is hindered by a strong oxide film formed on the powder surface. When nickel powder is mixed with a copper alloy as a separate powder, fusion and integration of these powders are performed well. And the hardened layer which consists of an iron-type component, nickel, and a copper alloy component has the high sintered density, As a result, toughness and intensity | strength become high.

特に、クロムモリブデン鋼の配合量が60〜90重量%、ニッケル粉末の配合量が5〜35重量%、銅マンガン合金粉末の配合量が5〜15重量%である時に、特に好ましい結果を得ることができる。   In particular, when the blending amount of chromium molybdenum steel is 60 to 90% by weight, the blending amount of nickel powder is 5 to 35% by weight, and the blending amount of copper manganese alloy powder is 5 to 15% by weight, particularly preferable results are obtained. Can do.

上述した金属粉末を材料として使った金属光造形において、レーザ照射とその積層によって複雑な三次元形状造形物を得るという点において、概ね好ましい結果を得ることができている。   In the metal stereolithography using the above-described metal powder as a material, a generally preferable result can be obtained in that a complicated three-dimensional shaped object is obtained by laser irradiation and its lamination.

しかしながら、金属粉末材料はある程度の粒度分布や形状の違いをもっており、均一の厚さで粉末を薄く敷いた時の粉末充填密度が一定にならず、また、成分の異なる複数の粉末からなる混合粉末を用いると、成分の偏析を起こす虞がある。   However, the metal powder material has a certain particle size distribution and a difference in shape, and the powder packing density when the powder is spread thinly with a uniform thickness is not constant, and a mixed powder consisting of a plurality of powders having different components If used, there is a risk of segregation of components.

また、粒径の細かい粉末を用いる場合、作業者がその粉末を取り扱う際に細かい粉末が舞い上がる等、取り扱い性が良くなく、また舞い上がったその粉末が造形装置内に堆積して機械的な装置トラブルを起こす虞がある。
特開2005−48234号公報
In addition, when using powder with a small particle size, handling is not good, for example, when the powder is handled by an operator, and the powder that has sowed accumulates in the modeling equipment and causes mechanical problems. There is a risk of causing.
JP-A-2005-48234

本発明は、上記の問題を解決するためになされたものであり、材料における成分の偏析がなく、材料密度が一定であり、かつ、材料の取り扱い易いが容易な三次元形状造形物の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and has no segregation of components in the material, the material density is constant, and the method for producing a three-dimensional shaped article that is easy to handle the material is easy. The purpose is to provide.

上記目的を達成するために請求項1の発明は、金属材料に光ビームを照射して三次元形状造形物を製造する三次元形状造形物の製造方法において、金属線により形成された金網に光ビームを照射して、凝固層又は溶解層を形成する照射工程と、前記照射工程を金網に対して繰り返すことにより前記凝固層又は溶解層を積層して三次元形状造形物を製造する積層工程と、を備えたものである。   In order to achieve the above object, the invention of claim 1 is directed to a method of manufacturing a three-dimensional shaped object by irradiating a metal material with a light beam to produce a three-dimensional shaped object in a wire mesh formed by a metal wire. An irradiation step of irradiating a beam to form a solidified layer or a dissolved layer; and a lamination step of manufacturing the three-dimensional shaped object by laminating the solidified layer or the dissolved layer by repeating the irradiation step on a wire mesh. , With.

請求項2の発明は、請求項1に記載の三次元形状造形物の製造方法において、前記金属線の線径が0.01mm以上0.1mm以下であるものである。   The invention of claim 2 is the method for producing a three-dimensional shaped article according to claim 1, wherein the metal wire has a wire diameter of 0.01 mm or more and 0.1 mm or less.

請求項3の発明は、請求項1又は請求項2に記載の三次元形状造形物の製造方法において、前記金網における前記金属線の間隙が0.01mm以上0.1mm以下であるものである。   According to a third aspect of the present invention, in the method for manufacturing a three-dimensionally shaped article according to the first or second aspect, the gap between the metal wires in the wire mesh is 0.01 mm or more and 0.1 mm or less.

請求項4の発明は、請求項1乃至請求項3のいずれか一項に記載の三次元形状造形物の製造方法において、前記金網は、鉄系金属線と、ニッケル金属線及びニッケル系合金金属線の両方又はいずれか一方と、銅金属線及び銅系合金金属線の両方又はいずれか一方と、を有するものである。   The invention of claim 4 is the method for producing a three-dimensional shaped object according to any one of claims 1 to 3, wherein the wire mesh is an iron-based metal wire, a nickel metal wire, and a nickel-based alloy metal. Both or one of the wires and both or one of the copper metal wire and the copper-based alloy metal wire are included.

