JPH0618335Y2 - Beam scanning device - Google Patents

Beam scanning device

Info

Publication number
JPH0618335Y2
JPH0618335Y2 JP1986194795U JP19479586U JPH0618335Y2 JP H0618335 Y2 JPH0618335 Y2 JP H0618335Y2 JP 1986194795 U JP1986194795 U JP 1986194795U JP 19479586 U JP19479586 U JP 19479586U JP H0618335 Y2 JPH0618335 Y2 JP H0618335Y2
Authority
JP
Japan
Prior art keywords
lens
scanning
image
optical system
beam scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986194795U
Other languages
Japanese (ja)
Other versions
JPS63100716U (en
Inventor
武司 桑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1986194795U priority Critical patent/JPH0618335Y2/en
Publication of JPS63100716U publication Critical patent/JPS63100716U/ja
Application granted granted Critical
Publication of JPH0618335Y2 publication Critical patent/JPH0618335Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案はレーザービームを回転多面鏡又はカルバノミラ
ーで偏向し、このビームを感光体上に結像させて画像を
形成するレーザービームプリンターのビーム走査装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is a beam scanning of a laser beam printer that forms an image by deflecting a laser beam with a rotating polygon mirror or a carbano mirror and forming an image on the photoconductor. It relates to the device.

〔従来の技術〕[Conventional technology]

