JPH06187129A - 半導体装置 - Google Patents

半導体装置

Info

Publication number
JPH06187129A
JPH06187129A JP33998192A JP33998192A JPH06187129A JP H06187129 A JPH06187129 A JP H06187129A JP 33998192 A JP33998192 A JP 33998192A JP 33998192 A JP33998192 A JP 33998192A JP H06187129 A JPH06187129 A JP H06187129A
Authority
JP
Japan
Prior art keywords
circuit
signal
complementary
type mos
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33998192A
Other languages
English (en)
Inventor
Shigeo Sumi
成生 角
Tatsuji Matsuura
達治 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Japan Display Inc
Original Assignee
Hitachi Device Engineering Co Ltd
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Device Engineering Co Ltd, Hitachi Ltd, Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Device Engineering Co Ltd
Priority to JP33998192A priority Critical patent/JPH06187129A/ja
Publication of JPH06187129A publication Critical patent/JPH06187129A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【構成】N型MOSトランジスタ2,3,4,5より成
る論理生成部とP型MOSトランジスタ6,7より成る
ラッチ回路を合わせた回路からなる。全加算器の場合、
基本構成の回路を3組と出力ドライバとしてCMOSイ
ンバータ10,11,12,13を組み合わせる。入力
は、14と15,16と17,18と19それぞれ3組
の相補な信号が入力され、20と21の相補な和出力と
22と23の相補な積が出力される。 【効果】動作速度の向上および素子数低減の効果があ
る。さらに、従来の回路を低しきい値化した場合に比
べ、高速化の効果がより大きい。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、半導体集積回路に係
り、特に、MOS型集積回路の高速化および高集積化に
関する。
【0002】
【従来の技術】ディジタル信号処理プロセッサでは、高
速な乗算器を用いてビデオ信号など高速な信号の演算処
理を行っている。その乗算器を構成する主要な回路とし
て全加算器(Full Adder)が挙げられ、高速、かつ、低消
費電力化のために通常CMOS回路により構成されてい
る。
【0003】図2に全加算器回路の一従来例を示す。全
加算器回路は、3入力に対し和信号と桁上げ信号を生成
する回路である。図2では、入力信号A35,入力信号
B36,入力信号C37の3入力に対し3組のインバータ2
4,25,26と8組のクロックドインバータ27,2
8,29,30,31,32,33,34を用いて和信
号38と桁上げ信号39を出力する。
【0004】
【発明が解決しようとする課題】ディジタル信号処理プ
ロセッサでは、システムの処理速度向上のために、内部
で使用する乗算器には高速性が要求される。これは、デ
ィジタル信号処理プロセッサのシステムの処理速度を決
定しているのが、乗算器の演算時間である場合が多いか
らである。さらに、乗算器を構成している各種部分回路
の遅延時間を分析した場合、乗算器全体の遅延時間の中
で全加算器の遅延時間が大きな割合を占めていることが
わかる。例えば、乗算に使用するアルゴリズムとして2
次のブースアルゴリズムを用いた乗算器の場合、演算時
間全体に占める全加算器の遅延時間の割合は、約30%
〜50%になる。さらに、ブースアルゴリズムを用いな
い乗算器の場合、全加算器の遅延時間の割合は約50%
〜70%にもなる。このように、乗算器全体の演算時間
の中で全加算器の遅延時間の占める割合が大きいため、
乗算器の高速化には、全加算器の遅延時間短縮が最も効
果的である。
【0005】一方、低電圧回路では、電源電圧低下によ
る速度低下を最小限に抑える必要がある。そのため、低
電圧下でも高速に動作する論理回路が要求される。さら
に低電圧回路は、携帯用小型機器に搭載される場合が多
いため、チップ面積の縮小も望まれる。
【0006】本発明の目的は、高速および回路規模の小
さい全加算器等の論理回路を集積した半導体装置を提供