請求項5の発明は、請求項4に記載の三次元形状造形物の製造方法において、前記金網は、前記鉄系金属線の構成比率が60重量%以上90重量%以下であり、ニッケル金属線及びニッケル系合金金属線の両方又はいずれか一方の構成比率が5重量%以上35重量%以下であり、銅金属線及び銅系合金金属線の両方又はいずれか一方の構成比率が5重量%以上15重量%以下であるものである。   According to a fifth aspect of the present invention, in the method for manufacturing a three-dimensional shaped article according to the fourth aspect, the wire mesh has a composition ratio of the iron-based metal wire of 60 wt% or more and 90 wt% or less, and a nickel metal wire And the composition ratio of either or both of the nickel-based alloy metal wire is 5% by weight or more and 35% by weight or less, and the composition ratio of either or both of the copper metal wire and the copper-based alloy metal wire is 5% by weight or more. It is 15% by weight or less.

請求項6の発明は、請求項1乃至請求項5のいずれか一項に記載の三次元形状造形物の製造方法において、前記金網は、鉄系金属線からなる金網と、ニッケル金属線及びニッケル系合金金属線の両方又はいずれか一方からなる金網と、銅金属線及び銅系合金金属線の両方又はいずれか一方からなる金網と、を重ねて有するものである。   The invention of claim 6 is the method for producing a three-dimensional shaped article according to any one of claims 1 to 5, wherein the wire mesh is a wire mesh made of an iron-based metal wire, a nickel metal wire, and nickel. A wire mesh made of both or any one of the alloy metal wires and a wire mesh made of either or both of the copper metal wires and the copper alloy metal wires are overlapped.

請求項7の発明は、請求項1乃至請求項6のいずれか一項に記載の三次元形状造形物の製造方法において、前記凝固層又は溶解層の形成後に、それまでに積層して得られた三次元形状造形物の表面部及び/又は不要部分の切削除去を行なう切削工程を更に備えたものである。   Invention of Claim 7 is obtained by laminating | stacking until then in the manufacturing method of the three-dimensional shaped molded article as described in any one of Claim 1 thru | or 6, after formation of the said solidification layer or melt | dissolution layer. Further, a cutting process for cutting and removing the surface portion and / or unnecessary portion of the three-dimensional shaped object is further provided.

請求項1の発明によれば、金属線により形成された金網に光ビームを照射するので、成分の偏析がなく、材料密度が一定した三次元形状造形物の製造が可能である。また、材料の取り扱いが容易であるので、三次元形状造形物を製造し易い。   According to the first aspect of the present invention, since a light beam is irradiated onto a metal mesh formed of a metal wire, it is possible to manufacture a three-dimensional shaped object with no segregation of components and a constant material density. Moreover, since handling of material is easy, it is easy to manufacture a three-dimensional shaped article.

請求項2の発明によれば、金属線の線径が細いので、三次元形状造形物の寸法精度が良い。また、金属線の線径が細すぎないので、光ビーム照射時に、材料が飛散しない。   According to invention of Claim 2, since the wire diameter of a metal wire is thin, the dimensional accuracy of a three-dimensional shaped molded article is good. Moreover, since the wire diameter of the metal wire is not too thin, the material does not scatter during the light beam irradiation.

請求項3の発明によれば、光ビームが下層の凝固層を照射して加熱するので、下層の凝固層との密着強度が向上する。   According to the invention of claim 3, since the light beam irradiates and heats the lower solidified layer, the adhesion strength with the lower solidified layer is improved.

請求項4の発明によれば、凝固層の盛り上がりが小さくなり、次に積層する金属網を精度良く、配置することができる。   According to the invention of claim 4, the rise of the solidified layer is reduced, and the metal net to be laminated next can be arranged with high accuracy.

請求項5の発明によれば、製造される三次元形状造形物の外観での割れや、内部組織のマイクロクラックの発生が抑えられる。   According to invention of Claim 5, generation | occurrence | production of the crack in the external appearance of the three-dimensional shape molded article manufactured and the micro crack of an internal structure | tissue are suppressed.

請求項6の発明によれば、一つの金網を複数の材料の金属線から構成せずに、1種類の材料の金属線から構成された複数種類の金属網を組み合わせて使用するので、金網のコストが安価であり、また、材料の配合比を簡単に変えることができる。   According to the sixth aspect of the present invention, since a single metal mesh is not composed of a plurality of metal wires, a plurality of types of metal mesh composed of a single material metal wire is used in combination. The cost is low and the compounding ratio of the materials can be easily changed.