レーザービームを回転多面鏡で偏向し、これを感光体上
に結像させ画像を形成するレーザービームプリンターの
光学系は回転多面鏡で偏向された後の偏向角と感光体上
の像の像高が比例関係になっている必要がある。即ち第
3図で偏向角θとし、像高をYとし結像レンズの焦点距
離をfとした場合、Y=fθとなる必要がある。一般の
結像レンズはY=ftanθの関係にあり、このレンズを使
用した場合等速で回転多面鏡でビームを偏向させ感光体
上を走査した場合、画像の周辺部は中央部と較べ偏向角
の変化に対する像点の移動が大きく周辺部へ行くほど走
査方向に伸びた画像となる。これを防ぐため、歪曲収差
を一般のレンズとは異なる補正を行いY=fθの関係を
得ている。これをfθ光学系と呼んでいる。レーザービ
ームプリンターはレーザーをある径の平行光束としこれ
を回転多面鏡で反射させfθ光学系によって感光上に結
像させて、回転多面鏡を回転させfθ光学系によって感
光体上にできるレーザースポツト像を走査している。こ
の場合回転多面鏡の各面で回転多面鏡の回転軸方向の倒
れにばらつきが大きいと各面の反射によってできる感光
体面上のスポツト像の高さが異なり、定速で回転する感
光体を一定間隔で走査することができず画像にむらが生
ずる。これを防ぐため第4図(a),(b)に示す様に
光学系が使用されている。これは第4図(b)に示す如
く平行光束にしたレーザー光をビーム偏向面の方向に母
線をもつシリンドリカルレンズ3を通し偏向面と垂直な
断面は回転多面鏡上11で結像させ、平行な断面は平行光
束の状態で回転多面鏡上で反射させ、偏向面と平行な方
向と垂直な方向で異なった曲率をもち異なった屈折力を
もったレンズ6(これを今後トーリツクレンズと呼ぶ)
を使用したfθ特性をもつ結像レンズに入射させる。第
4図(a)の如く偏向面と平行な断面では回転多面鏡11
で反射された平行光束はfθレンズで感光体上に結像さ
れ、又第4図(b)の如く垂直な断面では回転多面鏡11
で反射された光は発散光束となっているが、fθレンズ
はこの発散光束をも感光体上12で結像する様に平行な断
面より屈折力を大きくしている。即ち偏向面と垂直な断
面では回転多面鏡の面と感光体上とが共役関係にある。
この場合回転多面鏡11の各面の倒れにばらつきがあって
も感光体面上12のビームの高さは変化しない。この光学
系を倒れ補正光学系と呼ぶ。この倒れ補正光学系はシリ
ンドリカルレンズ3と球面レンズ5とトーリツクレンズ
6から成っている。これを框体に組込む場合多少の組立
誤差は避けられない。この誤差は種々な現象として現れ
るが、その一つとして第5図に示す様にスポツト像の走
査軌跡が直線とならずに曲がりを生ずる。単独のレーザ
ースポツト走査装置で画像を形成する場合この曲りはあ
まり気にならないが第8図に示す様に複数のレーザース
ポツト走査装置を使って画像を形成する場合、この様な
走査軌跡に曲りがあると当然各々で曲りの状態が異な
り、第9図の如くこれを重ね合わせるとどうしても一致
しない箇所が出てくる。
The optical system of a laser beam printer, which deflects the laser beam with a rotating polygon mirror and forms an image on the photoconductor, forms an image.The deflection angle after the deflection with the rotating polygon mirror and the image height of the image on the photoconductor. Must be in a proportional relationship. That is, when the deflection angle is θ in FIG. 3, the image height is Y, and the focal length of the imaging lens is f, it is necessary that Y = fθ. A general imaging lens has a relation of Y = ftan θ. When this lens is used, when a beam is deflected by a rotating polygon mirror at a constant speed and a photoconductor is scanned, the peripheral portion of the image is compared with the central portion in terms of deflection angle. The movement of the image point with respect to the change is large, and the image extends in the scanning direction toward the peripheral portion. In order to prevent this, the distortion is corrected differently from that of a general lens to obtain the relationship of Y = fθ. This is called an fθ optical system. A laser beam printer makes a laser a parallel light beam of a certain diameter, which is reflected by a rotating polygon mirror, forms an image on the photoconductor by the fθ optical system, and the rotating polygon mirror is rotated to form a laser spot image on the photoconductor by the fθ optical system. Are scanning. In this case, if there is a large variation in the tilt of the rotating polygon mirror in the direction of the rotation axis of the rotating polygon mirror, the height of the spot image on the photosensitive member surface caused by the reflection of each surface will be different, and the photosensitive member rotating at a constant speed will be constant. It is not possible to scan at intervals and the image becomes uneven. To prevent this, an optical system is used as shown in FIGS. 4 (a) and 4 (b). As shown in FIG. 4 (b), the parallel laser beam is passed through the cylindrical lens 3 having a generatrix in the direction of the beam deflecting surface, and the cross section perpendicular to the deflecting surface is imaged on the rotary polygon mirror 11 to be parallel. A lens 6 with a different cross section is reflected on a rotating polygon mirror in the state of parallel light flux, and has different curvatures in the directions parallel to and perpendicular to the deflecting surface and with different refracting power (hereinafter referred to as a toric lens).
It is incident on the imaging lens having the fθ characteristic using. In a cross section parallel to the deflecting surface as shown in FIG.
The parallel light flux reflected by is imaged on the photoconductor by the fθ lens, and in the vertical section as shown in FIG.
Although the light reflected by is a divergent light beam, the fθ lens has a refracting power larger than that of the parallel cross section so that this divergent light beam is also imaged on the photoconductor 12. That is, in the cross section perpendicular to the deflecting surface, the surface of the rotary polygon mirror and the surface of the photoconductor have a conjugate relationship.
In this case, the height of the beam on the surface 12 of the photoconductor does not change even if the tilt of each surface of the rotary polygon mirror 11 varies. This optical system is called a tilt correction optical system. This tilt correction optical system comprises a cylindrical lens 3, a spherical lens 5 and a toric lens 6. When incorporating this into the frame, some assembly errors are unavoidable. This error appears as various phenomena, and one of them is that the scanning locus of the spot image does not become a straight line but is bent as shown in FIG. When an image is formed by a single laser spot scanning device, this bending is not very noticeable, but when forming an image using a plurality of laser spot scanning devices as shown in FIG. Naturally, the bent state is different for each, and when they are overlapped as shown in FIG.

〔考案が解決しようとしている問題点〕[Problems that the device is trying to solve]

上記の様に従来のfθ倒れ補正光学系を組込む框体は部
品の加工誤差による偏向面と垂直な断面での結像位置の
ずれを補正するためシリンドリカルレンズ3の光軸方向
の位置を調整する機構はあったが他には調整機構がな
く、スポツト走査軌跡の曲りはそのままであった。本考
案はこのスポツト走査軌跡の曲りを補正し走査軌跡を一
直線にし複数のレーザースポツト走査装置で画像を形成
する場合でも各々の走査装置の画像を合致できる様にす
るものである。
As described above, the frame incorporating the conventional fθ tilt correction optical system adjusts the position of the cylindrical lens 3 in the optical axis direction in order to correct the deviation of the image forming position in the cross section perpendicular to the deflecting surface due to the processing error of the component. Although there was a mechanism, there was no other adjustment mechanism, and the bending of the spot scanning locus remained unchanged. The present invention corrects the curvature of the spot scanning locus so that the scanning loci are aligned and the images of the respective scanning devices can be matched even when images are formed by a plurality of laser spot scanning devices.