することにある。
【0007】
【課題を解決するための手段】上記問題点を解決するた
めには、半導体装置を構成する論理回路の高速化を図
り、チップ面積を低減させる必要がある。さらに、全加
算器等の高速化を図るためには、全加算器を構成する個
々の論理回路(NAND,NOR,EOR等)自身の高
速化を図ることが重要である。
【0008】そこで、上記目的を達成するための本発明
の半導体装置は、図1に示すように、N型MOSトラン
ジスタ2,3,4,5の4素子より成る論理生成部とP
型MOSトランジスタ6,7の2素子より成るラッチ回
路を組み合わせることにより、高速かつ素子数の少ない
論理回路を基本回路1として用いた。この基本回路1を
組み合わせることにより、全加算器等の機能回路を構成
する。
【0009】
【作用】上記基本回路を組み合わせて図1に示す本発明
の全加算器を構成した場合、図2に示す従来の全加算器
に比べ、14%の速度向上と32%のトランジスタ数の
低減が図れる。ここで、比較に用いた動作速度の値は、
計算機シミュレーションによる計算値である。さらに、
従来回路の場合、P型MOSトランジスタ数とN型MO
Sトランジスタ数の比は回路が完全CMOS型であるた
め1:1となるが、図1に示す本発明の回路ではP型M
OSトランジスタの数よりもN型MOSトランジスタの
数が多いため、トランジスタ数の低減の割合以上に素子
面積の低減が可能となる。これは、P型MOSトランジ
スタよりもN型MOSトランジスタの方が電流駆動能力
が高いため小さいゲート幅で回路を構成することができ
るからである。
【0010】また、図1に示す本発明の全加算器を低し
きい電圧のトランジスタで構成した場合、大幅な速度向
上が可能である。例えば、図1に示す本発明の回路と図
2に示す従来の回路を、電源電圧1.2V において、し
きい電圧0.5V の場合と0.2V の場合について計算
機シミュレーションによる動作遅延時間の評価を行っ
た。その結果、しきい電圧を0.5Vから0.2Vに変え
た場合、図2の回路では26%の速度向上が見られ、図
1の回路では38%の速度向上が見られた。この結果よ
り、図1に示す本発明の回路に低しきい電圧のトランジ
スタを用いることにより、図2に示す従来回路に低しき
い電圧のトランジスタを用いた場合に比べ高速化の効果
が大きい。
【0011】
【実施例】本発明の第1の実施例を図1に示す。図1
は、本発明の回路構成による全加算器回路である。図1
では、N型MOSトランジスタ2,3,4,5の4素子
より成る論理生成部とP型MOSトランジスタ6,7の
2素子より成るラッチ回路を基本回路とし、3組の基本
回路1,8,9を配置し、信号出力部にドライバ回路と
してインバータ10,11,12,13を用いた構成に
なっている。
【0012】ここで、全加算器の機能を簡単に説明する
と、全加算器の機能は、3入力の信号に対し、和信号Su
m と桁上げ信号Carry を生成する回路である。入力信号
をA,B,Cとすると全加算器の和信号Sum は、入力
A,B,CのEORとなる。また、桁上げ信号Carry
は、入力AとBのAND,AとCのAND,BとCのAN
Dを求め、その3出力のORとなる。しかし、図1の回
路では、それぞれ正論理および負論理の信号を入出力す
るため、入力は入力信号A14,入力信号Aの反転信号
15,入力信号B16,入力信号Bの反転信号17,入
力信号C18,入力信号Cの反転信号19の6入力とな
り、出力は和信号20,和信号の反転信号21,桁上げ
信号22,桁上げ信号の反転信号23の4出力となる。
【0013】図1に示す本発明の回路は、図2に示す従
来回路に比較し電源電圧1.2V の条件で14%高速で
ある。また、図2に示す従来回路に比較しトランジスタ
数を12個減らすことができる。このように、本発明の
全加算器は、従来回路に比べ高速かつ素子数が少ないと
いう特長がある。
【0014】本発明の第2の実施例を図3に示す。図3
は、図1に示す全加算器と同様に基本回路を用いて構成
したキャリー先見用全加算器である。キャリー先見用全
加算器とは、全加算器の機能とキャリー先見回路用の制
御信号を生成する機能を備えた回路である。キャリー先
見用全加算器は、主に乗算器内部の加算アレー最終段に
用いられる。
【0015】本回路は、3入力に対し3入力の和信号、
2入力の和信号および2入力の積信号を生成する機能を
持つ。ここで、入力をA,B,C、3入力の和をS、2
入力A,Bの和をP、2入力A,Bの積をGとすると、
出力信号Sは、入力A,B,CのEOR、出力信号P
は、入力A,BのEOR、出力信号Gは、入力A,Bの
ANDとなる。しかし、図3に示すキャリー先見用全加
算器は、正論理および負論理の信号を入力し、正論理の
みを出力する構成であるため、入力は、入力信号A4
3,入力信号Aの反転信号44,入力信号B45,入力
信号Bの反転信号46,入力信号C47,入力信号Cの
反転信号48の6入力となり、基本回路40,41によ
り生成した出力信号S49,基本回路40により生成し
た出力信号P50,基本回路42により生成した出力信
号G51の3出力となる。図3に示すキャリー先見用全