請求項7の発明によれば、製造される三次元形状造形物の表面粗さが細かくなり、寸法精度が向上する。   According to invention of Claim 7, the surface roughness of the three-dimensional shape molded article manufactured becomes fine, and a dimensional accuracy improves.

(第1の実施形態)
本発明の第1の実施形態に係る三次元形状造形物の製造方法について図面を参照して説明する。図1は、三次元形状造形物の製造に用いる金属光造形加工機の構成を、図2は材料に用いる金網の構成を示す。金属光造形加工機1は、材料となる金網2が載置される造形用ベース3と、造形用ベース3を保持し、上下に昇降する昇降テーブル4と、光ビームLを発する光ビーム発信器5と、光ビームLを金網2の上にスキャニングするガルバノミラー6とを備えている。
(First embodiment)
A method for manufacturing a three-dimensional shaped object according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a metal stereolithography machine used for manufacturing a three-dimensional shaped object, and FIG. 2 shows a configuration of a wire mesh used for the material. The metal stereolithography machine 1 includes a modeling base 3 on which a metal mesh 2 as a material is placed, a lifting table 4 that holds the modeling base 3 and moves up and down, and a light beam transmitter that emits a light beam L. 5 and a galvanometer mirror 6 for scanning the light beam L on the wire mesh 2.

金網2は、縦方向と横方向に並べられた金属線21により構成されており、金属線21同士は、電気溶接により接合されている。金属線21の線径Aは0.01〜0.1mmであり、金属線21間の間隔Bは、0.01〜0.1mmである。金属線21は鉄系金属線21aと、ニッケル金属線21b及び/又はニッケル系合金金属線21cと、銅金属線21d及び/又は銅系合金金属線21eとから構成されている。そして、鉄系金属線21aの構成比率が60〜90重量%であり、ニッケル金属線21b及び/又はニッケル系合金金属線21cの構成比率が5〜35重量%であり、銅金属線21d及び/又は銅系合金金属線21eの構成比率が5〜15重量%となっている。   The metal mesh 2 is composed of metal wires 21 arranged in the vertical direction and the horizontal direction, and the metal wires 21 are joined to each other by electric welding. The wire diameter A of the metal wire 21 is 0.01 to 0.1 mm, and the interval B between the metal wires 21 is 0.01 to 0.1 mm. The metal wire 21 includes an iron metal wire 21a, a nickel metal wire 21b and / or a nickel alloy metal wire 21c, and a copper metal wire 21d and / or a copper alloy metal wire 21e. The composition ratio of the iron-based metal wire 21a is 60 to 90% by weight, the composition ratio of the nickel metal wire 21b and / or the nickel-based alloy metal wire 21c is 5 to 35% by weight, and the copper metal wire 21d and / or Alternatively, the composition ratio of the copper-based alloy metal wire 21e is 5 to 15% by weight.

図3は、本実施形態に係る製造方法のフローを、図4は、同製造方法の動作を示す。最初に、昇降テーブル4を金網2の厚みに相当する長さDだけ下げ(S1)、造形用ベース3に金網2を載置する(S2)(図4(a)参照)。光ビーム発信器5から光ビームLを発し(S3)、光ビームLをガルバノミラー6によって金網2上の任意の位置にスキャニングし(S4)、金網2を溶融し、凝固させて造形用ベース3と一体化した凝固層を形成する(S5)(図4(b)参照)。このS1乃至S5は、照射工程を構成する。そして、造形が終了したかを判断し(S6)、造形が終了するまでS1〜S5を繰り返す(図4(c)参照)。このS1乃至S6は、積層工程を構成する。こうして、凝固層を積層することで、三次元形状造形物を製造する(図4(d)参照)。   FIG. 3 shows the flow of the manufacturing method according to this embodiment, and FIG. 4 shows the operation of the manufacturing method. First, the lifting table 4 is lowered by a length D corresponding to the thickness of the wire mesh 2 (S1), and the wire mesh 2 is placed on the modeling base 3 (S2) (see FIG. 4A). A light beam L is emitted from the light beam transmitter 5 (S3), and the light beam L is scanned to an arbitrary position on the wire mesh 2 by the galvanometer mirror 6 (S4), and the wire mesh 2 is melted and solidified to form a base 3 for modeling. (S5) (see FIG. 4B). S1 to S5 constitute an irradiation process. Then, it is determined whether or not the modeling is completed (S6), and S1 to S5 are repeated until the modeling is completed (see FIG. 4C). S1 to S6 constitute a stacking process. Thus, a three-dimensional shaped object is manufactured by laminating the solidified layer (see FIG. 4D).