〔問題点を解決するための手段〕[Means for solving problems]

本考案によれば、画像信号によって変調されたレーザー
ビームを回転多面鏡又はガルバノミラーによって偏向さ
せ、この偏向されたビームをビーム走査光学系で被走査
面上に結像させて走査するビーム走査装置に於いて、前
記ビーム走査光学系を構成するレンズの少くとも一つの
レンズを前記ビーム走査光学系の光軸を含んで偏向面に
垂直な面内で微少に回転できる調整機構を設けることに
よりスポツット走査軌跡の曲りを補正するものである。
According to the present invention, a beam scanning device in which a laser beam modulated by an image signal is deflected by a rotary polygon mirror or a galvano mirror, and the deflected beam is imaged and scanned on a surface to be scanned by a beam scanning optical system. In this case, by providing at least one of the lenses constituting the beam scanning optical system with an adjusting mechanism capable of minutely rotating in a plane perpendicular to the deflection surface including the optical axis of the beam scanning optical system, This is to correct the bending of the scanning locus.

〔実施例〕〔Example〕

第1図は本考案の実施例の特徴を最も良く表わす図面で
あり、同図に於いて1は光源となるレーザーチツプ、2
は発散するレーザー光を平行光束にするコリメーター、
3は偏向面と垂直な断面のみ回転多面鏡上に結像させ、
偏向面と平行な断面は平行光のままにさせるシリンドリ
カルレンズ、4はレーザービームを偏向させる回転多面
鏡、5は球面レンズ、6は偏向面と平行な断面と垂直な
断面とで屈折力が異なるトーリツクレンズ、7は光学系
が組込まれる框体、8はトーリツクレンズの下側のトー
リツク側を受け止める受け板で一つの支持点をもつも
の、8′はトーリツクレンズの下側のシリンドリカル側
を受けとめる受け板で二つの支持点をもつもの、9は8
の受け板の高さを調整するワツシヤ、9′は8′の受け
板の高さを調整する受け板である。
FIG. 1 is a drawing best showing the features of the embodiment of the present invention. In FIG. 1, 1 is a laser chip as a light source, and 2 is a laser chip.
Is a collimator that collimates the diverging laser light,
3 shows only the cross section perpendicular to the deflection surface is imaged on the rotary polygon mirror,
Cylindrical lens that keeps parallel light in the section parallel to the deflecting surface, 4 is a rotary polygon mirror that deflects the laser beam, 5 is a spherical lens, and 6 is different in refracting power between the section parallel to the deflecting surface and the section perpendicular to the deflecting surface. Toric lens, 7 is a frame in which an optical system is incorporated, 8 is a receiving plate for receiving the lower side of the toric lens having one supporting point, and 8'is a receiving end for receiving the cylindrical side of the lower toric lens. A plate with two support points, 9 is 8
A washer for adjusting the height of the receiving plate of No. 9 and a receiving plate 9'for adjusting the height of the receiving plate of No. 8 '.

走査線の曲りを補正する原理について第10図から第1
3図を用いて説明する。
The principle of correcting the curve of the scanning line
This will be described with reference to FIG.

第10図のように、偏向された光束は球面レンズ5とト
ーリックレンズ6で被走査面上に結像される。被走査面
の中心に向かう光束と周辺に向かう光束の偏向面と垂直
な断面内の様子を示すと、第11図(a),(b)の破
線のようになる。
As shown in FIG. 10, the deflected light beam is imaged on the surface to be scanned by the spherical lens 5 and the toric lens 6. A state in a cross section perpendicular to the deflecting surface of the light beam toward the center of the surface to be scanned and the light beam toward the periphery is shown by broken lines in FIGS. 11 (a) and 11 (b).

