JPH06185994A - Inspecting device for mounted substrate - Google Patents

Inspecting device for mounted substrate

Info

Publication number
JPH06185994A
JPH06185994A JP4338878A JP33887892A JPH06185994A JP H06185994 A JPH06185994 A JP H06185994A JP 4338878 A JP4338878 A JP 4338878A JP 33887892 A JP33887892 A JP 33887892A JP H06185994 A JPH06185994 A JP H06185994A
Authority
JP
Japan
Prior art keywords
data
mounting
mounting surface
photodetector
inspection area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4338878A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tanaka
一幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP4338878A priority Critical patent/JPH06185994A/en
Publication of JPH06185994A publication Critical patent/JPH06185994A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To provide a mounted substrate inspecting device which can accurately discriminate the propriety of the mounting state of a mounted substrate even when the substrate is deviated in position. CONSTITUTION:The light reflected by the mounting surface of a mounted substrate when the mounting surface is scanned with laser light is led to a first and second photodetectors 9 and 10 and a data processing section 11 finds data about the height distribution on the mounting surface from the output signal of the first photodetector 9 and stores the data in a memory 12. Another data processing section 13 finds data about the luminance distribution on the mounting surface from the output signal of the second photodetector 10 and a correcting amount calculating section 15 calculates the deviation of the mounted substrate in the direction from the position of a mark contained in the data. An inspecting area correcting section 17 corrects the position of an inspecting area read out from an inspecting area memory 16 by a correcting amount and a discriminating section 20 compares the height distribution corresponding to the inspecting area with reference data. Thus the propriety of the mounting state of the mounted substrate is discriminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プリント基板上に実装
された部品の実装状態をレーザ光走査時の反射光を利用
して検査する実装基板検査装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting board inspecting apparatus for inspecting a mounting state of a component mounted on a printed circuit board by using reflected light when scanning a laser beam.

【0002】[0002]

【従来の技術】従来、この種の検査装置を開示するもの
として、特開平4−86548号公報が知られている。
2. Description of the Related Art Conventionally, Japanese Patent Application Laid-Open No. 4-86548 has been known as a disclosure of this type of inspection apparatus.

【0003】この検査装置は、実装基板を所定方向に移
動させるテーブルと、 レーザと、実装基板の実装面に
基板移動方向と直交する方向にレーザ光を走査させる回
転ミラーと、実装面からの反射光を受光し電気信号に変
換する光検出器と、光検出器の出力信号に基づいて実装
面の高さ分布データを演算するデータ処理手段と、高さ
分布データを記憶する高さ分布データメモリと、実装部
品に対応して設定された検査範囲に係る位置データを記
憶する検査範囲メモリと、検査範囲内で移動可能に設定
された移動検査領域に係るデータを記憶する移動検査領
域メモリと、高さ分布データメモリから検査領域に対応
する高さ分布データを移動位置夫々で読み出して加算
し、その値が最大となる位置としきい値とを比較して良
否判定を行う判定処理手段とから構成されている。
This inspection apparatus has a table for moving a mounting substrate in a predetermined direction, a laser, a rotating mirror for scanning a mounting surface of the mounting substrate with laser light in a direction orthogonal to the substrate moving direction, and a reflection from the mounting surface. A photodetector that receives light and converts it into an electrical signal, a data processing unit that calculates height distribution data of the mounting surface based on the output signal of the photodetector, and a height distribution data memory that stores the height distribution data. And an inspection range memory that stores position data related to the inspection range set corresponding to the mounted component, and a movement inspection region memory that stores data related to the movement inspection region set to be movable within the inspection range, Judgment processing for reading the height distribution data corresponding to the inspection area from the height distribution data memory at each moving position, adding the values, and comparing the position where the value is maximum with a threshold value to judge pass / fail And means.

【0004】上記の検査装置における実装状態の検査
は、実装基板の実装面に基板移動方向と直交する方向に
レーザ光を走査させることによって行われる。実装面か
らの反射光は光検出器に導かれて電気信号に変換され、
データ処理手段においてA/D変換された後に実装面の
高さ分布に係るデータに変換処理されてメモリに記憶さ
れる。一方、検査範囲メモリ及び移動検査領域メモリか
ら所定の検査範囲と検査領域が夫々読み出され、判定処
理手段において検査領域の移動位置毎に対応する高さ分
布データがメモリから読み出されて加算され、その値が
最大となる位置としきい値とが比較され実装状態の良否
が判定される。
The inspection of the mounting state in the above inspection apparatus is performed by scanning the mounting surface of the mounting substrate with laser light in a direction orthogonal to the substrate moving direction. The reflected light from the mounting surface is guided to the photodetector and converted into an electrical signal,
After being A / D converted by the data processing means, it is converted into data relating to the height distribution of the mounting surface and stored in the memory. On the other hand, the predetermined inspection range and the inspection area are read from the inspection range memory and the movement inspection area memory, respectively, and the height distribution data corresponding to each movement position of the inspection area is read from the memory and added by the determination processing means. , The position where the value is maximum is compared with the threshold value to judge the quality of the mounting state.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記従来の
検査装置では、テーブルに対する実装基板の取付位置に
ずれがあると、検査領域に該ずれの影響が現れて同領域
の高さ分布データに狂いが生じ、部品が正常な位置に実
装されている場合でも不良として判断される難点があ
る。基板位置を機械的に事前に矯正しておくことも可能
ではあるが、微小のずれを完全に無くすことは極めて困
難である。
By the way, in the above-mentioned conventional inspection apparatus, when the mounting position of the mounting board with respect to the table is deviated, the influence of the deviation appears in the inspection area and the height distribution data of the area is deviated. Occurs, and even if the component is mounted at a normal position, it is difficult to determine that the component is defective. Although it is possible to mechanically correct the substrate position in advance, it is extremely difficult to completely eliminate minute deviations.

【0006】本発明は上記事情に鑑みてなされたもの
で、その目的とするところは、実装基板に位置ずれがあ
る場合でも実装状態の良否判定を正確に行える実装基板
検査装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a mounting board inspecting apparatus capable of accurately determining whether the mounting state is good or not even when the mounting board is misaligned. is there.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、実装基板を所定方向に移動させる移動
手段と、レーザと、実装基板の実装面に基板移動方向と
直交する方向にレーザ光を走査させるレーザ光走査手段
と、実装面からの反射光を受光し電気信号に変換する光
検出器と、光検出器の出力信号に基づいて実装面の高さ
分布データを演算するデータ処理手段と、実装部品に対
応して設定された検査領域を記憶する検査領域メモリ
と、検査領域に対応する高さ分布データを基準データと
比較して実装状態の良否判定を行う判定手段とを具備し
た実装基板検査装置において、実装基板に複数のマーク
を設けると共に、実装面からの反射光を受光する第2の
光検出器と、第2の光検出器の出力信号に基づいて実装
面の輝度分布データを演算する第2のデータ処理手段
と、輝度分布データ中のマーク位置から実装基板のθ方
向のずれを演算する補正量演算手段と、補正量に基づい
て検査領域の位置を補正する検査領域補正手段とを設け
ている。
In order to achieve the above object, according to the present invention, a moving means for moving a mounting substrate in a predetermined direction, a laser, and a laser on a mounting surface of the mounting substrate in a direction orthogonal to the substrate moving direction. Laser light scanning means for scanning light, photodetector for receiving reflected light from the mounting surface and converting it into an electric signal, and data processing for calculating height distribution data of the mounting surface based on the output signal of the photodetector Means, an inspection area memory for storing an inspection area set corresponding to the mounted component, and a judgment means for comparing the height distribution data corresponding to the inspection area with reference data to judge whether the mounting state is good or bad. In the mounting board inspection device described above, a plurality of marks are provided on the mounting board, the second photodetector receives reflected light from the mounting surface, and the brightness of the mounting surface is determined based on the output signal of the second photodetector. Distribution data Second data processing means for calculating, correction amount calculation means for calculating the deviation of the mounting substrate in the θ direction from the mark position in the brightness distribution data, and inspection area correction means for correcting the position of the inspection area based on the correction amount. And are provided.