上述の製造方法においては、材料が金網2であるので、成分の偏析や材料密度のバラツキがなく、組成や金属組織が一定した三次元形状造形物の製造が可能である。また、金属粉末のように飛散することがないので、材料の取扱い性が良く、三次元形状造形物を製造し易い。金属線21の線径が細いので、三次元形状造形物の寸法精度が良く、また、細すぎないので、光ビーム照射時に、材料が飛散しない。金属線21の間隔が広すぎないので、材料の密度が低くなく、また、狭すぎないので、光ビームLが下層の造形層をよく照射して加熱し、新たな凝固層と下層の造形層との密着強度が強くなる。   In the manufacturing method described above, since the material is the wire mesh 2, there is no segregation of components or variations in material density, and it is possible to manufacture a three-dimensional shaped object with a constant composition and metal structure. Moreover, since it does not scatter like metal powder, the handleability of material is good and it is easy to manufacture a three-dimensional shaped article. Since the wire diameter of the metal wire 21 is thin, the dimensional accuracy of the three-dimensional shaped object is good, and since it is not too thin, the material does not scatter during the light beam irradiation. Since the distance between the metal wires 21 is not too wide, the density of the material is not low and is not too narrow. Therefore, the light beam L irradiates and heats the lower shaped layer well, and a new solidified layer and the lower shaped layer are formed. The adhesion strength with is increased.

金属線21は鉄系金属線21aと、ニッケル金属線21b及び/又はニッケル系合金金属線21cと、銅金属線21d及び/又は銅系合金金属線21eとから構成されているので、凝固層の盛り上がりが小さくなり、次に積層する金属網を精度良く、配置することができる。そして、鉄系金属線21aの構成比率が60〜90重量%であり、ニッケル金属線21b及び/又はニッケル系合金金属線21cの構成比率が5〜35重量%であり、銅金属線21d及び/又は銅系合金金属線21eの構成比率が5〜15重量%となっているので、製造される三次元形状造形物の外観の割れや、内部組織のマイクロクラックの発生が抑えられる。   The metal wire 21 is composed of an iron-based metal wire 21a, a nickel metal wire 21b and / or a nickel-based alloy metal wire 21c, and a copper metal wire 21d and / or a copper-based alloy metal wire 21e. The swell is reduced, and the metal net to be laminated next can be arranged with high accuracy. The composition ratio of the iron-based metal wire 21a is 60 to 90% by weight, the composition ratio of the nickel metal wire 21b and / or the nickel-based alloy metal wire 21c is 5 to 35% by weight, and the copper metal wire 21d and / or Alternatively, since the composition ratio of the copper-based alloy metal wire 21e is 5 to 15% by weight, the appearance crack of the manufactured three-dimensional shaped object and the occurrence of microcracks in the internal structure can be suppressed.

三次元形状造形物の材料となる金網2は、金属線21の種類毎に作成してもよい。図5は、金属線21の種類毎の金網2を用いた製造方法を示す。鉄系金属線21aから作成した金網2aと、ニッケル金属線21b及び/又はニッケル系合金金属線21cから作成した金網2bcと、銅金属線21d及び/又は銅系合金金属線21eから作成した金網2deを重ねて造形用ベース3に載置し、光ビームLを照射して三次元形状造形物を造形している。構成比率を鉄系金属線21aが60〜90重量%であり、ニッケル金属線21b及び/又はニッケル系合金金属線21cが5〜35重量%であり、銅金属線21d及び/又は銅系合金金属線21eが5〜15重量%となるように金網2を組み合わせている。金網2の作成が簡単で低コストとなる。また、材料の配合比を簡単に変えることができる。   The wire mesh 2 that is the material of the three-dimensional shaped object may be created for each type of the metal wire 21. FIG. 5 shows a manufacturing method using the wire mesh 2 for each type of the metal wire 21. Wire mesh 2a made from iron metal wire 21a, wire mesh 2bc made from nickel metal wire 21b and / or nickel alloy metal wire 21c, wire mesh 2de made from copper metal wire 21d and / or copper alloy metal wire 21e Are placed on the modeling base 3 and irradiated with the light beam L to form a three-dimensional shaped object. The iron-based metal wire 21a is 60 to 90% by weight, the nickel metal wire 21b and / or the nickel-based alloy metal wire 21c is 5 to 35% by weight, the copper metal wire 21d and / or the copper-based alloy metal. The wire mesh 2 is combined so that the line 21e is 5 to 15% by weight. Creation of the wire mesh 2 is simple and low cost. Moreover, the compounding ratio of the materials can be easily changed.