加算器では、従来の回路に比較し、電源電圧1.2V の
条件において34%高速化できる。また、従来回路に比
較しトランジスタ数を8個削減できるため、チップ面積
の縮小に有効である。
【0016】本発明の第3の実施例を図4に示す。図4
は、図1に示す全加算器に使用した基本回路を用いて構
成したブースデコーダ回路である。ブースデコーダ回路
とは、ブースのアルゴリズムを用いる乗算器において、
ブースコードと乗数または被乗数との間において部分積
を生成する回路である。ブースコードとは、乗算器に入
力される乗数または被乗数を、ブースのアルゴリズムに
従い演算用に変換した数値である。
【0017】図4に示す回路は、2次のブースアルゴリ
ズムを用いた場合の乗算器に使用できる回路構成となっ
ている。図4の回路について説明すると、入力は、入力
信号A53,入力信号B54,入力信号C55,入力信
号D56,入力信号E57,入力信号Eの反転信号58
の6入力となり、出力は、出力信号59と出力信号の反
転信号60の2出力となる。この回路では、本発明の基
本回路を用いることにより電源電圧1.2V の条件で、
従来回路に比較して13%高速である。
【0018】本発明の第4の実施例を図5に示す。図5
は、図1に示す全加算器71,72,73,74、図3
に示すキャリー先見用全加算器75,76、図4に示す
ブースデコーダ回路67,68,69,70の本発明の
回路およびブースエンコーダ65,66、キャリー先見
回路77を備えた乗算器61である。ここで、乗算器6
1の動作を簡単に説明すると、乗数Y62が入力される
とブースエンコーダ65,66により乗数Y62の値が
ブースコードに変換される。次に、変換されたブースコ
ードと被乗数X63の2数がブースデコーダ67,6
8,69,70に入力され部分積が計算される。計算さ
れた部分積が全加算器71,72,73,74およびキ
ャリー先見用全加算器75,76により加算され乗算出
力Z64が出力される。キャリー先見回路77は、加算
を高速化するための回路である。これらの本発明による
回路を用いて乗算器を構成することにより、従来の回路
を用いて構成した乗算器に比較し約20%高速化でき
る。また、乗算器の主要部分を構成する全加算器として
トランジスタ数の少ない本発明の回路を用いるため、乗
算器全体のチップ面積も約20%減少させることができ
る。
【0019】本発明の第5の実施例を図6に示す。図6
では、図5に示す乗算器81および加算器82,83,
遅延回路84,85,メモリ86,制御回路87,内部
信号線88を備えた信号処理回路78である。ここで、
信号処理回路78の動作を簡単に説明すると、入力信号
79が入力されると、メモリ86からの出力信号との間
で、乗算器81,加算器82,83および遅延回路8
4,85により積和演算処理が行われ、出力信号80が
出力される。メモリ86には、乗算器への入力信号が格
納されている。また、制御回路87は、信号処理回路内
の乗算器81,加算器82,83等への制御信号を生成
し、内部信号線88を介して各機能ブロックへ信号を転
送している。
【0020】信号処理回路78の内部演算回路として図
5に示す乗算器81を用いることにより、高速かつチッ
プ面積の小さい信号処理回路78を構成することができ
る。例えば、信号処理回路78の処理時間を決定してい
る要因が乗算器である場合、図5に示す構成の乗算器8
1を用いることにより乗算時間の短縮が図れるため、信
号処理回路78全体の動作速度を高速化できる。また、
チップ面積低減の要求が強い場合でも、図5の乗算器を
用いて図6に示す信号処理回路78を小規模化できる。
特に、低電圧電源を使用する携帯用小型機器用の信号処
理回路は、低電圧時での高速性とチップ面積の縮小が望
まれるため、図6に示す信号処理回路が有効である。
【0021】
【発明の効果】本発明の回路構成を用いることにより、
乗算器および乗算器を用いて構成した信号処理回路の高
速化およびチップ面積の縮小を図る効果がある。例え
ば、16ビット×16ビットの乗算器を構成した場合従
来回路に比較し約20%の高速化と同時に20%のチッ
プ面積の縮小が図れる。
【図面の簡単な説明】
【図1】本発明による半導体装置の第1の実施例を示す
回路図。
【図2】従来の全加算器の回路構成を示す回路図。
【図3】本発明による半導体装置の第2の実施例を示す
回路図。
【図4】本発明による半導体装置の第3の実施例を示す
回路図。
【図5】本発明による半導体装置の第4の実施例を示す
ブロック図。
【図6】本発明による半導体装置の第5の実施例を示す
ブロック図。
【符号の説明】
1…基本回路、2,3,4,5…N型MOSトランジス
タ、6,7…P型MOSトランジスタ、8,9…基本回
路、10,11,12,13…インバータ、14,1
6,18…入力信号、15,17,19…入力信号の反
転信号、20…和信号、21…和信号の反転信号、22
…桁上げ信号、23…桁上げ信号の反転信号。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G11C 11/417 H03K 19/20 9383−5J 6741−5L G11C 11/34 345