【0008】[0008]

【作用】本発明に係る実装基板検査装置では、レーザ光
走査時に実装面から反射された光は2つの光検出器に夫
々導かれる。一方の光検出器の導かれた反射光は電気信
号に変換され、データ処理手段で実装面の高さ分布に係
るデータに変換処理されてメモリに記憶される。また、
他方の光検出器に導かれた反射光は電気信号に変換さ
れ、データ処理手段において実装面の輝度分布に係るデ
ータに変換処理され、そして輝度分布データ中のマーク
位置から補正量演算手段において実装基板のθ方向のず
れが演算される。
In the mounting board inspection apparatus according to the present invention, the light reflected from the mounting surface during laser beam scanning is guided to two photodetectors, respectively. The reflected light guided by one photodetector is converted into an electric signal, converted into data relating to the height distribution of the mounting surface by the data processing means, and stored in the memory. Also,
The reflected light guided to the other photodetector is converted into an electric signal, converted into data relating to the luminance distribution of the mounting surface in the data processing means, and mounted in the correction amount computing means from the mark position in the luminance distribution data. The deviation of the substrate in the θ direction is calculated.

【0009】上記の高さ分布データは検査領域に応じて
メモリから読み出され、判定手段において基準データと
比較されることになるが、このとき検査領域は上記のず
れ分だけθ方向に位置補正される。
The above height distribution data is read from the memory according to the inspection area and compared with the reference data by the judging means. At this time, the position of the inspection area is corrected in the θ direction by the above-mentioned deviation. To be done.

【0010】[0010]

【実施例】図1乃至図6は本発明の一実施例を示すもの
で、図1は実装基板検査装置の概略構成図、図2は実装
基板の上面図、図3は電気系回路のブロック図、図4は
検査制御のフローチャート、図5は補正量演算処理のフ
ローチャート、図6は補正量演算の説明図である。
1 to 6 show one embodiment of the present invention. FIG. 1 is a schematic configuration diagram of a mounting board inspection apparatus, FIG. 2 is a top view of a mounting board, and FIG. 3 is a block of an electric circuit. 4 and 5 are flowcharts of inspection control, FIG. 5 is a flowchart of correction amount calculation processing, and FIG. 6 is an explanatory diagram of correction amount calculation.

【0011】まず、図1を参照して装置構成について説
明する。同図において、1は各種電子部品が実装された
プリント基板(実装基板)、2は実装基板1を所定方向
に移動させるテーブルである。図2に示すように実装基
板1の角部2カ所には位置検出用のマーク1aが設けら
れている。このマーク1aはガラスエポキシ材から成る
基板上に円形の銅パターンを印刷することで形成されて
いる。
First, the apparatus configuration will be described with reference to FIG. In the figure, 1 is a printed circuit board (mounting board) on which various electronic components are mounted, and 2 is a table for moving the mounting board 1 in a predetermined direction. As shown in FIG. 2, marks 1a for position detection are provided at two corners of the mounting board 1. The mark 1a is formed by printing a circular copper pattern on a substrate made of a glass epoxy material.

【0012】3はHe−Ne等の半導体等を光源とした
レーザ、4は多角柱状の回転ミラー、5はレンズ、6は
反射ミラー、7は集光レンズ、8はハーフミラー、9は
PSD(半導体位置検出素子)を内蔵した第1光検出
器、10はホトダイオードを内蔵した第2光検出器であ
る。レーザ3の光は回転ミラー4で回転されつつレンズ
5を通じて実装基板1の実装面に基板移動方向と直交す
る方向に照射され、また実装面からの反射光は反射ミラ
ー6、レンズ5、回転ミラー4、集光レンズ7及びハー
フミラー8を通じて第1光検出器9と第2光検出器10
に夫々導かれる。
3 is a laser using a semiconductor such as He-Ne as a light source, 4 is a polygonal prism rotation mirror, 5 is a lens, 6 is a reflection mirror, 7 is a condenser lens, 8 is a half mirror, and 9 is PSD ( A first photodetector 10 incorporating a semiconductor position detecting element is a second photodetector incorporating a photodiode. The light of the laser 3 is rotated by the rotating mirror 4 and is applied to the mounting surface of the mounting substrate 1 through the lens 5 in a direction orthogonal to the substrate moving direction, and the reflected light from the mounting surface is reflected by the reflecting mirror 6, the lens 5, and the rotating mirror. 4, the first lens 9 and the second lens 10 through the condenser lens 7 and the half mirror 8.
Are led to each.

【0013】次に、図3を参照して回路構成について説
明する。同図において、11はデータ処理部で、第1光
検出器9の出力信号をA/D変換し実装面全体の高さ分
布に係るデータに変換処理する。12はこのデータを記
憶する高さ分布データメモリである。
Next, the circuit configuration will be described with reference to FIG. In the figure, a data processing unit 11 A / D-converts the output signal of the first photodetector 9 and converts it into data relating to the height distribution of the entire mounting surface. A height distribution data memory 12 stores this data.

【0014】13はデータ処理部で、第2光検出器10
の出力信号をA/D変換し実装面全体の輝度分布に係る
データに変換処理する。14はこのデータを記憶する輝
度データメモリである。15は補正量演算部で、輝度分
布データ中のマーク位置から実装基板1のテーブル垂直
軸回り(θ方向)のずれを演算する。
Reference numeral 13 is a data processing section, which is the second photodetector 10.
The output signal of is subjected to A / D conversion and converted into data relating to the luminance distribution of the entire mounting surface. Reference numeral 14 is a brightness data memory for storing this data. Reference numeral 15 denotes a correction amount calculation unit that calculates the shift of the mounting substrate 1 around the table vertical axis (θ direction) from the mark position in the brightness distribution data.

【0015】16は検査領域メモリで、実装部品に対応
して設定された複数の検査領域に係る位置データを記憶
している。この検査領域は実装基板設計時のCADデー
タを利用して設定される。17は検査領域補正部で、読
み込んだ検査領域の位置補正を上記補正量に基づいて行
うと共に補正後の検査領域に対応する高さ分布データを
メモリ12から読み出す。
Reference numeral 16 denotes an inspection area memory, which stores position data relating to a plurality of inspection areas set corresponding to mounted components. This inspection area is set by using CAD data when designing the mounting board. An inspection area correction unit 17 corrects the position of the read inspection area based on the correction amount and reads out height distribution data corresponding to the corrected inspection area from the memory 12.

【0016】18は基準データメモリで、実装面に部品
が正しく実装された場合における実装面全体の高さ分布
に係るデータを記憶している。19はしきい値メモリ
で、実装状態の良否判定の基準となるしきい値を記憶し
ている。上記の基準データ及びしきい値は実装基板に合
わせて予めキー入力されるが、基準データには良品の高
さ分布データを利用してもよい。
A reference data memory 18 stores data relating to the height distribution of the entire mounting surface when the components are correctly mounted on the mounting surface. Reference numeral 19 denotes a threshold value memory, which stores a threshold value serving as a reference for determining whether the mounting state is good or bad. The above-mentioned reference data and threshold value are keyed in advance according to the mounting board, but height distribution data of non-defective products may be used as the reference data.

【0017】20は判定部で、補正後の検査領域に対応
する高さ分布データと基準データとの誤算を演算し、該
誤差をしきい値と比較して実装状態の良否を判定する。
21は判定結果を表示するCRTである。
Reference numeral 20 denotes a determination unit, which calculates an erroneous calculation between the height distribution data corresponding to the corrected inspection area and the reference data, and compares the error with a threshold value to determine whether the mounting state is good or bad.
Reference numeral 21 is a CRT that displays the determination result.

【0018】上記のデータ処理部11,13、補正量演
算部15、検査領域補正部16及び判定部18は周知の
CPUから構成され、ROMに格納された後述の制御プ
ログラムに従って所定の処理を行う。
The data processing units 11 and 13, the correction amount calculation unit 15, the inspection area correction unit 16 and the determination unit 18 are composed of a well-known CPU, and perform predetermined processing according to a control program stored in the ROM which will be described later. .

【0019】ここで、図4乃至図6を参照して上記検査
装置の動作及び処理手順について説明する。テーブル2
の移動に伴ってレンズ5下に送り込まれる実装基板1
は、レーザ光によってその実装面全体を基板移動方向と
直交する方向に走査される(図4のS1)。この走査時
に実装面から反射された光は反射ミラー6,レンズ5,
回転ミラー4,集光レンズ7及びハーフミラー8を通じ
て第1光検出器9と第2光検出器10に夫々導かれる。
Here, the operation and processing procedure of the inspection apparatus will be described with reference to FIGS. Table 2
Mounting substrate 1 fed below lens 5 with the movement of
Is scanned by laser light over the entire mounting surface in a direction orthogonal to the substrate moving direction (S1 in FIG. 4). The light reflected from the mounting surface during this scanning is reflected by the reflecting mirror 6, lens 5,
The light is guided to the first photodetector 9 and the second photodetector 10 through the rotating mirror 4, the condenser lens 7 and the half mirror 8, respectively.

【0020】第2光検出器10に導かれた反射光はここ
で電気信号に変換された後、補正量の演算処理に利用さ
れる(図4のS2)。図5のST1〜ST5にその処理
内容を示すように、第2光検出器10の出力信号はデー
タ処理部13でA/D変換され、さらに2値化処理され
て実装面全体の輝度分布に係るデータに変換処理された
後、輝度分布データメモリ14に記憶される。銅パター
ンから成るマーク1aは基板自体よりも反射率が高いた
め、輝度分布データにはマーク11aが顕著に現れる。
続いて、補正量演算部15において上記の輝度分布デー
タ中のマーク位置が検出され、両マーク位置から実装基
板のθ方向のずれが演算されて該補正量θ1がRAM等
に記憶される。
The reflected light guided to the second photodetector 10 is converted into an electric signal here and then used for the calculation processing of the correction amount (S2 in FIG. 4). As shown in ST1 to ST5 of FIG. 5, the output signal of the second photodetector 10 is A / D converted by the data processing unit 13 and further binarized to obtain the luminance distribution of the entire mounting surface. After being converted into such data, it is stored in the luminance distribution data memory 14. Since the mark 1a made of a copper pattern has a higher reflectance than the substrate itself, the mark 11a appears prominently in the luminance distribution data.
Subsequently, the correction amount calculation unit 15 detects the mark position in the brightness distribution data, calculates the deviation of the mounting substrate in the θ direction from both mark positions, and stores the correction amount θ1 in the RAM or the like.

【0021】詳しくは、図6に示すように、基板移動方
向をX,走査方向をYとした場合では、両マーク1aを
結ぶ直線S上のマーク間距離とマーク1aのX方向偏差
△x、或いはY方向偏差△yから三角関数によって基板
移動方向に対する直線Sの傾きθ1が演算される。尚、
補正量θ1の演算は、マーク1aのX方向偏差△xとY
方向偏差△yから三角関数によって直線Sの傾きθ1を
演算することで行うこともできる。
More specifically, as shown in FIG. 6, when the substrate moving direction is X and the scanning direction is Y, the distance between marks on the straight line S connecting both marks 1a and the deviation Δx of the mark 1a in the X direction, Alternatively, the inclination θ1 of the straight line S with respect to the substrate moving direction is calculated from the Y-direction deviation Δy by a trigonometric function. still,
The correction amount θ1 is calculated by the deviation Δx of the mark 1a in the X direction and Y
It is also possible to calculate the inclination θ1 of the straight line S from the direction deviation Δy by a trigonometric function.

【0022】一方、第1光検出器9に導かれた反射光は
ここで電気信号に変換された後、その出力信号はデータ
処理部11でA/D変換され、さらに適当な算出式によ
って実装面全体の高さ分布に係るデータに変換された
後、高さ分布データメモリ12に記憶される(図4のS
3〜S5)。
On the other hand, the reflected light guided to the first photodetector 9 is converted into an electric signal here, and then the output signal is A / D converted by the data processing unit 11 and further mounted by an appropriate calculation formula. After being converted into data relating to the height distribution of the entire surface, it is stored in the height distribution data memory 12 (S in FIG. 4).
3 to S5).

【0023】次に、検査領域メモリ16から検査領域に
係る位置データと上記の補正量θ1が検査領域補正部1
7に読み込まれ、検査領域の位置データが補正量θ1だ
け位置補正される(図4のS6〜S8)。そして、位置
補正後の検査領域に対応した高さ分布データがメモリ1
2から読み出される(図4のS9)。
Next, from the inspection area memory 16, the position data relating to the inspection area and the above-mentioned correction amount .theta.
7, the position data of the inspection area is position-corrected by the correction amount θ1 (S6 to S8 in FIG. 4). Then, the height distribution data corresponding to the inspection area after the position correction is stored in the memory 1
2 is read (S9 in FIG. 4).

【0024】次に、基準データメモリ18から位置補正
後の検査領域に対応する基準データが読み出され、該基
準データと上記の高さ分布データとの誤差、例えば二乗
誤差が演算される(図4のS10,S11)。そして、
しきい値メモリ19からしきい値が読み出され、上記の
誤差との比較において実装状態の良否が判定され、判定
結果がCRT21に表示される(図4のS13〜S1
5)。
Next, the reference data corresponding to the position-corrected inspection area is read from the reference data memory 18, and an error between the reference data and the height distribution data, for example, a square error is calculated (FIG. 4 S10, S11). And
The threshold value is read from the threshold value memory 19, the quality of the mounting state is determined by comparison with the above error, and the determination result is displayed on the CRT 21 (S13 to S1 in FIG. 4).
5).

【0025】このように上述の実装基板検査装置によれ
ば、レーザ光走査時の反射光を第1,第2光検出器9,
10に夫々導き、第1光検出器9の出力信号から実装面
の高さ分布に係るデータを求める共に、第2光検出器1
0の出力信号から実装面の輝度分布に係るデータを求め
該データ中のマーク位置から実装基板のθ方向のずれを
演算して検査領域の位置補正を行うことができるので、
テーブル上の実装基板1に位置ずれがある場合でも該ず
れに合わせて検査領域を自動的に矯正し、実装状態の良
否判定を正確に行うことができる。また、レーザ光走査
の前段階で実装基板の位置,向きを矯正する手間が省け
検査時間の短縮に貢献できると共に、テーブルの自由度
をその分減少させて構造を簡略化することができる。
As described above, according to the mounting board inspection apparatus described above, the reflected light at the time of scanning the laser light is detected by the first and second photodetectors 9,
10 to obtain data relating to the height distribution of the mounting surface from the output signal of the first photodetector 9 and the second photodetector 1
Since the data relating to the luminance distribution of the mounting surface is obtained from the output signal of 0, the position of the inspection area can be corrected by calculating the deviation of the mounting substrate in the θ direction from the mark position in the data.
Even if the mounting substrate 1 on the table has a positional deviation, the inspection area can be automatically corrected according to the positional deviation, and the quality of the mounting state can be accurately determined. In addition, it is possible to save the labor of correcting the position and orientation of the mounting substrate before the laser beam scanning, which contributes to the reduction of the inspection time, and the degree of freedom of the table can be reduced accordingly to simplify the structure.

【0026】尚、上記実施例では、第1光検出器にPS
Dを、第2光検出器にホトダイオードを夫々使用した
が、光検出器に使用される光検出素子はこれら以外のも
のであってもよく、また両光検出器に同一素子を使用し
てもよい。また、回転ミラー及びレンズから成るレーザ
光走査手段、また反射ミラー,レンズ及び回転ミラーか
ら成る反射手段は図示例以外の周知構造で代用してもよ
い。
In the above embodiment, the first photodetector has a PS.
Although D is the photodiode used for the second photodetector, the photodetector element used for the photodetector may be other than these, and the same element may be used for both photodetectors. Good. Further, the laser beam scanning means including a rotating mirror and a lens, and the reflecting means including a reflecting mirror, a lens and a rotating mirror may be replaced by a well-known structure other than the illustrated example.

【0027】[0027]

【発明の効果】以上詳述したように、本発明によれば、
レーザ光走査時の反射光を2つの光検出器に夫々導き、
一方の光検出器の出力信号から実装面の高さ分布に係る
データを求める共に、他方の光検出器の出力信号から実
装面の輝度分布に係るデータを求め該データ中のマーク
位置から実装基板のθ方向のずれを演算して検査領域の
位置補正を行うことができるので、テーブル上の実装基
板に位置ずれがある場合でも該ずれに合わせて検査領域
を自動的に矯正し、実装状態の良否判定を正確に行うこ
とができる。また、レーザ光走査の前段階で実装基板の
位置,向きを矯正する手間が省け検査時間の短縮に貢献
できると共に、テーブルの自由度をその分減少させて構
造を簡略化することができる。
As described in detail above, according to the present invention,
The reflected light at the time of scanning the laser light is guided to two photodetectors,
The data related to the height distribution of the mounting surface is obtained from the output signal of one photodetector, and the data related to the luminance distribution of the mounting surface is obtained from the output signal of the other photodetector, and the mounting board is determined from the mark position in the data. Since it is possible to correct the position of the inspection area by calculating the deviation in the θ direction of, the inspection area is automatically corrected according to the deviation even if the mounting board on the table has a positional deviation, It is possible to accurately determine the quality. In addition, it is possible to save the labor of correcting the position and orientation of the mounting substrate before the laser beam scanning, which contributes to the reduction of the inspection time, and the degree of freedom of the table can be reduced accordingly to simplify the structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】実装基板検査装置の概略構成図FIG. 1 is a schematic configuration diagram of a mounting board inspection apparatus.

【図2】実装基板の上面図FIG. 2 is a top view of a mounting board.

【図3】電気系回路のブロック図FIG. 3 is a block diagram of an electric circuit.

【図4】検査制御のフローチャートFIG. 4 is a flowchart of inspection control

【図5】補正量演算処理のフローチャートFIG. 5 is a flowchart of correction amount calculation processing.

【図6】補正量演算の説明図FIG. 6 is an explanatory diagram of correction amount calculation.

【符号の説明】[Explanation of symbols]

1…実装基板、1a…マーク、2…テーブル、3…レー
ザ、4…回転ミラー、5…レンズ、9…第1光検出器、
10…第2光検出器、11…データ処理部、12…高さ
分布データメモリ、13…データ処理部、15…補正量
演算部、16…検査領域メモリ、17…検査領域補正
部、20…判定部。
1 ... Mounting board, 1a ... Mark, 2 ... Table, 3 ... Laser, 4 ... Rotating mirror, 5 ... Lens, 9 ... First photodetector,
10 ... 2nd photodetector, 11 ... Data processing part, 12 ... Height distribution data memory, 13 ... Data processing part, 15 ... Correction amount calculation part, 16 ... Inspection area memory, 17 ... Inspection area correction part, 20 ... Judgment section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 実装基板を所定方向に移動させる移動手
段と、レーザと、実装基板の実装面に基板移動方向と直
交する方向にレーザ光を走査させるレーザ光走査手段
と、実装面からの反射光を受光し電気信号に変換する光
検出器と、光検出器の出力信号に基づいて実装面の高さ
分布データを演算するデータ処理手段と、実装部品に対
応して設定された検査領域を記憶する検査領域メモリ
と、検査領域に対応する高さ分布データを基準データと
比較して実装状態の良否判定を行う判定手段とを具備し
た実装基板検査装置において、 実装基板に複数のマークを設けると共に、 実装面からの反射光を受光する第2の光検出器と、 第2の光検出器の出力信号に基づいて実装面の輝度分布
データを演算する第2のデータ処理手段と、 輝度分布データ中のマーク位置から実装基板のθ方向の
ずれを演算する補正量演算手段と、 補正量に基づいて検査領域の位置を補正する検査領域補
正手段とを設けた、 ことを特徴とする実装基板検査装置。
1. A moving means for moving a mounting board in a predetermined direction, a laser, a laser beam scanning means for scanning a mounting surface of the mounting board with laser light in a direction orthogonal to the board moving direction, and a reflection from the mounting surface. A photodetector that receives light and converts it to an electrical signal, a data processing unit that calculates height distribution data of the mounting surface based on the output signal of the photodetector, and an inspection area set corresponding to the mounting component A mounting board inspection apparatus having a storage area memory for storing and a judgment means for comparing the height distribution data corresponding to the inspection area with reference data to judge whether the mounting state is good or bad. At the same time, a second photodetector that receives the reflected light from the mounting surface, a second data processing unit that calculates the luminance distribution data of the mounting surface based on the output signal of the second photodetector, and the luminance distribution In the data A correction amount calculating means for calculating a θ direction deviation of the mounting substrate from the mark position, is provided an inspection area correcting means for correcting the position of the inspection area based on the correction amount, the mounting board inspection apparatus characterized by.
JP4338878A 1992-12-18 1992-12-18 Inspecting device for mounted substrate Withdrawn JPH06185994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4338878A JPH06185994A (en) 1992-12-18 1992-12-18 Inspecting device for mounted substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4338878A JPH06185994A (en) 1992-12-18 1992-12-18 Inspecting device for mounted substrate