(第2の実施形態)
本発明の第2の実施形態に係る三次元形状造形物の製造方法について説明する。図6は、本実施形態に係る製造方法のフローを、図7は、同製造方法の動作を示す。本実施形態では、金網22が長尺であり、巻き出しロール71に巻かれており、金属光造形加工機1の両側に巻き出しロール71と巻き取りロール72とがセットされている。最初に、昇降テーブル4を金網22の厚みに相当する長さDだけ下げ(S21)、巻き出しロール71から巻き取りロール72に光造形に必要な分の金網22を送り出し、造形用ベース3に金網2を載置する(S22)(図7(a)参照)。光ビーム発信器5から光ビームLを発し(S23)、光ビームLをガルバノミラー6によって金網2上の任意の位置にスキャニングし(S24)、金網2を溶融し、凝固させて造形用ベース3と一体化した凝固層を形成する(S25(図7(b)参照)。この時、光ビームLによって、造形物と金網2とを切り離す。そして、造形が終了したかを判断し(S26)、造形が終了したと判断するまでS21〜S25を繰り返す。こうして、凝固層を積層することで、三次元形状造形物を製造する(図7(c)参照)。金網22の供給を簡単に行うことができ、低コストとなる。
(Second Embodiment)
A method for manufacturing a three-dimensional shaped object according to the second embodiment of the present invention will be described. FIG. 6 shows the flow of the manufacturing method according to the present embodiment, and FIG. 7 shows the operation of the manufacturing method. In the present embodiment, the wire mesh 22 is long and wound around an unwinding roll 71, and an unwinding roll 71 and a winding roll 72 are set on both sides of the metal stereolithography machine 1. First, the elevating table 4 is lowered by a length D corresponding to the thickness of the wire mesh 22 (S21), and the wire mesh 22 necessary for optical modeling is sent from the unwinding roll 71 to the take-up roll 72 to the modeling base 3. The wire mesh 2 is placed (S22) (see FIG. 7A). A light beam L is emitted from the light beam transmitter 5 (S23), the light beam L is scanned to an arbitrary position on the wire mesh 2 by the galvanometer mirror 6 (S24), and the wire mesh 2 is melted and solidified to form a base 3 for modeling. (S25 (see FIG. 7B)) At this time, the modeled object and the wire net 2 are separated by the light beam L. Then, it is determined whether or not the modeling is completed (S26). Then, S21 to S25 are repeated until it is determined that the modeling is completed, and a three-dimensional shaped object is manufactured by laminating the solidified layers (see FIG. 7C). Can be low cost.

三次元形状造形物の材料となる金網22は、金属線21の種類毎に作成してもよい。図8は、金属線21の種類毎の金網2を用いた製造方法を示す。巻き出しロール71aからは鉄系金属線21aの金網22aを、巻き出しロール71bからはニッケル金属線21b及び/又はニッケル系合金金属線21cの金網22bcを、巻き出しロール71cからは銅金属線21d及び/又は銅系合金金属線21eの金網22deを送り出し、造形用ベース3に重ねて載置し、巻き取りロール72によって巻き取る。金網22の作成が簡単で低コストとなる。また、材料の配合比を簡単に変えることができる。   The wire mesh 22 that is the material of the three-dimensional shaped object may be created for each type of the metal wire 21. FIG. 8 shows a manufacturing method using the wire mesh 2 for each type of the metal wire 21. From the unwinding roll 71a, the wire mesh 22a of the iron-based metal wire 21a, from the unwinding roll 71b the metal wire 22bc of the nickel metal wire 21b and / or the nickel-based alloy metal wire 21c, and from the unwinding roll 71c to the copper metal wire 21d. And / or the wire mesh 22 de of the copper-based alloy metal wire 21 e is sent out, placed on the modeling base 3, and taken up by the take-up roll 72. Creation of the wire mesh 22 is simple and low cost. Moreover, the compounding ratio of the materials can be easily changed.

