JPH06183741A - Superconducting composite and its production - Google Patents

Superconducting composite and its production

Info

Publication number
JPH06183741A
JPH06183741A JP4337124A JP33712492A JPH06183741A JP H06183741 A JPH06183741 A JP H06183741A JP 4337124 A JP4337124 A JP 4337124A JP 33712492 A JP33712492 A JP 33712492A JP H06183741 A JPH06183741 A JP H06183741A
Authority
JP
Japan
Prior art keywords
layer
alloy substrate
hours
firing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4337124A
Other languages
Japanese (ja)
Inventor
秀次 ▲くわ▼島
Hideji Kuwashima
Shozo Yamana
章三 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP4337124A priority Critical patent/JPH06183741A/en
Publication of JPH06183741A publication Critical patent/JPH06183741A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Products (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce a superconducting composite having a high mechanical strength and preventing the deterioration of its superconducting characteristics. CONSTITUTION:An Sr-Ca-Cu oxide layer which forms a layer reactive with an Ni alloy substrate by firing is formed on the Ni alloy substrate and they are integrated by successive or simultaneous primary firing. A Bi-contg. superconductor layer is then formed on the top of the Sr-Ca-Cu oxide layer and they are integrated by secondary firing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導複合体及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting composite and a method for producing the same.

【0002】[0002]

【従来の技術】臨界温度が液体窒素の沸点を越える超電
導体の1つとしてビスマス(Bi)、ストロンチウム
(Sr)、カルシウム(Ca)及び銅(Cu)を主成分
とする複合酸化物が知られている。該超電導体の焼結体
を得る方法として、超電導体粉末を成形し、その分解溶
融温度未満の温度で焼成する方法又は超電導特性を低下
させる反応生成物を生成しない銀基板上に超電導体を焼
付け一体化する方法がある。
2. Description of the Related Art As one of superconductors whose critical temperature exceeds the boiling point of liquid nitrogen, a composite oxide containing bismuth (Bi), strontium (Sr), calcium (Ca) and copper (Cu) as main components is known. ing. As a method for obtaining a sintered body of the superconductor, a method of molding a superconductor powder and firing it at a temperature lower than its decomposition melting temperature or baking the superconductor on a silver substrate that does not generate a reaction product that deteriorates superconducting properties There is a way to integrate.

【0003】[0003]

【発明が解決しようとする課題】しかしながら超電導体
をその分解溶融温度未満の温度で焼成すると焼結体がち
密にならず機械的強度が低いという欠点が生じる。分解
溶融温度以上の温度で焼成するには、所望の形状を有す
る銀基板、Ni合金基板等の基板と一体化することが不
可欠であるが、超電導特性を低下させない銀基板は機械
的強度が低いという欠点を有し、また液体窒素温度(7
7.3K)以下の極低温で使用されるNi合金基板を使
用し、その表面に直接超電導体層を形成すると超電導体
の超電導特性が低下し易くなるという欠点が生じる。
However, when the superconductor is fired at a temperature lower than its decomposition and melting temperature, the sintered body does not become dense and the mechanical strength is low. In order to fire at a temperature above the decomposition melting temperature, it is essential to integrate it with a substrate having a desired shape, such as a silver substrate or a Ni alloy substrate, but a silver substrate that does not deteriorate superconducting properties has low mechanical strength. The liquid nitrogen temperature (7
If a Ni alloy substrate used at an extremely low temperature of 7.3 K) or less is used and a superconductor layer is directly formed on the surface of the Ni alloy substrate, the superconducting property of the superconductor tends to be deteriorated.

【0004】本発明はかかる欠点を解決するための超電
導複合体及びその製造方法を提供するものである。
The present invention provides a superconducting composite and a method for producing the same for overcoming these drawbacks.

【0005】[0005]

【課題を解決するための手段】本発明はNi合金基板上
に、該Ni合金基板とSr−Ca−Cu酸化物との反応
層、Sr−Ca−Cu酸化物層及びBi系超電導体層が
形成された超電導複合体並びにNi合金基板上に、焼成
により該Ni合金基板との反応層が生成されるSr−C
a−Cu酸化物層を形成した後、これらを逐次又は同時
に一次焼成して一体化し、さらにSr−Ca−Cu酸化
物層の上面にBi系超電導体層を形成し、次いで二次焼
成して一体化する超電導複合体の製造方法に関する。
According to the present invention, a reaction layer of the Ni alloy substrate and Sr-Ca-Cu oxide, a Sr-Ca-Cu oxide layer and a Bi-based superconductor layer are formed on a Ni alloy substrate. Sr-C in which a reaction layer with the Ni alloy substrate is formed by firing on the formed superconducting composite and Ni alloy substrate
After forming the a-Cu oxide layer, these are sequentially or simultaneously primary-fired to be integrated, and a Bi-based superconductor layer is further formed on the upper surface of the Sr-Ca-Cu oxide layer, and then secondary-fired. The present invention relates to a method for manufacturing an integrated superconducting composite.

【0006】Bi系超電導体は、例えばBi、Sr、C
a及びCuを主成分とし、Bi:Sr:Ca:Cuの比
(原子比)が概略2:2:1:2又は2:2:2:3が
代表される組成であるが、Biの一部がPbで置換さ
れ、さらにPbが添加されたものが適用できる。
Bi based superconductors include, for example, Bi, Sr and C.
The composition is mainly represented by a and Cu, and the ratio (atomic ratio) of Bi: Sr: Ca: Cu is generally 2: 2: 1: 2 or 2: 2: 2: 3. A part in which Pb is substituted and Pb is further added can be applied.

【0007】Ni合金基板としては、ステンレス、ハス
テロイ、インコネル等の名称で呼ばれるNiを含む合金
基板を示し、熱膨張係数が超電導体に近いものを用いる
ことが好ましい。
As the Ni alloy substrate, an alloy substrate containing Ni, which is called by a name such as stainless steel, Hastelloy, and Inconel, is shown, and it is preferable to use one having a thermal expansion coefficient close to that of a superconductor.

【0008】Sr−Ca−Cu酸化物は、その融点(液
相生成温度)がBi系超電導体の分解溶融温度より50
℃以上高いことが好ましく、100℃以上高ければさら
に好ましい。その組成は例えばSr:Ca:Cuの比
(原子比)が0.8:0.2:1、0.2:0.8:1
及び0.02:0.98:1であることが好ましい。ま
たSr−Cu及びCa−Cuの化合物を予め作製してお
き、これらを所望の比率で混合した後形成しても差しつ
かえない。
The Sr-Ca-Cu oxide has a melting point (liquid phase formation temperature) of 50 from the decomposition melting temperature of the Bi-based superconductor.
It is preferable that the temperature is higher than 0 ° C, and more preferable if it is higher than 100 ° C. Its composition is, for example, Sr: Ca: Cu ratio (atomic ratio) of 0.8: 0.2: 1 and 0.2: 0.8: 1.
And 0.02: 0.98: 1. It is also possible to prepare Sr-Cu and Ca-Cu compounds in advance and mix them at a desired ratio before forming.

【0009】Ni合金基板上に形成されるNi合金基板
とSr−Ca−Cu酸化物との反応層及びSr−Ca−
Cu酸化物層の厚さは厳密に規定するものではないが、
例えばNi合金基板とSr−Ca−Cu酸化物との反応
層及びSr−Ca−Cu酸化物層の厚さは20〜50μ
m程度のものが用いられる。これらの層の形成方法につ
いては何ら制限するものではなく、例えばスクリーン印
刷法、スプレー塗布法、電着法、浸漬法、グリーンシー
ト法等の方法で行うことができる。
A reaction layer of the Ni alloy substrate and the Sr-Ca-Cu oxide formed on the Ni alloy substrate and Sr-Ca-
Although the thickness of the Cu oxide layer is not strictly defined,
For example, the thickness of the reaction layer of the Ni alloy substrate and the Sr-Ca-Cu oxide and the Sr-Ca-Cu oxide layer is 20 to 50 μm.
The thing of about m is used. The method for forming these layers is not particularly limited, and for example, a screen printing method, a spray coating method, an electrodeposition method, a dipping method, a green sheet method or the like can be used.

【0010】最表面(最外層)に形成されるBi系超電
導体層の厚さは、用途又はその特性によって変るので特
に制限はない。焼成して一体化する条件は、一次焼成及
び二次焼成共に個々の材料によって異なるので各々の焼
成に適した条件であれば特に制限はない。また焼成雰囲
気についても特に制限はないが、Sr−Ca−Cu酸化
物層を形成する場合には、酸素濃度が10%未満の窒素
雰囲気中又は窒素雰囲気中で焼成することができる。特
に窒素雰囲気中で焼成すればNi合金の酸化が防止し易
いので好ましい。この場合300℃未満の低温では酸素
を5〜10%程度含有させ、徐々に昇温させることによ
りNi合金基板上に形成された層に含まれる有機バイン
ダの分解をスムーズに進めることが好ましい。
The thickness of the Bi-based superconductor layer formed on the outermost surface (outermost layer) is not particularly limited because it depends on the application or its characteristics. The conditions for firing and integration are not particularly limited as long as the conditions are suitable for each firing since both primary firing and secondary firing differ depending on the individual materials. The firing atmosphere is also not particularly limited, but when the Sr—Ca—Cu oxide layer is formed, firing can be performed in a nitrogen atmosphere having an oxygen concentration of less than 10% or in a nitrogen atmosphere. In particular, firing in a nitrogen atmosphere is preferable because it is easy to prevent oxidation of the Ni alloy. In this case, it is preferable that oxygen is contained at about 5 to 10% at a low temperature of less than 300 ° C., and the temperature is gradually raised to smoothly decompose the organic binder contained in the layer formed on the Ni alloy substrate.

【0011】[0011]

【作用】本発明はNi合金基板上に、該Ni合金基板と
Sr−Ca−Cu酸化物との反応層、Sr−Ca−Cu
酸化物層及びBi系超電導体層を形成することにより、
Ni合金基板とBi系超電導体層とが直接反応すること
を防止することができるので超電導特性の低下が防止で
きる。
The present invention comprises a Ni alloy substrate, a reaction layer of the Ni alloy substrate and Sr-Ca-Cu oxide, and Sr-Ca-Cu.
By forming the oxide layer and the Bi-based superconductor layer,
Since it is possible to prevent the Ni alloy substrate and the Bi-based superconductor layer from directly reacting with each other, it is possible to prevent deterioration of superconducting properties.

【0012】[0012]

【実施例】以下本発明の実施例を説明する。 実施例1 ビスマス、鉛、ストロンチウム、カルシウム及び銅の比
率が原子比で表1に示す組成になるように、三酸化ビス
マス(高純度化学研究所製、純度99.9%)、一酸化
鉛(黄色)(和光純薬製、試薬特級)、炭酸ストロンチ
ウム(レアメタリック社製、純度99.9%)、炭酸カ
ルシウム(高純度化学研究所製、純度99.9%)及び
酸化第二銅(高純度化学研究所製、純度99.9%)を
秤量し、出発原料とした。
EXAMPLES Examples of the present invention will be described below. Example 1 Bismuth trioxide (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%), lead monoxide (so that the ratio of bismuth, lead, strontium, calcium and copper in terms of atomic ratio is as shown in Table 1 Yellow) (made by Wako Pure Chemical Industries, special grade reagent), strontium carbonate (made by Rare Metallic Co., purity 99.9%), calcium carbonate (made by Kojundo Chemical Laboratory, purity 99.9%) and cupric oxide (high) Purity Chemical Laboratory Co., Ltd., purity 99.9%) was weighed and used as a starting material.

【0013】[0013]

【表1】 [Table 1]

【0014】次に上記の出発原料を合成樹脂製のボール
ミル内に合成樹脂で被覆した鋼球ボール及びメタノール
と共に充てんし、毎分50回転の条件で60時間湿式混
合及び粉砕した。この後、粉砕物をボールミルから取り
出して、100℃で24時間乾燥し、さらにこれをアル
ミナ製の焼板にのせ電気炉を用いて大気中、800℃で
24時間焼成した。なお試料No.1及びNo.2は1
000℃で20時間の焼成を追加した。
Next, the above starting materials were filled in a ball mill made of synthetic resin together with a steel ball covered with the synthetic resin and methanol, and wet-mixed and crushed for 60 hours under the condition of 50 rpm. Then, the pulverized product was taken out from the ball mill, dried at 100 ° C. for 24 hours, placed on an alumina baking plate, and baked in the air at 800 ° C. for 24 hours using an electric furnace. Sample No. 1 and No. 2 is 1
Additional firing for 20 hours at 000 ° C.

【0015】冷却後乳鉢で粗粉砕し、さらに粉砕物を合
成樹脂製ボールミル内にジルコニア製ボール及びメタノ
ールと共に充てんし、毎分50回転の条件で48時間湿
式粉砕し、乾燥して各粉末を得た。
After cooling, the mixture was roughly ground in a mortar, and the ground product was filled in a synthetic resin ball mill together with zirconia balls and methanol, wet-ground for 48 hours at 50 rpm, and dried to obtain each powder. It was

【0016】この後試料No.3及びNo.4の粉末に
ついてのみアルミナ製焼板にのせ、電気炉を用いて体積
比でO2:N2=1:20の低酸素雰囲気中で、試料N
o.3は860℃及び試料No.4は850℃で各々3
0時間加熱してビスマス系超電導体を得た。次いで該ビ
スマス系超電導体を乳鉢で粗粉砕し、さらに粉砕物を合
成樹脂製ボールミル内にジルコニア製ボール及びメタノ
ールと共に充てんし、毎分50回転の条件で48時間湿
式粉砕し、乾燥して粉末を得た。
After this, the sample No. 3 and No. Only the powder of No. 4 was placed on a calcined plate made of alumina, and sample N was placed in an oxygen furnace in a low oxygen atmosphere with a volume ratio of O 2 : N 2 = 1: 20.
o. 3 is 860 ° C. and sample No. 4 at 850 ℃ each 3
It was heated for 0 hour to obtain a bismuth-based superconductor. Next, the bismuth-based superconductor is roughly crushed in a mortar, and the crushed product is filled in a synthetic resin ball mill together with zirconia balls and methanol, wet-ground for 48 hours at 50 rpm, and dried to obtain a powder. Obtained.

【0017】次に上記で得た試料No.1〜No.4の
各粉末100gにメチルセルロース(和光純薬製)12
g及びフタル酸ジブチル(和光純薬製)6gを添加し、
これにテルピネオール(和光純薬製)18g及びジエチ
レングリコールモノブチルエーテル18gを加えて均一
に混合してペースト状にした。得られたペーストの半分
をベーカーアプリケータを用いてグリーンシートを得
た。なおグリーンシートの厚さは、試料No.1及びN
o.2の粉末を用いたものは各々25±5μm並びに試
料No.3及びNo.4の粉末を用いたものは各々15
0±20μmの厚さのものを得た。なおベースフィルム
は、離型剤処理した厚さ50μmのポリエステルフィル
ムを用いた。
Next, the sample No. 1-No. Methyl cellulose (manufactured by Wako Pure Chemical Industries) 12 to 100 g of each powder of 4
g and dibutyl phthalate (manufactured by Wako Pure Chemical Industries, Ltd.) are added,
To this, 18 g of terpineol (manufactured by Wako Pure Chemical Industries, Ltd.) and 18 g of diethylene glycol monobutyl ether were added and uniformly mixed to form a paste. Half of the obtained paste was used to obtain a green sheet using a baker applicator. The thickness of the green sheet is the same as sample No. 1 and N
o. The sample using the powder of No. 2 was 25 ± 5 μm and the sample No. 3 and No. 15 using the powder of No. 4
A thickness of 0 ± 20 μm was obtained. As the base film, a polyester film having a release agent treatment and a thickness of 50 μm was used.

【0018】この後厚さ2mmのステンレス板(SUS
316)上に、試料No.1の粉末を用いたペーストを
塗布し、乾燥して厚さ50μmの層とした。これを酸素
濃度が10%の窒素気流中で300℃まで9時間で昇温
して有機物を分解除去した後、窒素雰囲気気流中で10
60℃まで10時間で昇温し、1060℃で0.5時間
保持(一次焼成)した後、室温まで12時間で冷却し
た。
After this, a 2 mm thick stainless steel plate (SUS
316) and the sample No. A paste using the powder of No. 1 was applied and dried to form a layer having a thickness of 50 μm. This was heated to 300 ° C. for 9 hours in a nitrogen gas stream having an oxygen concentration of 10% to decompose and remove organic substances, and then 10
The temperature was raised to 60 ° C. in 10 hours, and the temperature was maintained at 1060 ° C. for 0.5 hour (primary firing), and then cooled to room temperature in 12 hours.

【0019】次に試料No.1の粉末を用いたペースト
を焼き付けた層の上面に、試料No.3の粉末を用いて
得たグリーンシートを2枚重ねて80℃で熱圧着した
後、酸素濃度が5%の窒素気流中で300℃まで12時
間で昇温し、300℃で2時間保持した後、875℃ま
で6時間で昇温し、875℃で0.2時間保持(二次焼
成)してから850℃まで1時間5℃の速度で冷却し、
次いで室温まで12時間で冷却して超電導複合体を得
た。
Next, sample No. Sample No. 1 is formed on the upper surface of the layer on which the paste using the powder of No. 1 is baked. Two green sheets obtained by using the powder of No. 3 were overlaid and thermocompression-bonded at 80 ° C., then heated to 300 ° C. in 12 hours in a nitrogen gas stream having an oxygen concentration of 5%, and kept at 300 ° C. for 2 hours. Then, the temperature was raised to 875 ° C. in 6 hours, the temperature was maintained at 875 ° C. for 0.2 hours (secondary firing), and then cooled to 850 ° C. for 1 hour at a rate of 5 ° C.,
Then, the mixture was cooled to room temperature for 12 hours to obtain a superconducting composite.

【0020】得られた超電導複合体を四端子法で電気抵
抗が0になる臨界温度(以下Tcとする)及び臨界電流
密度(以下Jcとする)を測定したところ、Tcは90
Kで、77KでのJcは11000A/cm2であっ
た。
The obtained superconducting composite was measured for the critical temperature (hereinafter referred to as Tc) and the critical current density (hereinafter referred to as Jc) at which the electric resistance became 0 by the four-terminal method, and the Tc was 90.
The Jc at 77K was 11000 A / cm 2 .

【0021】実施例2 厚さ2mmのインコネル板上に、重ねて50μmの厚さ
にした試料No.2の粉末を用いて得たグリーンシート
を80℃で熱圧着し、次いで酸素濃度が10%の窒素気
流中で300℃まで9時間で昇温して有機物を分解除去
した後、窒素雰囲気気流中で1060℃まで10時間で
昇温し、1060℃で0.5時間保持(一次焼成)した
後、室温まで12時間で冷却した。
Example 2 Sample No. 2 was laminated on an Inconel plate having a thickness of 2 mm to have a thickness of 50 μm. The green sheet obtained by using the powder of No. 2 was thermocompression bonded at 80 ° C., then heated to 300 ° C. for 9 hours in a nitrogen stream having an oxygen concentration of 10% to decompose and remove organic substances, and then in a nitrogen atmosphere stream. The temperature was raised to 1060 ° C. in 10 hours, maintained at 1060 ° C. for 0.5 hour (primary firing), and then cooled to room temperature in 12 hours.

【0022】次に試料No.2の粉末を用いて得たグリ
ーンシートを焼き付けた層の上面に試料No.4の粉末
を用いて得たグリーンシートを3枚重ねて90℃で熱圧
着した後、酸素濃度が5%の窒素気流中で300℃まで
12時間で昇温し、300℃で2時間保持した後880
℃まで6時間で昇温し、880℃で0.2時間保持(二
次焼成)してから870℃に冷却し、さらに870℃で
40時間保持した後室温まで20時間で冷却して超電導
複合体を得た。
Next, sample No. Sample No. 2 was formed on the upper surface of the layer on which the green sheet obtained by using the powder of No. 2 was baked. After stacking three green sheets obtained by using the powder of No. 4 and thermocompression-bonding at 90 ° C., the temperature was raised to 300 ° C. in 12 hours in a nitrogen stream having an oxygen concentration of 5%, and kept at 300 ° C. for 2 hours. After 880
The temperature is raised to 6 ° C in 6 hours, the temperature is maintained at 880 ° C for 0.2 hours (secondary firing), cooled to 870 ° C, further maintained at 870 ° C for 40 hours, and then cooled to room temperature for 20 hours to obtain a superconducting composite. Got the body

【0023】得られた超電導複合体を四端子法でTc及
びJcを測定したところ、Tcは105Kで、77Kで
のJcは1700A/cm2であった。
When Tc and Jc of the obtained superconducting composite were measured by the four-terminal method, Tc was 105K and Jc at 77K was 1700 A / cm 2 .

【0024】比較例1 実施例1と同様のステンレス板上に、試料No.3の粉
末を用いて得たグリーンシートを直接2枚重ねて80℃
で熱圧着した後、実施例1と同様の工程を経て超電導複
合体を得た。得られた超電導複合体を四端子法でTcを
測定したが77K以下であり、液体窒素温度では超電導
性を示さなかった。
Comparative Example 1 Sample No. 1 was placed on the same stainless plate as in Example 1. Directly stack two green sheets obtained by using the powder of No.3 and 80 ℃
After thermocompression-bonding, a superconducting composite was obtained through the same steps as in Example 1. The Tc of the obtained superconducting composite was measured by the four-terminal method, but it was 77 K or less, and it did not show superconductivity at the liquid nitrogen temperature.

【0025】比較例2 実施例2と同様のインコネル板上に、試料No.4の粉
末を用いて得たグリーンシートを直接3枚重ねて90℃
で熱圧着した後、実施例2と同様の工程を経て超電導複
合体を得た。得られた超電導複合体を四端子法でTc及
びJcを測定したところ、Tcは79Kで、77Kでの
Jcは10A/cm2未満であった。
Comparative Example 2 Sample No. 2 was placed on the same Inconel plate as in Example 2. Directly stack the 3 green sheets obtained by using the powder of No. 4 and 90 ℃
After thermocompression-bonding, the superconducting composite was obtained through the same steps as in Example 2. When Tc and Jc of the obtained superconducting composite were measured by a four-terminal method, Tc was 79K and Jc at 77K was less than 10 A / cm 2 .

【0026】[0026]

【発明の効果】本発明になる超電導複合体は、機械的強
度が高く、超電導特性が低下せず、液体窒素温度で安定
した超電導性を示し、工業的に極めて好適な超電導複合
体である。
INDUSTRIAL APPLICABILITY The superconducting composite according to the present invention is a superconducting composite having high mechanical strength, no deterioration in superconducting properties, stable superconductivity at liquid nitrogen temperature, and industrially extremely suitable.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ni合金基板上に、該Ni合金基板とS
r−Ca−Cu酸化物との反応層、Sr−Ca−Cu酸
化物層及びBi系超電導体層が形成された超電導複合
体。
1. A Ni alloy substrate and a S alloy on the Ni alloy substrate.
A superconducting composite in which a reaction layer with an r-Ca-Cu oxide, a Sr-Ca-Cu oxide layer, and a Bi-based superconductor layer are formed.
【請求項2】 Ni合金基板上に、焼成により該Ni合
金基板との反応層が生成されるSr−Ca−Cu酸化物
層を形成した後、これらを逐次又は同時に一次焼成して
一体化し、さらにSr−Ca−Cu酸化物層の上面にB
i系超電導体層を形成し、次いで二次焼成して一体化す
ることを特徴とする超電導複合体の製造方法。
2. A Sr—Ca—Cu oxide layer, on which a reaction layer with the Ni alloy substrate is formed by firing, is formed on the Ni alloy substrate, and these are sequentially or simultaneously primary fired to be integrated. Furthermore, B is formed on the upper surface of the Sr-Ca-Cu oxide layer.
A method for producing a superconducting composite, which comprises forming an i-based superconductor layer and then performing secondary firing to integrate the layers.
JP4337124A 1992-12-17 1992-12-17 Superconducting composite and its production Pending JPH06183741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4337124A JPH06183741A (en) 1992-12-17 1992-12-17 Superconducting composite and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4337124A JPH06183741A (en) 1992-12-17 1992-12-17 Superconducting composite and its production

Publications (1)

Publication Number Publication Date
JPH06183741A true JPH06183741A (en) 1994-07-05

Family

ID=18305670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4337124A Pending JPH06183741A (en) 1992-12-17 1992-12-17 Superconducting composite and its production

Country Status (1)

Country Link
JP (1) JPH06183741A (en)

Similar Documents

Publication Publication Date Title
JPH06183741A (en) Superconducting composite and its production
JPH06183743A (en) Superconducting composite and its production
JPH06183742A (en) Superconducting composite and its production
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JP2532969B2 (en) Oxide-based superconducting film and method for producing the same
JPH0251806A (en) Superconducting ceramic laminated body and manufacture thereof
JP3383799B2 (en) Superconducting composite and manufacturing method thereof
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JPH072524A (en) Bismuth-based oxide superconducting complex and its production
JP2785038B2 (en) Manufacturing method of superconductor film
JP3281892B2 (en) Ceramic superconducting composite and manufacturing method thereof
JPH0569059B2 (en)
JPH09263447A (en) Superconductive precursor composite powder and manufacture of superconductor therefrom
JPH06272021A (en) Bismuth based oxide superconducting conjugated body and its production
JPH09286614A (en) Compound powdery superconductor precursor and production of superconductor
JPS63270309A (en) Oxide superconductor
JPH03263392A (en) Superconducting thick-film circuit board and manufacture thereof
JPH03122017A (en) Superconducting material
JPH06128050A (en) Superconducting composite material and its production
JPH0778530A (en) Oxide superconductor and preparation thereof
JPH04314534A (en) Composite material of oxide superconductor and its manufacture
JPH04317482A (en) Oxide superconductor composite material and its production
JPH054803A (en) Production of oxide superconductive structure
JPH04349188A (en) Oxide superconductor composite and its manufacture
JPS63285811A (en) Manufacture of oxide superconductor heavy membrane