Publications (1)

Publication Number Publication Date
JPH06185994A true JPH06185994A (en) 1994-07-08

Family

ID=18322244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4338878A Withdrawn JPH06185994A (en) 1992-12-18 1992-12-18 Inspecting device for mounted substrate

Country Status (1)

Country Link
JP (1) JPH06185994A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216597A (en) * 1993-01-20 1994-08-05 Toyo Denki Kk Visual inspection device for board
JPH09237999A (en) * 1996-02-29 1997-09-09 Nagoya Denki Kogyo Kk Direction discriminating method for mounting electronic components
JPH10200300A (en) * 1997-01-07 1998-07-31 Matsushita Electric Ind Co Ltd Method for inspecting mounting board
JP2000036698A (en) * 1998-05-14 2000-02-02 Matsushita Electric Ind Co Ltd Method for inspecting electronic part mounted circuit board and its device
JP2005207848A (en) * 2004-01-22 2005-08-04 Anritsu Corp Apparatus for inspecting printing solder
JP2018124141A (en) * 2017-01-31 2018-08-09 アルファーデザイン株式会社 Information processing device, information processing method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216597A (en) * 1993-01-20 1994-08-05 Toyo Denki Kk Visual inspection device for board
JPH09237999A (en) * 1996-02-29 1997-09-09 Nagoya Denki Kogyo Kk Direction discriminating method for mounting electronic components
JPH10200300A (en) * 1997-01-07 1998-07-31 Matsushita Electric Ind Co Ltd Method for inspecting mounting board
JP2000036698A (en) * 1998-05-14 2000-02-02 Matsushita Electric Ind Co Ltd Method for inspecting electronic part mounted circuit board and its device
JP2005207848A (en) * 2004-01-22 2005-08-04 Anritsu Corp Apparatus for inspecting printing solder
JP2018124141A (en) * 2017-01-31 2018-08-09 アルファーデザイン株式会社 Information processing device, information processing method, and program

Similar Documents

Publication Publication Date Title
US5105149A (en) Apparatus for inspecting electronic devices mounted on a circuit board
JP2802561B2 (en) Semiconductor chip alignment method and laser repair target
JP2007033048A (en) Solder bonding determination method, soldering inspection method, soldering inspection device, soldering inspection program, and recording medium
JPH06185994A (en) Inspecting device for mounted substrate
JP2866831B2 (en) Laser processing equipment positioning method
US5192983A (en) Apparatus for and method of checking external appearance of soldering state
JP4351955B2 (en) Reference point position determination method
JP2005172640A (en) Mounting inspection device and mounting inspection method
JPH02162789A (en) Directly drawing method
JPS6337479A (en) Pattern recognizer
JPH06112700A (en) Inspecting apparatus for packaged board
JPH0765967B2 (en) Mounted board visual inspection device
JPS6326510A (en) Inspection device for packaging component
JP3232821B2 (en) Inspection method of mounted printed circuit board
JPH06213631A (en) Shape examination device
JP3715489B2 (en) Printed circuit board inspection equipment
JP5521835B2 (en) Component soldering inspection apparatus and inspection method thereof
JP2743663B2 (en) Mounting board appearance inspection device
JPH0367567B2 (en)
JPH04352079A (en) Device for inspecting appearance of mounting substrate
JPH0735390Y2 (en) Bonding device
JPH04355946A (en) Inspection of soldered part of electronic component
JP3232811B2 (en) Inspection method of mounted printed circuit board
JPH0372203A (en) Checking method of outer appearance of soldering part
JP3029723B2 (en) Method of detecting lead floating in soldering process

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307