(第3の実施形態)
本発明の第3の実施形態に係る三次元形状造形物の製造方法について説明する。本実施形態に係る三次元形状造形物の製造方法は、第1の実施形態に係る製造方法に加えて、造形物の周囲を削る工程を備えている。図9は、本実施形態に係る製造方法に用いる金属光造形複合加工機8の構成を示す。金属光造形複合加工機8は、第1の実施形態に係る金属光造形加工機1に加えて、造形物の周囲を削るミーリングヘッド81と、ミーリングヘッド81を切削箇所に移動させるXY駆動機構82とを有している。ミーリングヘッド81の工具(ボールエンドミル)は直径が0.6mm(有効刃長1mm)のものを使用し、凝固層の厚みが0.5mmになった時点でミーリングヘッド81を作動させる。
(Third embodiment)
A method for manufacturing a three-dimensional shaped object according to the third embodiment of the present invention will be described. In addition to the manufacturing method according to the first embodiment, the method for manufacturing a three-dimensional modeled object according to the present embodiment includes a step of cutting the periphery of the modeled object. FIG. 9 shows a configuration of the metal stereolithography combined processing machine 8 used in the manufacturing method according to the present embodiment. In addition to the metal stereolithography processing machine 1 according to the first embodiment, the metal stereolithography combined processing machine 8 is a milling head 81 that cuts the periphery of a modeled object, and an XY drive mechanism 82 that moves the milling head 81 to a cutting location. And have. The milling head 81 has a tool (ball end mill) having a diameter of 0.6 mm (effective blade length of 1 mm), and the milling head 81 is operated when the thickness of the solidified layer becomes 0.5 mm.

図10は、本実施形態に係る製造方法のフローを、図11は、同製造方法8の動作を示す。最初に、造形用ベース3を金網2の厚みに相当する長さDだけ下げ(S31)、造形用ベース3に金網2を載置する(S32)。光ビーム発信器5から光ビームLを発し(S33)、光ビームLをガルバノミラー6によって金網2上の任意の位置にスキャニングし(S34)、金網2を溶融し、凝固させて造形用ベース3と一体化した凝固層を形成する(S35)。凝固層の厚みが0.5mmになったかを判断し(S36)、0.5mmになるまでS31からS35を繰り返し、凝固層を積層する。   FIG. 10 shows the flow of the manufacturing method according to the present embodiment, and FIG. 11 shows the operation of the manufacturing method 8. First, the modeling base 3 is lowered by a length D corresponding to the thickness of the metal mesh 2 (S31), and the metal mesh 2 is placed on the modeling base 3 (S32). A light beam L is emitted from the light beam transmitter 5 (S33), and the light beam L is scanned to an arbitrary position on the wire mesh 2 by the galvanometer mirror 6 (S34), and the wire mesh 2 is melted and solidified to form a base 3 for modeling. A solidified layer integrated with (S35) is formed. It is determined whether the thickness of the solidified layer has reached 0.5 mm (S36), and steps S31 to S35 are repeated until the solidified layer has reached 0.5 mm, thereby laminating the solidified layer.

そして、積層した凝固層の厚みが0.5mmになると、ミーリングヘッド81を駆動する(S37)。XY駆動機構82によってミーリングヘッド81を矢印X及び矢印Y方向に移動させ、凝固層が積層した造形物の表面を切削する(S38)。このS37及びS38は、切削工程を構成する。そして、三次元形状造形物の造形が終了したかを判断し(S39)、終了していないと判断すると、粉末層形成ステップ(S31)へ戻る。こうして、S31乃至S38を繰り返して凝固層を積層することで、三次元形状造形物を製造する。製造される三次元形状造形物の表面粗さが細かくなり、寸法精度が向上する。   When the thickness of the laminated solidified layer becomes 0.5 mm, the milling head 81 is driven (S37). The milling head 81 is moved in the directions of the arrow X and the arrow Y by the XY drive mechanism 82, and the surface of the modeled object on which the solidified layer is laminated is cut (S38). S37 and S38 constitute a cutting process. Then, it is determined whether the modeling of the three-dimensional shaped object has been completed (S39). If it is determined that the modeling has not been completed, the process returns to the powder layer forming step (S31). In this way, the three-dimensional shaped object is manufactured by repeating S31 to S38 and laminating the solidified layer. The surface roughness of the manufactured three-dimensional shaped object becomes fine, and the dimensional accuracy is improved.

なお、本発明は、上記各種実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、金網2は金属線21を編んで作成してもよいし、金属線21を圧着により接合して作成してもよい。また、金網2において、金属線21を2方向でなく、3方向に組み合わせてもよい。   In addition, this invention is not restricted to the structure of the said various embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, the metal mesh 2 may be created by knitting the metal wire 21 or may be created by joining the metal wire 21 by pressure bonding. In the wire mesh 2, the metal wires 21 may be combined in three directions instead of two directions.