ここで、中心光束が通るレンズ断面[第11図
(a)],周辺光束が通るレンズ断面[第11図
(b)]に着目すると、トーリックレンズ6では中心で
のレンズ厚さは周辺でのレンズ厚さに較べ大きい。従っ
て、レンズの主点間隔(HH′)は周辺に較べ中心の方
が大きくなる。
Here, focusing on the lens cross section [FIG. 11 (a)] through which the central light beam passes and the lens cross section [FIG. 11 (b)] through which the peripheral light beam passes, the toric lens 6 has a lens thickness at the center that is equal to that at the periphery. Larger than the lens thickness. Therefore, the principal point distance (HH ') of the lens is larger in the center than in the periphery.

よって、トーリックレンズ6が第11図(a),(b)
のように実線のように同じだけ偏向面に垂直な面内で傾
いた場合、光走査面での像のずれ量は中心光束が周辺光
束に較べ大きくなる。
Therefore, the toric lens 6 is shown in FIGS. 11 (a) and 11 (b).
As shown by the solid line, when the same amount of inclination is made in the plane perpendicular to the deflecting surface, the amount of deviation of the image on the optical scanning surface is larger in the central light flux than in the peripheral light flux.

第12図(a)のように、走査線が破線の直線であった
場合にはトーリックレンズ6を下向きに回転させると、
走査線は実線の下向きの弓形となる。また、第12図
(b)のように、走査線が破線の直線であった場合には
トーリックレンズ6を上向きに回転させると、走査線は
実線の上向きの弓形となる。
As shown in FIG. 12A, when the scanning line is a broken straight line, if the toric lens 6 is rotated downward,
The scan line is a downward bow of the solid line. Further, as shown in FIG. 12 (b), when the scanning line is a broken straight line, when the toric lens 6 is rotated upward, the scanning line becomes a solid upward curve.

この現象を利用して、走査線の曲がりを補正する。第1
3図(a)のように走査線が上向きの弓形であった場合
は、トーリックレンズ6を下向きに回転させることによ
り走査線を直線に補正する。また、第13図(b)のよ
うに走査線が下向きの弓形であった場合は、トーリック
レンズ6を上向きに回転させることにより走査線を直線
に補正する。
By utilizing this phenomenon, the bending of the scanning line is corrected. First
When the scanning line has an upward bow shape as shown in FIG. 3A, the scanning line is corrected to a straight line by rotating the toric lens 6 downward. When the scanning line has a downward arcuate shape as shown in FIG. 13B, the scanning line is corrected to a straight line by rotating the toric lens 6 upward.

先ずトーリツクレンズ6を設計上の基準位置に置き、偏
向面と垂直な断面の結像位置が平行な断面の結像位置に
一致する様にシリンドリカルレンズの光軸方向の位置を
調整した後、感光体が位置する面でのスポツト像の高さ
を端の方から中央へ、又更に他端の方へと順次測定して
ゆく。その測定結果を第6図の様にグラフ上にプロツト
し両端の測定点を直線で結ぶとスポツト走査の軌跡の曲
りが判る。曲りが許容値以内ならば第2図(a)の如く
そのままであるが、許容値を越えた場合は、トーリツク
レンズの受け板8及び8′の下のワツシヤ9及び9′の
厚さを調整しスポツト像走査軌跡を補正する。曲りに対
し回転角と方向はレンズによって異なる。回転は第2図
(b),(c)の如くトーリツクレンズのトーリツク面
側の受け板8の下にあるワツシヤ9の厚さと、シリンド
リカル面側の受け板8′の下にあるワツシヤ9′の厚さ
を調整して行う。
First, the toric lens 6 is placed at the design reference position, and the position of the cylindrical lens in the optical axis direction is adjusted so that the image forming position of the cross section perpendicular to the deflecting surface coincides with the image forming position of the parallel cross section. The height of the spot image on the surface where the body is located is measured from the end toward the center and further toward the other end. By plotting the measurement results on a graph as shown in FIG. 6 and connecting the measurement points at both ends with a straight line, the curve of the spot scanning locus can be seen. If the bending is within the allowable value, it remains as shown in FIG. 2 (a), but if it exceeds the allowable value, the thickness of the washers 9 and 9'under the receiving plates 8 and 8'of the toric lens is adjusted. The spot image scanning locus is corrected. The angle of rotation and the direction of bending differ depending on the lens. As shown in FIGS. 2 (b) and 2 (c), the rotation of the washer 9 below the receiving plate 8 on the toric surface side of the toric lens and the thickness of the washer 9'below the receiving plate 8'on the cylindrical surface side. Adjust the thickness.

〔考案の効果〕[Effect of device]

以上示した様にレーザービームプリンターに於けるレー
ザービーム走査装置の中で光学系が組込まれている框体
のトーリツクレンズ取付部をトーリツクレンズの仰りを
調整可能にする機構にすることにより、スポツト像の走
査軌跡の曲りを補正することが可能となり、複写のレー
ザースポツト走査装置で画像を形成する場合も走査軌跡
が直線であれば傾きがあっても折返しミラー13,13′、
又は框体自体の14,14′調整で容易に複写のレーザース
ポツト走査装置からの走査位置を第7図の様に合致させ
ることができる。
As shown above, the spot image can be adjusted by using the mechanism that allows the elevation of the toric lens to be adjusted in the toric lens mounting part of the frame in which the optical system is incorporated in the laser beam scanning device of the laser beam printer. It is possible to correct the bending of the scanning locus, and even when an image is formed by a laser spot scanning device for copying, if the scanning locus is a straight line, the folding mirrors 13, 13 ',
Alternatively, the scanning position from the laser spot scanning device for copying can be easily matched as shown in FIG. 7 by adjusting 14, 14 'of the frame itself.

【図面の簡単な説明】 第1図(b)は本考案の実施例の平面図、第1図(a)
は第1図(b)のA−A′断面図、 第2図(a),第2図(b),第2図(c)は第1図
(b)のトーリツクレンズ取付部を拡大しトーリツクレ
ンズの仰りを調整方法を説明する図、 第3図はfθレンズの特性、Y=fθの関係を示す図、 第4図は倒れ補正光学系を説明する図、 第5図はスポツト像走査軌跡の曲りを示す図、 第6図はスポツト像走査軌跡の曲りを補正した後の図、 第7図は複数のレーザースポツト走査装置で軌跡を合致
させた図、 第8図は複数のレーザースポツト走査装置で画像を形成
させる場合の一例を示す図、 第9図は複数のレーザースポツト走査装置で軌跡を補正
してない場合を示す図。 第10図は、ビーム走査光学系を説明する図。 第11図(a),第11図(b)は、走査線の曲がりを
補正するためにトーリックレンズを移動させる様子を示
す図。 第12図(a),第12図(b)は、トーリックレンズ
を移動させた際の走査線の曲がりを示す図。 第13図(a),第13図(b)は、走査線の曲がりを
補正する様子を示す図。 1はレーザーチツプ、2はコリメータ、 3はシリンドリカルレンズ、 4は回転多面鏡、5は球面レンズ、 6はトーリツクレンズ、7は光学系の框体、 8はトーリツクレンズ受け板、 9はワツシヤ、10はレンズ固定板。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (b) is a plan view of an embodiment of the present invention, and FIG. 1 (a).
Is a sectional view taken along the line AA 'in FIG. 1 (b), and FIGS. 2 (a), 2 (b) and 2 (c) are enlarged views of the torque lens mounting portion in FIG. 1 (b). FIG. 3 is a diagram for explaining a method of adjusting the elevation of the torque lens, FIG. 3 is a diagram showing the characteristic of the fθ lens, a relation of Y = fθ, FIG. 4 is a diagram for explaining the tilt correction optical system, and FIG. 5 is a spot image scanning. Fig. 6 is a diagram showing the curve of the locus, Fig. 6 is a diagram after correcting the curve of the spot image scanning locus, Fig. 7 is a diagram in which the loci are matched by a plurality of laser spot scanning devices, and Fig. 8 is a plurality of laser spots. FIG. 9 is a diagram showing an example of a case where an image is formed by a scanning device, and FIG. 9 is a diagram showing a case where a locus is not corrected by a plurality of laser spot scanning devices. FIG. 10 is a diagram illustrating a beam scanning optical system. 11 (a) and 11 (b) are views showing how the toric lens is moved in order to correct the bending of the scanning line. 12 (a) and 12 (b) are diagrams showing bending of the scanning line when the toric lens is moved. 13 (a) and 13 (b) are views showing a state in which the bending of the scanning line is corrected. 1 is a laser chip, 2 is a collimator, 3 is a cylindrical lens, 4 is a rotating polygon mirror, 5 is a spherical lens, 6 is a toric lens, 7 is a frame of an optical system, 8 is a toric lens receiving plate, 9 is a washer, 10 Is a lens fixing plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】画像信号によって変調されたレーザービー
ムを回転多面鏡又はガルバノミラーによって偏向させ、
この偏向されたビームをビーム走査光学系で被走査面上
に結像させて走査するビーム走査装置に於いて、前記ビ
ーム走査光学系を構成するレンズの少くとも一つのレン
ズを前記ビーム走査光学系の光軸を含んで偏向面に垂直
な面内で微少に回転できる調整機構をもつ事を特徴とす
るビーム走査装置。
1. A laser beam modulated by an image signal is deflected by a rotating polygon mirror or a galvanometer mirror,
In a beam scanning device for forming an image of a deflected beam on a surface to be scanned by a beam scanning optical system and scanning the same, at least one lens constituting the beam scanning optical system is provided in the beam scanning optical system. A beam scanning device characterized by having an adjusting mechanism capable of minutely rotating in a plane including the optical axis of and perpendicular to the deflecting surface.
JP1986194795U 1986-12-18 1986-12-18 Beam scanning device Expired - Lifetime JPH0618335Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986194795U JPH0618335Y2 (en) 1986-12-18 1986-12-18 Beam scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986194795U JPH0618335Y2 (en) 1986-12-18 1986-12-18 Beam scanning device

Publications (2)

Publication Number Publication Date
JPS63100716U JPS63100716U (en) 1988-06-30
JPH0618335Y2 true JPH0618335Y2 (en) 1994-05-11

Family

ID=31152099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986194795U Expired - Lifetime JPH0618335Y2 (en) 1986-12-18 1986-12-18 Beam scanning device

Country Status (1)

Country Link
JP (1) JPH0618335Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144517A (en) * 1981-03-03 1982-09-07 Canon Inc Scan optical system having fall compensating function
JPS5929220A (en) * 1982-08-11 1984-02-16 Nec Corp Plane scanning mechanism

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157303U (en) * 1982-04-17 1983-10-20 ミノルタ株式会社 Toroidal lens positioning device for light beam scanning device
JPS5971305U (en) * 1982-10-30 1984-05-15 コニカ株式会社 lens holder
JPS59119423U (en) * 1983-01-31 1984-08-11 株式会社リコー Laser writing optical system
JPS6092220U (en) * 1983-11-30 1985-06-24 ホ−ヤ株式会社 agitation device
JPH0455291Y2 (en) * 1985-05-31 1992-12-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144517A (en) * 1981-03-03 1982-09-07 Canon Inc Scan optical system having fall compensating function
JPS5929220A (en) * 1982-08-11 1984-02-16 Nec Corp Plane scanning mechanism

Also Published As

Publication number Publication date
JPS63100716U (en) 1988-06-30

Similar Documents

Publication Publication Date Title
JP3164232B2 (en) Flat field, telecentric optical system for scanning a light beam
JP2969407B2 (en) Post-objective scanning optical system and image forming apparatus
JPS61185716A (en) Optical beam scanner
JPS63136017A (en) Light beam scanning device
JP2563260B2 (en) Optical beam scanning device
JPH0535406B2 (en)
US6512623B1 (en) Scanning optical device
JPH0618335Y2 (en) Beam scanning device
JP3844161B2 (en) Optical scanning device
JPH0614186Y2 (en) Beam scanning device
JP2643224B2 (en) Light beam scanning optical system
JPH04242215A (en) Optical scanner
JP2773593B2 (en) Light beam scanning optical system
JP2749850B2 (en) Optical deflection device
JP2002148546A (en) Optical scanner
JP2626708B2 (en) Scanning optical system
JP2553882B2 (en) Scanning optical system
JP2635604B2 (en) Optical scanning device
JPH0543090B2 (en)
JPS6226733Y2 (en)
JPS6230007Y2 (en)
JPS62127818A (en) Optical light beam scanner
JP2986851B2 (en) Line image forming lens in optical scanning device
JPH04110818A (en) Light beam scanning optical system
JPS62198819A (en) Optical scanner