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】第1のN型MOSトランジスタのドレイン
    と第2のN型MOSトランジスタのドレインと第3のP
    型MOSトランジスタのドレインと第4のP型MOSト
    ランジスタのゲートが接続された第1の出力端子と、第
    5のN型MOSトランジスタのドレインと第6のN型M
    OSトランジスタのドレインと前記第3のP型MOSト
    ランジスタのゲートと前記第4のP型MOSトランジス
    タのドレインとが接続された第2の出力端子を有し、前
    記第1,第2,第5,第6のN型MOSトランジスタの
    ソースおよびゲートに信号が入力され、前記第3,第4
    のP型MOSトランジスタのソースが高電圧電源に接続
    され、前記第1の出力端子と前記第2の出力端子は相補
    の信号を出力する構成の回路を備えた半導体装置におい
    て、この構成の回路を複数用いることにより、3組の相
    補入力に対し、相補の和信号と相補の積信号を出力する
    機能を有することを特徴とする半導体装置。
  2. 【請求項2】請求項1において、前記構成の回路を複数
    用いることにより、3組の相補入力に対し、3組の相補
    入力に対する和信号と2組の相補入力に対する和信号お
    よび積信号を出力する機能を有する半導体装置。
  3. 【請求項3】請求項1において、前記構成の回路を用い
    ることにより、乗算のために変換されたブースコードと
    乗数または被乗数との間で部分積を生成する機能を有す
    る半導体装置。
  4. 【請求項4】請求項1,2または3において、前記回路
    を組み合わせることにより乗算機能をもたせる半導体装
    置。
  5. 【請求項5】請求項4に記載の前記回路を用いて、信号
    処理回路を構成した半導体装置。
JP33998192A 1992-12-21 1992-12-21 半導体装置 Pending JPH06187129A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33998192A JPH06187129A (ja) 1992-12-21 1992-12-21 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33998192A JPH06187129A (ja) 1992-12-21 1992-12-21 半導体装置

Publications (1)

Publication Number Publication Date
JPH06187129A true JPH06187129A (ja) 1994-07-08

Family

ID=18332605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33998192A Pending JPH06187129A (ja) 1992-12-21 1992-12-21 半導体装置

Country Status (1)

Country Link
JP (1) JPH06187129A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7203714B1 (en) 1999-03-16 2007-04-10 Fujitsu Limited Logic circuit
JP2007215161A (ja) * 2006-02-09 2007-08-23 Altera Corp プログラマブルロジックデバイスのための特殊処理ブロック
US8862650B2 (en) 2010-06-25 2014-10-14 Altera Corporation Calculation of trigonometric functions in an integrated circuit device
US8949298B1 (en) 2011-09-16 2015-02-03 Altera Corporation Computing floating-point polynomials in an integrated circuit device
US8959137B1 (en) 2008-02-20 2015-02-17 Altera Corporation Implementing large multipliers in a programmable integrated circuit device
US8996600B1 (en) 2012-08-03 2015-03-31 Altera Corporation Specialized processing block for implementing floating-point multiplier with subnormal operation support
US9053045B1 (en) 2011-09-16 2015-06-09 Altera Corporation Computing floating-point polynomials in an integrated circuit device
US9063870B1 (en) 2006-12-05 2015-06-23 Altera Corporation Large multiplier for programmable logic device
US9098332B1 (en) 2012-06-01 2015-08-04 Altera Corporation Specialized processing block with fixed- and floating-point structures
US9189200B1 (en) 2013-03-14 2015-11-17 Altera Corporation Multiple-precision processing block in a programmable integrated circuit device
US9207909B1 (en) 2012-11-26 2015-12-08 Altera Corporation Polynomial calculations optimized for programmable integrated circuit device structures
US9348795B1 (en) 2013-07-03 2016-05-24 Altera Corporation Programmable device using fixed and configurable logic to implement floating-point rounding
US9395953B2 (en) 2006-12-05 2016-07-19 Altera Corporation Large multiplier for programmable logic device
US9600278B1 (en) 2011-05-09 2017-03-21 Altera Corporation Programmable device using fixed and configurable logic to implement recursive trees
US9684488B2 (en) 2015-03-26 2017-06-20 Altera Corporation Combined adder and pre-adder for high-radix multiplier circuit
US10942706B2 (en) 2017-05-05 2021-03-09 Intel Corporation Implementation of floating-point trigonometric functions in an integrated circuit device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7203714B1 (en) 1999-03-16 2007-04-10 Fujitsu Limited Logic circuit
JP2007215161A (ja) * 2006-02-09 2007-08-23 Altera Corp プログラマブルロジックデバイスのための特殊処理ブロック
US9395953B2 (en) 2006-12-05 2016-07-19 Altera Corporation Large multiplier for programmable logic device
US9063870B1 (en) 2006-12-05 2015-06-23 Altera Corporation Large multiplier for programmable logic device
US8959137B1 (en) 2008-02-20 2015-02-17 Altera Corporation Implementing large multipliers in a programmable integrated circuit device
US8862650B2 (en) 2010-06-25 2014-10-14 Altera Corporation Calculation of trigonometric functions in an integrated circuit device
US9600278B1 (en) 2011-05-09 2017-03-21 Altera Corporation Programmable device using fixed and configurable logic to implement recursive trees
US9053045B1 (en) 2011-09-16 2015-06-09 Altera Corporation Computing floating-point polynomials in an integrated circuit device
US8949298B1 (en) 2011-09-16 2015-02-03 Altera Corporation Computing floating-point polynomials in an integrated circuit device
US9098332B1 (en) 2012-06-01 2015-08-04 Altera Corporation Specialized processing block with fixed- and floating-point structures
US8996600B1 (en) 2012-08-03 2015-03-31 Altera Corporation Specialized processing block for implementing floating-point multiplier with subnormal operation support
US9207909B1 (en) 2012-11-26 2015-12-08 Altera Corporation Polynomial calculations optimized for programmable integrated circuit device structures
US9189200B1 (en) 2013-03-14 2015-11-17 Altera Corporation Multiple-precision processing block in a programmable integrated circuit device
US9348795B1 (en) 2013-07-03 2016-05-24 Altera Corporation Programmable device using fixed and configurable logic to implement floating-point rounding
US9684488B2 (en) 2015-03-26 2017-06-20 Altera Corporation Combined adder and pre-adder for high-radix multiplier circuit
US10942706B2 (en) 2017-05-05 2021-03-09 Intel Corporation Implementation of floating-point trigonometric functions in an integrated circuit device

Similar Documents

Publication Publication Date Title
JPH06187129A (ja) 半導体装置
US6590425B2 (en) Semiconductor integrated circuit apparatus
Bazzazi et al. Design and Implementation of Full Adder Cell with the GDI Technique Based on 0.18 µm CMOS Technology
US6904447B2 (en) High speed low power 4-2 compressor
Hossain et al. Implementation of an XOR based 16-bit carry select adder for area, delay and power minimization
Veeramachaneni et al. Novel architectures for efficient (m, n) parallel counters
US6066978A (en) Partial product generating circuit
Badry et al. Low power 1-Bit full adder using Full-Swing gate diffusion input technique
US4766565A (en) Arithmetic logic circuit having a carry generator
DK et al. VLSI Implementation of Braun Multiplier using Full Adder
US20070233760A1 (en) 3:2 Bit compressor circuit and method
Delican et al. High performance 16-bit MCML multiplier
Kandpal et al. High performance 20-T based hybrid full adder using 90nm CMOS technology
EP0447254A2 (en) Array multiplier
KR0146237B1 (ko) 전 가산기
KR100253302B1 (ko) 전가산기
US7085796B1 (en) Dynamic adder with reduced logic
Tirumalasetty et al. Low static power consumption and high performance 16-bit ripple carry adder implementation by using BBL-PT logic style
Labafniya et al. Efficient Adder Cell Using GDI Structure
KR890001225B1 (ko) 고속 익스클루시브 오아게이트를 이용한 시모오스 가산기
Sivaraman et al. Minimization of Area and Power in Digital System Design for Digital Combinational Circuits
JP3269733B2 (ja) 半導体装置
Suri et al. High performance and power efficient 32-bit carry select adder using hybrid PTL/CMOS logic style
Stella et al. Energy Efficient Full Adders for Arithmetic Applications Based on GDI Logic
KR100200762B1 (ko) 1-비트 전가산기