本発明の第1の実施形態に係る製造方法に用いる金属光造形加工機の斜視図。The perspective view of the metal stereolithography processing machine used for the manufacturing method which concerns on the 1st Embodiment of this invention. 同製造方法に用いる金網の構成図。The block diagram of the wire mesh used for the manufacturing method. 同製造方法のフローチャート。The flowchart of the manufacturing method. 同製造方法を時系列に説明する図。The figure explaining the manufacturing method in time series. 同製造方法の変形例を説明する図。The figure explaining the modification of the manufacturing method. 本発明の第2の実施形態に係る製造方法のフローチャート。The flowchart of the manufacturing method which concerns on the 2nd Embodiment of this invention. 同製造方法を時系列に説明する図。The figure explaining the manufacturing method in time series. 同製造方法の変形例を説明する図。The figure explaining the modification of the manufacturing method. 本発明の第3の実施形態に係る製造方法に用いる金属光造形加工機の斜視図。The perspective view of the metal stereolithography machine used for the manufacturing method which concerns on the 3rd Embodiment of this invention. 同製造方法のフローチャート。The flowchart of the manufacturing method. 同製造方法を時系列に説明する図。The figure explaining the manufacturing method in time series.

符号の説明Explanation of symbols

2、2a、2bc、2de 金網
21、21a、21b、21c、21d、21e 金属線
2, 2a, 2bc, 2de wire mesh 21, 21a, 21b, 21c, 21d, 21e metal wire

Claims (7)

金属材料に光ビームを照射して三次元形状造形物を製造する三次元形状造形物の製造方法において、
金属線により形成された金網に光ビームを照射して、凝固層又は溶解層を形成する照射工程と、
前記照射工程を金網に対して繰り返すことにより前記凝固層又は溶解層を積層して三次元形状造形物を製造する積層工程と、を備えたことを特徴とする三次元形状造形物の製造方法。
In the manufacturing method of a three-dimensional shaped object that irradiates a metal material with a light beam to produce a three-dimensional shaped object,
An irradiation step of irradiating a wire mesh formed of a metal wire with a light beam to form a solidified layer or a dissolved layer;
A method for producing a three-dimensional shaped article comprising: a laminating step for producing the three-dimensional shaped article by laminating the solidified layer or the dissolved layer by repeating the irradiation step on a wire mesh.
前記金属線の線径が0.01mm以上0.1mm以下であることを特徴とする請求項1に記載の三次元形状造形物の製造方法。   The method for producing a three-dimensional shaped article according to claim 1, wherein a diameter of the metal wire is 0.01 mm or more and 0.1 mm or less. 前記金網における前記金属線の間隙が0.01mm以上0.1mm以下であることを特徴とする請求項1又は請求項2に記載の三次元形状造形物の製造方法。   The method for producing a three-dimensional shaped article according to claim 1 or 2, wherein a gap between the metal wires in the wire mesh is 0.01 mm or more and 0.1 mm or less. 前記金網は、鉄系金属線と、ニッケル金属線及びニッケル系合金金属線の両方又はいずれか一方と、銅金属線及び銅系合金金属線の両方又はいずれか一方と、を有することを特徴とする請求項1乃至請求項3のいずれか一項に記載の三次元形状造形物の製造方法。   The wire mesh has an iron metal wire, a nickel metal wire and / or a nickel alloy metal wire, and a copper metal wire and / or a copper alloy metal wire. The manufacturing method of the three-dimensional shape molded article as described in any one of Claim 1 thru | or 3. 前記金網は、前記鉄系金属線の構成比率が60重量%以上90重量%以下であり、ニッケル金属線及びニッケル系合金金属線の両方又はいずれか一方の構成比率が5重量%以上35重量%以下であり、銅金属線及び銅系合金金属線の両方又はいずれか一方の構成比率が5重量%以上15重量%以下であることを特徴とする請求項4に記載の三次元形状造形物の製造方法。   In the wire mesh, the composition ratio of the iron-based metal wire is 60 wt% or more and 90 wt% or less, and the composition ratio of either or both of the nickel metal wire and the nickel-based alloy metal wire is 5 wt% or more and 35 wt%. The three-dimensional shaped object according to claim 4, wherein the composition ratio of both or one of the copper metal wire and the copper-based alloy metal wire is 5 wt% or more and 15 wt% or less. Production method. 前記金網は、鉄系金属線からなる金網と、ニッケル金属線及びニッケル系合金金属線の両方又はいずれか一方からなる金網と、銅金属線及び銅系合金金属線の両方又はいずれか一方からなる金網と、を重ねて有することを特徴とする請求項1乃至請求項5のいずれか一項に記載の三次元形状造形物の製造方法。   The wire mesh is composed of a wire mesh made of an iron-based metal wire, a wire mesh made of either or both of a nickel metal wire and a nickel-based alloy metal wire, and both or either of a copper metal wire and a copper-based alloy metal wire. A method for producing a three-dimensional shaped object according to any one of claims 1 to 5, wherein a metal mesh is overlapped. 前記凝固層又は溶解層の形成後に、それまでに積層して得られた三次元形状造形物の表面部及び/又は不要部分の切削除去を行なう切削工程を更に備えたことを特徴とする請求項1乃至請求項6のいずれか一項に記載の三次元形状造形物の製造方法。   2. The method according to claim 1, further comprising a cutting step of cutting and removing a surface portion and / or an unnecessary portion of the three-dimensionally shaped object obtained by forming the solidified layer or the dissolved layer. The manufacturing method of the three-dimensional shape molded article as described in any one of Claims 1 thru | or 6.
JP2006319338A 2006-11-27 2006-11-27 Manufacturing method of three-dimensional shaped object Expired - Fee Related JP5016300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319338A JP5016300B2 (en) 2006-11-27 2006-11-27 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319338A JP5016300B2 (en) 2006-11-27 2006-11-27 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2008133497A true JP2008133497A (en) 2008-06-12
JP5016300B2 JP5016300B2 (en) 2012-09-05

Family

ID=39558540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319338A Expired - Fee Related JP5016300B2 (en) 2006-11-27 2006-11-27 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP5016300B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2700459A1 (en) * 2012-08-21 2014-02-26 Alstom Technology Ltd Method for manufacturing a three-dimensional article
CN112640039A (en) * 2018-08-31 2021-04-09 邦德泰克株式会社 Joining system and joining method
CN114406192A (en) * 2021-12-27 2022-04-29 国铭铸管股份有限公司 Manufacturing method of wind power ductile iron casting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191683A (en) * 1984-03-13 1985-09-30 Mitsubishi Electric Corp Alloying method of base material
JPH06190574A (en) * 1992-12-25 1994-07-12 Kobe Steel Ltd Laser beam welding method for copper structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191683A (en) * 1984-03-13 1985-09-30 Mitsubishi Electric Corp Alloying method of base material
JPH06190574A (en) * 1992-12-25 1994-07-12 Kobe Steel Ltd Laser beam welding method for copper structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2700459A1 (en) * 2012-08-21 2014-02-26 Alstom Technology Ltd Method for manufacturing a three-dimensional article
CN112640039A (en) * 2018-08-31 2021-04-09 邦德泰克株式会社 Joining system and joining method
CN114406192A (en) * 2021-12-27 2022-04-29 国铭铸管股份有限公司 Manufacturing method of wind power ductile iron casting

Also Published As

Publication number Publication date
JP5016300B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5213006B2 (en) Manufacturing method of three-dimensional shaped object
JP4925048B2 (en) Manufacturing method of three-dimensional shaped object
JP5555222B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5519766B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5579839B2 (en) Metal powder for powder sintering lamination, manufacturing method of three-dimensional shaped article using the same, and three-dimensional shaped article obtained
KR101521481B1 (en) Method for producing three-dimensionally shaped structure, and three-dimensionally shaped structure obtained by same
WO2012160811A1 (en) Method for producing three-dimensional shape structure
JP5302710B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP4915660B2 (en) Manufacturing method of three-dimensional shaped object
US20150224607A1 (en) Superalloy solid freeform fabrication and repair with preforms of metal and flux
JP2011021218A (en) Powder material for laminate molding, and powder laminate molding method
JP5602913B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP4737007B2 (en) Metal powder for metal stereolithography
JP6857861B2 (en) Manufacturing method of three-dimensional shaped object
JP5016300B2 (en) Manufacturing method of three-dimensional shaped object
JP2012224907A (en) Method for manufacturing three-dimensionally shaped article
CN105798294A (en) Rapid part prototyping method for refractory materials
JP6726858B2 (en) Method for manufacturing three-dimensional shaped object
JPWO2019151540A1 (en) Manufacturing method of 3D shaped object
JP7459645B2 (en) METHOD FOR MANUFACTURING METAL LAYER FORMED PRODUCT, ... AND PART USING THE SAME
JP2020196936A (en) Method of molding anisotropic composite material and die using anisotropic composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees