JPH06181048A - Bulb and coat forming method on bulb thereof - Google Patents
Bulb and coat forming method on bulb thereofInfo
- Publication number
- JPH06181048A JPH06181048A JP23062992A JP23062992A JPH06181048A JP H06181048 A JPH06181048 A JP H06181048A JP 23062992 A JP23062992 A JP 23062992A JP 23062992 A JP23062992 A JP 23062992A JP H06181048 A JPH06181048 A JP H06181048A
- Authority
- JP
- Japan
- Prior art keywords
- bulb
- film
- valve
- sealing portion
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ハロゲン電球など管球
のガラスバルブの表面に、可視光透過赤外線反射膜のよ
うな多層干渉膜などの被膜を形成した管球およびこの管
球の製造方法に係わり、特にこの管球の封止部構造ない
しこの封止部を有する管球への膜形成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bulb in which a glass bulb such as a halogen bulb is coated with a coating such as a multilayer interference film such as a visible light transmitting infrared reflecting film, and a method for producing the bulb. More particularly, the present invention relates to the structure of the sealing portion of the tube or the method for forming a film on the tube having the sealing portion.
【0002】[0002]
【従来の技術】省エネルギー化の一環として管球分野に
おいても種々の工夫がなされており、たとえばハロゲン
電球においては、バルブの外表面に可視光透過赤外線反
射膜を形成することによって、フィラメントから放射さ
れた赤外線をこの反射膜で反射してフィラメントに帰還
させ、これによってフィラメントを加熱して発光効率を
高めることが知られている。このような可視光透過赤外
線反射膜としては、酸化チタン(TiO2 )などからな
る高屈折率層と酸化珪素(SiO2 )などからなる低屈
折率層とを交互に積層して多層化し、層数や層の厚さを
適宜選ぶことにより光の干渉を利用して、所望の波長域
の光を選択的に透過および反射させるものである。2. Description of the Related Art Various efforts have been made in the field of bulbs as part of energy saving. For example, in a halogen bulb, a visible light transmitting infrared reflecting film is formed on the outer surface of a bulb to emit light from a filament. It is known that infrared rays are reflected by this reflective film and returned to the filament, thereby heating the filament and increasing the luminous efficiency. Such a visible light transmitting / infrared reflecting film is formed by alternately stacking a high refractive index layer made of titanium oxide (TiO2) and a low refractive index layer made of silicon oxide (SiO2) to form a multi-layer structure. By appropriately selecting the layer thickness, light interference is used to selectively transmit and reflect light in a desired wavelength range.
【0003】この電球においては、膜の層数が多いほど
赤外線の反射率を高くすることができ省電力の効果も大
きい。In this light bulb, the larger the number of layers of the film, the higher the reflectance of infrared rays and the greater the effect of power saving.
【0004】この可視光透過赤外線反射膜の形成方法と
しては、浸漬法、蒸着法、イオンプレーティング法、ス
パッタ法などがある。As a method of forming this visible light transmitting infrared reflecting film, there are an immersion method, a vapor deposition method, an ion plating method, a sputtering method and the like.
【0005】これらの膜形成方法としては、バルブを被
膜形成用溶液に浸漬して引上げる方法が簡単でコストも
安く多く採用されているが、厳密な膜厚さが要求される
場合あるいはバルブが直状でなく曲面や凹凸面がある場
合などには、形成された被膜の膜厚が不均一になったり
膜が形成されない部分が生じたりして、所定の特性が得
られないことがある。As a method for forming these films, a method of immersing a valve in a solution for forming a film and pulling it up is often adopted because of its simple and low cost. However, when a strict film thickness is required or the valve is used, When the film is not straight but has a curved surface or a concavo-convex surface, the film thickness of the formed coating film may be non-uniform, or a portion where the film is not formed may occur, so that predetermined characteristics may not be obtained.
【0006】また、上記のように曲面や凹凸面があるバ
ルブを蒸着法などにより膜を形成する場合は、均一の膜
厚さを得るために被加工物であるバルブを回転させなが
ら被膜することが行なわれている。When forming a film on a valve having a curved surface or an uneven surface as described above by a vapor deposition method or the like, it is necessary to coat the valve while rotating the valve to be processed in order to obtain a uniform film thickness. Is being carried out.
【0007】しかしながら、たとえば一端封止形のハロ
ゲン電球では端部を溶融し圧潰した近傍には曲面部がで
きるとともに、圧潰部にはモリブデン箔などの封着体を
埋設しているため偏平な略長方体形状の封止部が形成さ
れている。このため、このような電球を蒸着法などによ
り回転させながら膜形成をしようとしても、圧潰封止部
の角部が邪魔して上記曲面部への膜材料の飛来を妨害
し、バルブ外表面全体へ均一な厚さの膜形成が困難であ
る。However, for example, in a halogen bulb of the one-end sealed type, a curved surface is formed in the vicinity where the end is melted and crushed, and a sealing body such as molybdenum foil is embedded in the crushed part, so that the flattened shape is almost flat. A rectangular parallelepiped sealing portion is formed. Therefore, even if an attempt is made to form a film while rotating such a light bulb by a vapor deposition method or the like, the corners of the crushed sealing part obstruct and prevent the film material from flying to the curved surface part, and the entire outer surface of the valve. It is difficult to form a film having a uniform thickness.
【0008】また、このような方法の場合、通常膜材料
は一箇所で蒸発されバルブ周囲の全方向から飛来するも
のではないから、バルブの下方に膜材料の蒸発源を配置
しバルブの中心軸を水平固定してバルブを回転させて
も、バルブ端部の圧潰封止部の角部が邪魔して影をつく
り封止部近傍の曲面部への被膜を妨害し、膜厚の薄い部
分が生じランプ特性の低下を招く。Further, in the case of such a method, since the film material is usually evaporated at one place and does not fly from all directions around the valve, the evaporation source of the film material is arranged below the valve and the central axis of the valve is arranged. Even if the valve is horizontally fixed and the valve is rotated, the corners of the crushed sealing part at the valve end block and create a shadow that interferes with the coating on the curved surface near the sealing part, and This causes deterioration of the lamp characteristics.
【0009】[0009]
【発明が解決しようとする課題】本発明は上記の事情に
鑑み、管球の圧潰封止部の形状を変えることにより解決
を図ったもので、その形状としてはたとえば特開平1−
281654号公報に見られるような形状をしている。
この公報に記載されているものは、バルブ軸と交差する
方向の圧潰封止部の横断面が通常の管球では略同厚の長
方形状をしているのに対して、中央部が厚く端部側に向
かうにしたがい薄肉のものである。しかし、この特開平
1−281654号公報のものは、封止部の成形に当た
り溶融したガラスがモリブデン箔を不所望に押圧して電
極軸を曲げる等の不具合を防止するためになされたもの
で、管球バルブの表面に被膜を形成するなどのことには
全く配慮されていないものである。SUMMARY OF THE INVENTION In view of the above circumstances, the present invention has been made to solve the problem by changing the shape of the collapsible sealing portion of the tube.
It has a shape as seen in Japanese Patent No. 281,654.
What is disclosed in this publication is that the crushing sealing portion in the direction intersecting with the valve axis has a rectangular shape with a substantially equal thickness in a normal tube, whereas the central portion has a thicker end. It is thin as it goes to the department side. However, the one disclosed in Japanese Patent Application Laid-Open No. 1-281654 is made in order to prevent problems such as bending of the electrode shaft due to the molten glass undesirably pressing the molybdenum foil when molding the sealing portion. No consideration is given to forming a film on the surface of the bulb bulb.
【0010】本発明は表面に被膜を形成したバルブの少
なくとも一端に封止部を形成してなる管球に、バルブ表
面に被膜を形成してなる管球において、封止部近傍のバ
ルブ部分も均一厚さの被膜が形成できる管球および膜厚
を均一にできる被膜形成方法を提供することを目的とす
る。According to the present invention, in a bulb having a sealing portion formed on at least one end of a valve having a coating formed on the surface thereof, a bulb having a coating formed on the surface of the valve includes a valve portion near the sealing portion. It is an object of the present invention to provide a tube capable of forming a coating film having a uniform thickness and a coating forming method capable of making a film thickness uniform.
【0011】[0011]
【課題を解決するための手段】本願の請求項1に記載の
第一の発明は、バルブ内部にフィラメントあるいは放電
電極を封入し端部に封止部を形成するとともにバルブ外
表面に被膜を形成してなる管球において、上記封止部は
中央部を最大肉厚部としバルブ軸と平行する周縁に向か
うにしたがい薄肉としたことを特徴としている。According to a first aspect of the present invention, a filament or a discharge electrode is enclosed inside a bulb to form a sealing portion at an end and a film is formed on the outer surface of the bulb. In the tube formed as described above, the sealing portion is characterized in that the central portion has the maximum thickness portion and the thickness is reduced toward the peripheral edge parallel to the valve axis.
【0012】また、本願の請求項2に記載の第二の発明
は、バルブ内部にフィラメントあるいは放電電極を封入
し端部に封止部を形成するとともにバルブ外表面に被膜
を形成してなる管球において、上記フィラメントあるい
は放電電極を封入したバルブ部分と封止部との間の連接
部には切欠部が形成されていることを特徴としている。
また、本願の請求項3に記載の第三の発明は、上記封
止部のバルブ軸と直交する方向の横断面が、円形状、偏
平な長円形状や長菱形状であることを特徴としている。A second invention according to claim 2 of the present application is a tube in which a filament or a discharge electrode is enclosed inside a bulb, a sealing portion is formed at an end portion, and a film is formed on the outer surface of the bulb. The sphere is characterized in that a notch is formed at a connecting portion between the bulb portion enclosing the filament or the discharge electrode and the sealing portion.
Further, a third invention according to claim 3 of the present application is characterized in that a cross section of the sealing portion in a direction orthogonal to the valve axis is a circular shape, a flat oval shape or an oblong shape. There is.
【0013】また、本願の請求項4に記載の第四の発明
は、上記フィラメントあるいは放電電極を封入したバル
ブ部分は球形や円形などの曲面部を有していることを特
徴としている。The fourth invention of claim 4 of the present application is characterized in that the bulb portion enclosing the filament or the discharge electrode has a curved surface portion such as a spherical shape or a circular shape.
【0014】さらにまた、本願の請求項5に記載の第五
の発明は、チャンバ内において上記請求項1ないし請求
項4に記載の封止部を有する管球を、上記チャンバ内に
水平または傾斜して支持させバルブの外表面に被膜を形
成するようにしたことを特徴としている。Furthermore, a fifth invention according to claim 5 of the present application is to provide a tube having the sealing portion according to any one of claims 1 to 4 in a chamber, the tube being horizontal or inclined. It is characterized in that a coating is formed on the outer surface of the valve.
【0015】[0015]
【作用】本願の請求項1ないし請求項4に記載の発明に
ついては、封止部を含む管球バルブに蒸発や噴射霧化な
どにより飛来した材料の進行を阻む凸部などがないの
で、バルブの外表面に形成した可視光透過赤外線反射膜
などのような多層干渉膜の被膜の膜厚を略均一にでき管
球の特性を向上できる。また、本願の請求項5に記載の
発明については、封止部を含む管球バルブに蒸発や噴射
霧化などにより飛来した材料の進行を阻む角部などがな
いので、バルブに向かい飛散した材料の殆どはバルブに
被着し、バルブに対する可視光透過赤外線反射膜などの
ような多層干渉膜の被膜の膜厚を略均一にできる。According to the invention described in claims 1 to 4, since the bulb valve including the sealing portion has no convex portion or the like for preventing the progress of the flying material due to evaporation or spray atomization, the valve is The film thickness of the coating film of the multilayer interference film such as the visible light transmitting infrared reflecting film formed on the outer surface of the can be made substantially uniform, and the characteristics of the bulb can be improved. Further, in the invention according to claim 5 of the present application, since the bulb valve including the sealing portion has no corners or the like that obstruct the progress of the material that has flown due to evaporation or spray atomization, the material scattered toward the valve. Most of these are deposited on the valve, and the film thickness of the multilayer interference film such as a visible light transmitting infrared reflecting film for the valve can be made substantially uniform.
【0016】[0016]
【実施例】以下、本願第一ないし第五の発明の実施例を
図面を参照して説明する。図1(a),(b)は小形投
光用のハロゲン電球Lの一部断面正面図,図2(a)、
(b)は図1(a)の電球Lの圧潰封止部の下面図であ
る。Embodiments of the first to fifth inventions of the present application will be described below with reference to the drawings. 1 (a) and 1 (b) are partially sectional front views of a halogen light bulb L for small light projection, FIG. 2 (a),
FIG. 1B is a bottom view of the collapsed sealing portion of the light bulb L of FIG.
【0017】図1(a)の電球Lは、石英ガラスからな
る略球形をなすバルブ1内にフィラメント2およびハロ
ゲンを含むアルゴンなどの不活性ガスが封入してある。
フィラメント2を支持する内部導線3,3はこのバルブ
1の一端部を圧潰して形成した封止部4内に封止された
モリブデン箔5,5に接続されている。また,各モリブ
デン箔5,5の他端側には外部導線6,6が接続されて
いる。7はバルブ1の外表面に形成されている被膜であ
るたとえば可視光透過赤外線反射膜を構成する多層干渉
膜である。In the electric bulb L of FIG. 1A, a filament 2 and an inert gas such as argon containing halogen are enclosed in a bulb 1 made of quartz glass and having a substantially spherical shape.
The internal conducting wires 3 and 3 supporting the filament 2 are connected to molybdenum foils 5 and 5 sealed in a sealing portion 4 formed by crushing one end of the bulb 1. In addition, external conductors 6 and 6 are connected to the other ends of the molybdenum foils 5 and 5, respectively. A multilayer interference film 7 is a film formed on the outer surface of the bulb 1, for example, a visible light transmitting infrared reflecting film.
【0018】また、このバルブ1軸と交差する方向の圧
潰封止部4における横断面は、図2に示す通り偏平な長
円形状(a)や長菱形状(b)である。The cross section of the crush seal portion 4 in the direction intersecting with the axis of the valve 1 has a flat elliptical shape (a) or an oblong shape (b) as shown in FIG.
【0019】また、図1(b)は他の実施例を示す電球
Lで図1と同一部分には同一の符号を付してその説明は
省略する。この電球Lは球形をなすバルブ1部分と圧潰
封止部4との連接部にこの封止部4に食い込んで切欠部
8,8が設けられている。Further, FIG. 1B shows a light bulb L showing another embodiment, and the same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. This light bulb L is provided with notches 8, 8 that cut into the sealing portion 4 at the connecting portion between the bulb-shaped portion 1 having a spherical shape and the crushing sealing portion 4.
【0020】図1(a)および図2に示す電球Lのバル
ブ1へ多層干渉膜7をイオンプレーティング方法にて形
成する方法を図3を参照して説明する。A method of forming the multilayer interference film 7 on the bulb 1 of the electric bulb L shown in FIGS. 1A and 2 by the ion plating method will be described with reference to FIG.
【0021】図3においてBXはチャンバで,このチェ
ンバBXには真空ポンプVPに接続する排気管E,アル
ゴンガスArを供給するためのアルゴンガス供給管A,
酸素ガスO2 を供給するための酸素ガス供給管Oが連結
されており、これら各管E、A、Oにはそれぞれ弁E
C、AC、OCが設けられている。In FIG. 3, BX is a chamber, an exhaust pipe E connected to a vacuum pump VP, an argon gas supply pipe A for supplying an argon gas Ar, and a chamber BX.
An oxygen gas supply pipe O for supplying oxygen gas O2 is connected, and a valve E is connected to each of these pipes E, A and O.
C, AC and OC are provided.
【0022】また,チャンバBX内の底部には蒸着物質
を収容するルツボRが設けられ,このルツボRの上方に
は螺旋状の高周波コイルCが配置されている。この高周
波コイルCの上方には複数層からなる可視光透過赤外線
反射膜を形成するための電球Lのバルブ1が治具(図示
しない)によりバルブ軸を傾斜θ(0〜30度)させた
状態で、かつ矢印X方向に自転するとともに矢印Y方向
に公転するように、駆動装置(図示しない)により支持
されている。Further, a crucible R for containing a vapor deposition substance is provided at the bottom of the chamber BX, and a spiral high-frequency coil C is arranged above the crucible R. Above the high frequency coil C, the bulb 1 of the electric bulb L for forming a visible light transmitting infrared reflecting film consisting of a plurality of layers has a bulb axis inclined by θ (0 to 30 degrees) by a jig (not shown). And is supported by a drive device (not shown) so as to rotate in the arrow X direction and revolve in the arrow Y direction.
【0023】さらにまた、HFは高周波発信器でマッチ
ングボックスMを介し上記高周波コイルCに接続され、
ESは可変直流電源で負極側をバルブ1に接続してい
る。なお、HはチェンバBX内の上方に設けられたヒー
タである。Further, HF is connected to the high frequency coil C through a matching box M by a high frequency oscillator,
ES is a variable DC power source, and the negative electrode side is connected to the valve 1. In addition, H is a heater provided above the chamber BX.
【0024】上記装置を用いた電球Lのバルブ1外表面
への被膜の形成方法を述べる。まず、バルブ1への被膜
形成前の表面処理はチェンバBX内の図示しない治具
に、電球Lのバルブ1をバルブ軸がθ度(0〜30度)
傾斜させた状態で支持させる。この状態で弁ECを開放
しチェンバBX内を排気管Eを通じ排気し、所定の真空
度とする。A method of forming a coating on the outer surface of the bulb 1 of the light bulb L using the above apparatus will be described. First, the surface treatment before forming a film on the bulb 1 is performed by using a jig (not shown) in the chamber BX, in which the bulb 1 of the bulb L has a bulb axis of θ degrees (0 to 30 degrees).
Support it in a tilted state. In this state, the valve EC is opened and the inside of the chamber BX is evacuated through the exhaust pipe E to a predetermined degree of vacuum.
【0025】この後、駆動装置を介して上記バルブ1を
矢印X方向に自転させるとともに矢印Y方向に公転さ
せ、かつ,チェンバBX内の上方に設けたヒータHによ
りバルブ1の外表面温度を300〜350℃程度となる
ように加熱する。Thereafter, the valve 1 is rotated in the direction of the arrow X and revolved in the direction of the arrow Y through the drive unit, and the outer surface temperature of the valve 1 is set to 300 by the heater H provided above the chamber BX. Heat to about 350 ° C.
【0026】つぎに、弁ECを閉止し、弁ACを開放し
アルゴンガス供給管Aを通じてチェンバBX内にアルゴ
ンガスArを供給する。このチェンバBX内のアルゴン
ガスAr圧力は、0.01ないし0.1トールとする。Next, the valve EC is closed, the valve AC is opened, and the argon gas Ar is supplied into the chamber BX through the argon gas supply pipe A. The argon gas Ar pressure in the chamber BX is 0.01 to 0.1 Torr.
【0027】この状態で高周波発信器HFから高周波コ
イルCに1〜20MHz、0.5〜2 KW程度の高周
波電力を供給する。In this state, high frequency power of 1 to 20 MHz and 0.5 to 2 KW is supplied from the high frequency oscillator HF to the high frequency coil C.
【0028】すると、チャンバBX内のアルゴンガスA
rは高周波プラズマによりイオン化され、このアルゴン
イオンは負に帯電されているバルブ1の表面に引かれ
て、バルブ1の外表面に衝突する。このアルゴンイオン
の衝突による運動エネルギーでバルブ1の外表面はエッ
チングされ表面に付着していた塵埃が除去されるととも
に凸面が浸蝕され、よって表面が高精度な平滑面とな
り、これによりバルブ1の表面処理がなされる。Then, the argon gas A in the chamber BX
The r is ionized by the high frequency plasma, and the argon ions are attracted to the surface of the valve 1 that is negatively charged and collide with the outer surface of the valve 1. The outer surface of the bulb 1 is etched by the kinetic energy due to the collision of the argon ions, the dust adhering to the surface is removed, and the convex surface is eroded, so that the surface becomes a highly accurate smooth surface, and thus the surface of the valve 1 Processing is done.
【0029】この処理が終了したら、つぎに上記バルブ
1の表面に多層干渉膜7からなる可視光透過赤外線反射
膜の形成に入る。まず、多層干渉膜7の第一層としてた
とえば高屈折率層膜7Hを作る材料としてルツボR内に
金属チタン(Ti)を収容する。When this process is completed, the visible light transmitting infrared reflecting film consisting of the multilayer interference film 7 is formed on the surface of the bulb 1. First, for example, metallic titanium (Ti) is contained in the crucible R as a material for forming the high refractive index layer film 7H as the first layer of the multilayer interference film 7.
【0030】同様に、バルブ1を図示しない駆動装置を
介して矢印X方向に自転させるとともに矢印Y方向に公
転させ,かつ,チェンバBX内の上部に設けたヒータH
によりバルブ1の外表面温度を約300〜350℃とな
るように加熱する。そして、弁OCを開放し酸素ガス供
給管Oを通じてチャンバBX内に酸素ガスO2 を供給
し、このチャンバBX内の酸素O2 分圧を2.0×10
-4 トール程度にする。この状態で高周波発信器HFか
ら高周波コイルCに13.56MHz、300W程度の
高周波電力を供給する。Similarly, the valve 1 is rotated in the direction of arrow X and revolved in the direction of arrow Y via a drive device (not shown), and a heater H provided in the upper part of the chamber BX.
To heat the outer surface temperature of the bulb 1 to about 300 to 350 ° C. Then, the valve OC is opened and the oxygen gas O2 is supplied into the chamber BX through the oxygen gas supply pipe O so that the partial pressure of oxygen O2 in the chamber BX is 2.0 × 10.
-Set to about 4 torr. In this state, high frequency power of about 13.56 MHz and 300 W is supplied from the high frequency oscillator HF to the high frequency coil C.
【0031】このようにすると、ルツボRで蒸発したT
iの蒸気が高周波プラズマによりイオン化され、このイ
オンは負に帯電されているバルブ1の表面に引かれて、
バルブ1の外表面にTiO2 の蒸着膜が付着する。In this way, the T vaporized in the crucible R is
The vapor of i is ionized by the high frequency plasma, and the ions are attracted to the surface of the valve 1 which is negatively charged,
A vapor-deposited film of TiO2 adheres to the outer surface of the valve 1.
【0032】つぎに、低屈折率層膜7Lを作る材料とし
てルツボR内にSiO2 粉末を収容して、上記と同様に
SiO2 を蒸発させれば上記TiO2 の蒸着膜7H上に
SiO2 の蒸着膜7Lが付着される。そして、高屈折率
層膜7H,…を作るTiO2と低屈折率層膜7L,…を
作るSiO2 とを交互に繰り返えし所定層積層して蒸着
させれば、図5に示す多層干渉膜7を形成したハロゲン
電球Lが得られる。Next, as a material for forming the low refractive index layer film 7L, if SiO2 powder is contained in the crucible R and the SiO2 is evaporated in the same manner as above, the evaporated film 7L of SiO2 is formed on the evaporated film 7H of TiO2. Is attached. .. and TiO2 for forming the high refractive index layer films 7H, ... and SiO2 for forming the low refractive index layer films 7L, .. As a result, the halogen bulb L having the number 7 is obtained.
【0033】このようにして被膜7を形成した図1
(a)に示す電球Lは、圧潰封止部4の端部が肉薄であ
るため図4(a),(b)のように蒸発して飛来する被
膜材料Mを遮蔽するような突出した角部がなく、下方の
ルツボRから蒸発したガス状の被膜材料Mがこの封止部
4を含むバルブ1の外表面にまんべんなく流れ、一様の
厚さの被膜が形成される。なお、この種の電球Lにおい
て上記圧潰封止部4に付着した多層干渉膜7は電球Lの
特性にあまり影響を与えるものではなく、上記封止部4
の被膜7の均一度は無視でき、また、被膜されなくても
よい。The coating 7 thus formed is shown in FIG.
In the light bulb L shown in (a), since the end portion of the crushing sealing portion 4 is thin, a protruding corner that shields the coating material M that evaporates and flies as shown in FIGS. 4 (a) and 4 (b). There is no portion, and the gaseous coating material M evaporated from the lower crucible R evenly flows to the outer surface of the valve 1 including the sealing portion 4 to form a coating having a uniform thickness. In this type of light bulb L, the multilayer interference film 7 attached to the crushing sealing portion 4 does not significantly affect the characteristics of the light bulb L, and the sealing portion 4 is
The uniformity of the coating 7 can be ignored, and the coating 7 need not be coated.
【0034】なお、上記実施例では一つのルツボR内に
交互に被膜材料を入れたが、チェンバBX内に予め異種
の被膜材料を入れた複数個のルツボRを用意し、交互に
蒸発させるようにしてもよい。In the above embodiment, the coating materials are alternately placed in one crucible R, but a plurality of crucibles R in which different coating materials are previously placed in the chamber BX are prepared so as to be evaporated alternately. You may
【0035】また、上記実施例では高屈折率層膜7H,
…材料として金属チタン(Ti)を用いたが酸化チタン
(TiO2 )を用いてもよい。しかし、イオン化し易い
金属チタン(Ti)を用いた場合の方が、反応性、イオ
ン化度が高くできあがったTiO2 層の結晶性、緻密
性、密着性も高い。また、その他下記に示すように透過
率がほぼ同等でも高い屈折率が得られる。In the above embodiment, the high refractive index layer film 7H,
Although metallic titanium (Ti) is used as the material, titanium oxide (TiO2) may be used. However, when titanium (Ti), which is easily ionized, is used, the crystallinity, compactness, and adhesion of the TiO2 layer having high reactivity and high ionization degree are high. In addition, as shown below, a high refractive index can be obtained even if the transmittance is almost the same.
【0036】因みに、高屈折率層膜7H,…材料として
金属チタン(Ti)を用いた場合と、酸化チタン(Ti
O2 )を用いた場合とを比較すると、酸化チタン(Ti
O2)の屈折率ないし透過率がそれぞれ2.40、9
3.7%であるのに対し、金属チタン(Ti)ではそれ
ぞれ2.40、93.7%となる。また、酸化チタン
(TiO2 )の初期のカット率ないしカット幅は、それ
ぞれ92.6%、250nmまた熱処理後のカット率な
いしカット幅は、それぞれ94.6%、238nmであ
るのに対し、金属チタン(Ti)では初期のカット率な
いしカット幅は、それぞれ96.2%、280nm、ま
た熱処理後のカット率ないしカット幅は、それぞれ9
7.1%、260nmとなる。(なお、カット率とは1
−最小透過率、カット幅とは最大透過率の1/2の位置
の透過率曲線の谷の幅をいう。)上記の高屈折率層を形
成する膜材料と低屈折率層を形成するSiO2 とで可視
光透過赤外線反射膜を構成した場合、金属チタン(T
i)を用いた方が酸化チタン(TiO2 )を用いたもの
より初期においても熱処理後においてもカット率、カッ
ト幅がすぐれている。したがって、金属チタン(Ti)
を用いて可視光透過赤外線反射膜を形成すると、赤外線
域の波長を多く反射しフィラメントに戻すことで、多く
の熱線をカットし効率が向上できるとともに耐熱性にも
すぐれたハロゲン電球などを提供できる。By the way, the case of using metallic titanium (Ti) as the material for the high refractive index layer film 7H, ...
Compared with the case of using O2, titanium oxide (Ti
The refractive index or transmittance of O2) is 2.40 and 9 respectively.
It is 3.7%, whereas it is 2.40 and 93.7% for metallic titanium (Ti), respectively. The initial cut rate or cut width of titanium oxide (TiO2) is 92.6% and 250 nm, and the cut rate and cut width after heat treatment are 94.6% and 238 nm, respectively. For (Ti), the initial cut rate or cut width is 96.2%, 280 nm, and the cut rate or cut width after heat treatment is 9%, respectively.
It becomes 7.1% and 260 nm. (Note that the cut rate is 1
-The minimum transmittance and the cut width refer to the width of the valley of the transmittance curve at the position of 1/2 of the maximum transmittance. ) In the case where the visible light transmitting infrared reflecting film is composed of the above film material forming the high refractive index layer and SiO2 forming the low refractive index layer, metal titanium (T
The use of i) is superior to the use of titanium oxide (TiO2) in the cutting rate and the cutting width both in the initial stage and after the heat treatment. Therefore, metallic titanium (Ti)
By forming a visible-light-transmitting infrared reflective film using, it is possible to provide a halogen bulb that has excellent heat resistance and cuts many heat rays by reflecting many wavelengths in the infrared region and returning it to the filament. .
【0037】本発明者等の実験では、高屈折率層を形成
する膜材料を変えて10層の可視光透過赤外線反射膜を
形成したハロゲン電球Lの諸特性はつぎの通りで金属チ
タン(Ti)を用いた電球Lがすぐれていた。すなわ
ち、被膜材料がない場合の電力比(%)、光束比(%)
ないし効率比(%)をそれぞれ100%、100%、1
00%とすると、酸化チタン(TiO2 )の場合のそれ
はそれぞれ96.8%、132.0%ないし136.4
%であるのに対し、金属チタン(Ti)のそれは94.
6%、148.3%ないし156.8%である。In the experiments conducted by the present inventors, various characteristics of the halogen bulb L in which 10 layers of visible light transmitting / infrared reflecting film are formed by changing the film material forming the high refractive index layer are as follows. Metal titanium (Ti) The light bulb L using was excellent. That is, the power ratio (%) and luminous flux ratio (%) when there is no coating material
Or efficiency ratio (%) is 100%, 100%, 1 respectively
In the case of titanium oxide (TiO2), it is 96.8%, 132.0% to 136.4%, respectively.
%, Whereas that of metallic titanium (Ti) is 94.
6%, 148.3% to 156.8%.
【0038】また、図1(b)に示す電球Lは、たとえ
ば上記と同様の装置、方法により膜形成を行った場合、
球形をなすバルブ1部分と圧潰封止部4との連接部に食
い込んで設けた切欠部8,8に蒸発した膜材料が流れ込
むとともにこの切欠部8,8が実際に光放射する球形バ
ルブ1部分の面積を増加させることになり電球の効率向
上が図れることになる。Further, in the light bulb L shown in FIG. 1B, when a film is formed by the same apparatus and method as described above,
The spherical bulb 1 portion where the vaporized film material flows into the notches 8 and 8 provided by cutting into the connecting portion between the spherical bulb 1 portion and the crushing seal portion 4 and the notches 8 and 8 actually emit light. Therefore, the area of the light bulb will be increased and the efficiency of the light bulb will be improved.
【0039】図6は平行容量結合型プラズマCVD法に
よる被膜の形成を示し、図中図3と同一部分には同一の
符号を付してその説明は省略する。FIG. 6 shows the formation of a film by the parallel capacitive coupling plasma CVD method. In the figure, the same parts as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
【0040】図6においてチャンバBX内には一対の放
電電極ER,ERが対向して設けられている。T1は一
端をアルゴンガスArボンベ(図示しない)に接続し,
他端を高屈折率層を形成するTi(OR)4 や低屈折率
層を形成するSi(OR)4などからなる被膜形成材料
を収容した容器MC内に挿入された給気管、T2はこの
容器MCと上記チャンバBXとを接続する材料供給管で
ある。また、HFは上記放電電極ER,ERに接続した
プラズマ発生用の高周波電源、TOはチャンバBX内に
酸素ガスQ2 を供給する酸素ガス供給管である。In FIG. 6, a pair of discharge electrodes ER, ER are provided facing each other in the chamber BX. One end of T1 is connected to an argon gas Ar cylinder (not shown),
At the other end, T2 is an air supply pipe inserted in a container MC containing a film forming material such as Ti (OR) 4 forming a high refractive index layer or Si (OR) 4 forming a low refractive index layer. A material supply pipe that connects the container MC and the chamber BX. Further, HF is a high frequency power source for plasma generation connected to the discharge electrodes ER and ER, and TO is an oxygen gas supply pipe for supplying oxygen gas Q2 into the chamber BX.
【0041】そして、上記対向している一対の放電電極
ER,ERの間に被膜を形成すべき電球Lをバルブ1軸
を膜材料Mが送られてくる方向に対し傾斜して支持具
(図示しない)に支持させる。つぎに、バルブ1軸およ
び封止部4を中心として電球Lを自転および公転させな
がら,給気管T1からアルゴンガスArを流したとえば
容器CM内のTi(OR)4 を吸上げて材料供給管T2
を通じチャンバBX内にガス状の材料を導入する。この
ときチャンバBX内の圧力は数トール〜数100トール
に保つておく。この状態で電極ER,ERに高周波電圧
を加え,高周波グロー放電を行う。このときガス温度と
電子温度の大幅に異なる準平衡プラズマ状態が発生す
る。このグロー放電のエネルギによってTi(OR)4
は分解され、電球Lのバルブ1外表面にはTiが堆積し
Ti膜を形成する。The bulb L, on which the coating is to be formed between the pair of discharge electrodes ER, ER facing each other, is tilted with the bulb 1 axis with respect to the direction in which the film material M is fed. Support). Next, while rotating and revolving the light bulb L around the bulb 1 axis and the sealing portion 4, an argon gas Ar is caused to flow from the air supply pipe T1 and, for example, Ti (OR) 4 in the container CM is sucked up to feed the material supply pipe T2.
A gaseous material is introduced into the chamber BX through. At this time, the pressure in the chamber BX is kept at several torr to several 100 torr. In this state, a high frequency voltage is applied to the electrodes ER, ER to perform high frequency glow discharge. At this time, a quasi-equilibrium plasma state in which the gas temperature and the electron temperature greatly differ is generated. This glow discharge energy causes Ti (OR) 4
Is decomposed, and Ti is deposited on the outer surface of the bulb 1 of the light bulb L to form a Ti film.
【0042】この後、Ti(OR)4 に代えてチャンバ
BX内に酸素ガス供給管TOから酸素O2 を流しなが
ら、上記と同様にして高周波グロー放電を行なわせてバ
ルブ1の外表面にTiO2 膜7Hを形成させる。After that, instead of Ti (OR) 4, oxygen O2 is supplied from the oxygen gas supply pipe TO into the chamber BX, and high frequency glow discharge is performed in the same manner as described above to form a TiO2 film on the outer surface of the valve 1. 7H is formed.
【0043】つぎに、上記したと同様にして今度は膜材
料Mを低屈折率層を形成するSi(OR)4 に変えて膜
形成する。そして、図5に示すように上記の高屈折率層
を形成するTi(OR)4 7H,…および低屈折率層を
形成するSi(OR)4 7L,…の被膜を交互に所定層
積層してハロゲン電球Lを完成させる。Then, in the same manner as described above, this time, the film material M is changed to Si (OR) 4 forming the low refractive index layer to form a film. Then, as shown in FIG. 5, the films of Ti (OR) 4 7H, ... Forming the high refractive index layer and Si (OR) 4 7L ,. To complete the halogen bulb L.
【0044】このようにして被膜を形成した電球Lも,
圧潰封止部4の端部が肉薄であるため遮蔽するような突
出した角部がなく、ガス状の被膜材料がこの封止部4を
含むバルブ1の外表面にまんべんなく流れ一様の厚さの
被膜が形成される。The light bulb L having the film thus formed is also
Since the end portion of the crushed sealing portion 4 is thin, there is no protruding corner portion for shielding, and the gaseous coating material flows evenly over the outer surface of the valve 1 including the sealing portion 4 and has a uniform thickness. Is formed.
【0045】この方法(装置)によりハロゲン電球の封
止部形状を図2(a)としたバルブにTiO2 −SiO
2 からなる8層の可視光透過赤外線反射膜を形成した場
合、膜を全く形成しない電球に比べ従来の封止部形状の
ものが12%の効率向上に対し18%の効率向上が得ら
れた。With this method (apparatus), the bulb of which the shape of the sealing portion of the halogen bulb is shown in FIG.
When 8 layers of visible light transmitting / infrared reflecting film consisting of 2 were formed, 18% efficiency improvement was obtained compared to 12% efficiency improvement in the conventional sealed part type light bulb compared to a light bulb without any film formation. .
【0046】また、封止部形状を図7(b)としたバル
ブにTiO2 −SiO2 からなる可視光透過赤外線反射
膜を形成した場合、膜を全く形成しない電球に比べ従来
の偏平な封止部形状のものが22%の効率向上で封止部
温度が320℃に対し、29%の効率向上でかつ封止部
温度を295℃と下げることができた封止部のクラック
や外部導線の酸化の少ない品質の高い電球が得られた。When a visible light transmitting / infrared reflecting film made of TiO2 --SiO2 is formed on the bulb having the shape of the sealing portion as shown in FIG. 7 (b), the flat sealing portion of the prior art is compared with a bulb having no film. The shape has a 22% improvement in efficiency and the encapsulation temperature of 320 ° C, while the efficiency improvement is 29% and the encapsulation temperature can be lowered to 295 ° C. Cracks in the encapsulation and oxidation of external conductors. A high quality light bulb with less energy loss was obtained.
【0047】なお,本願の発明は上記実施例に限定され
ない。たとえば,ランプはバルブの一端に封止部を形成
したハロゲン電球に限らず,他の用途の電球や放電ラン
プでもよく,また,封止部がバルブの両端部に設けてあ
るものでもよい。The invention of the present application is not limited to the above embodiment. For example, the lamp is not limited to a halogen bulb in which a sealing portion is formed at one end of the bulb, but may be a bulb for other purposes or a discharge lamp, or the sealing portion may be provided at both ends of the bulb.
【0048】また,封止部の形状も図2のように偏平状
に圧潰したものに限らない。図7(a),(b)はモリ
ブデン箔5,5を重層して封止部4の幅を狭めた横断面
が円形状(a)や略円形状(b)をなす大電流用やバル
ブが小径の管球に適用されているもので、この管球の封
止部4はバルブ1径に比べて小さくできるので、バルブ
1の外表面に被膜を形成する場合に膜材料の流れに障害
を生ぜず膜厚を均一にできる。また、この形のものはモ
リブデン箔5,5の間にバルブ1を構成すると同じ材質
のガラス板が介在していて両モリブデン箔5,5の間に
はリークや電気的導通などの虞れはない。Further, the shape of the sealing portion is not limited to the flat shape as shown in FIG. 7 (a) and 7 (b) are for large currents and valves in which the molybdenum foils 5 and 5 are layered to narrow the width of the sealing portion 4 so that the cross section has a circular shape (a) or a substantially circular shape (b). Is applied to a tube having a small diameter, and the sealing portion 4 of the tube can be made smaller than the diameter of the valve 1. Therefore, when forming a film on the outer surface of the valve 1, the flow of the membrane material is obstructed. The film thickness can be made uniform without causing Further, in this type, when the bulb 1 is formed between the molybdenum foils 5 and 5, a glass plate of the same material is interposed, and there is no fear of leakage or electrical conduction between the molybdenum foils 5 and 5. Absent.
【0049】また、本願発明の管球のバルブ形状は図示
のものに限らず管状や楕円形状など他の形状であっても
もちろんよく、その材質も石英ガラスに限らず他の材質
のガラスであっても差支えなく、上記実施例では予めバ
ルブの外表面を処理してから多層干渉膜を形成したが、
予め行うバルブの外表面処理は必須のことではない。Further, the bulb shape of the tube of the present invention is not limited to that shown in the figure, and may be other shape such as tubular shape or elliptical shape, and the material thereof is not limited to quartz glass and may be glass of other material. However, in the above embodiment, the multilayer interference film was formed after treating the outer surface of the valve in advance.
Preliminary outer surface treatment of the valve is not essential.
【0050】さらに、上記実施例ではバルブの外表面に
可視光透過赤外線反射膜の作用をなす多層干渉膜を形成
する場合について述べたが、本発明は他の作用をなす多
層干渉膜、単なる光や熱の反射膜、着色膜などを成膜す
る場合にももちろん適用が可能である。Further, in the above embodiment, the case where the multilayer interference film acting as a visible light transmitting infrared reflecting film is formed on the outer surface of the bulb has been described, but the present invention is a multilayer interference film performing another function, that is, a simple light. Of course, it can be applied to the case of forming a heat reflection film, a coloring film, or the like.
【0051】さらにまた、成膜方法としては上述の方法
に限らず、蒸着法やスパッタ法などによる方法でもよ
い。Furthermore, the film forming method is not limited to the above-mentioned method, and a method such as a vapor deposition method or a sputtering method may be used.
【0052】[0052]
【発明の効果】以上詳述したように本願の第一ないし第
四の発明については、封止部を含む管球バルブに蒸発や
噴射霧化などにより飛来した材料の進行を阻む凸部など
がないので、バルブの外表面に形成した可視光透過赤外
線反射膜などのような多層干渉膜の被膜の膜厚を略均一
にでき管球の特性を向上できる。また、本願の第五の発
明については、封止部を含む管球バルブに蒸発や噴射霧
化などにより飛来した材料の進行を阻む角部などがない
ので、バルブに向かい飛散した材料の殆どはバルブに被
着し、バルブに対する可視光透過赤外線反射膜などのよ
うな多層干渉膜の被膜の膜厚を略均一にできる。As described above in detail, in the first to fourth inventions of the present application, the tube valve including the sealing portion is provided with the convex portion or the like for preventing the progress of the material flying due to evaporation or spray atomization. Therefore, the film thickness of the multilayer interference film such as the visible light transmitting infrared reflecting film formed on the outer surface of the bulb can be made substantially uniform and the characteristics of the bulb can be improved. Further, in the fifth invention of the present application, since the bulb valve including the sealing portion does not have a corner portion or the like which prevents the progress of the material flying by evaporation or jet atomization, most of the material scattered toward the valve is The film thickness of the multilayer interference film, such as a visible light transmitting infrared reflecting film, which is deposited on the valve, can be made substantially uniform.
【図1】(a),(b)とも投光用ハロゲン電球の正面
図。FIG. 1A is a front view of a halogen bulb for light projection in both FIGS.
【図2】(a),(b)とも図1のZ−Z線に沿って断
面した拡大断面図。2 (a) and 2 (b) are enlarged cross-sectional views taken along line ZZ in FIG.
【図3】管球への被膜形成装置の説明図。FIG. 3 is an explanatory diagram of an apparatus for forming a coating film on a tube.
【図4】(a)ないし(b)は被膜形成経過を示す説明
図。4 (a) and 4 (b) are explanatory views showing a film formation process.
【図5】管球のバルブ外表面に形成された被膜の断面
図。FIG. 5 is a sectional view of a coating formed on the outer surface of the bulb of the bulb.
【図6】他の実施例の被膜形成装置の説明図。FIG. 6 is an explanatory view of a film forming apparatus of another embodiment.
【図7】(a),(b)とも他の実施例の管球の封止部
の拡大断面図。7 (a) and 7 (b) are enlarged cross-sectional views of the sealing portion of the tube of another embodiment.
L…管球(電球)、1…バルブ、2…フィラメント(放
電電極)、4…封止部 7…被膜(多層干渉膜)、8…切欠部、BX…チャン
バ。L ... Tube (light bulb), 1 ... Bulb, 2 ... Filament (discharge electrode), 4 ... Sealing part 7 ... Coating (multilayer interference film), 8 ... Notch, BX ... Chamber.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01K 1/32 B 9172−5E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01K 1/32 B 9172-5E
Claims (5)
極を封入し端部に封止部を形成するとともにバルブ外表
面に被膜を形成してなる管球において、上記封止部は中
央部を最大肉厚部としバルブ軸と平行する周縁に向かう
にしたがい薄肉としたことを特徴とする管球。Claim: What is claimed is: 1. A bulb comprising a filament or a discharge electrode enclosed inside a bulb, a sealing portion formed at an end portion, and a film formed on the outer surface of the bulb, wherein the sealing portion has a maximum thickness in the central portion. A tube characterized in that the portion is thinned toward the peripheral edge parallel to the valve axis.
極を封入し端部に封止部を形成するとともにバルブ外表
面に被膜を形成してなる管球において、上記フィラメン
トあるいは放電電極を封入したバルブ部分と封止部との
間の連接部には切欠部が形成されていることを特徴とす
る管球。2. A bulb formed by enclosing a filament or a discharge electrode inside a bulb and forming a sealing portion at an end and forming a coating on the outer surface of the bulb, and a bulb portion enclosing the filament or the discharge electrode. A tube characterized in that a notch is formed at a connecting portion with the sealing portion.
断面は、円形状、偏平な長円形状や長菱形状であること
を特徴とする請求項1または請求項2に記載の管球。3. The cross section of the sealing portion in a direction orthogonal to the valve axis is circular, flat elliptical or rhomboid, according to claim 1 or 2. Tube.
したバルブ部分は球形や円形などの曲面部を有している
ことを特徴とする請求項1ないし請求項3に記載の管
球。4. The bulb according to claim 1, wherein the bulb portion enclosing the filament or the discharge electrode has a curved surface portion such as a spherical shape or a circular shape.
求項4に記載の封止部を有する管球を、上記チャンバ内
に水平または傾斜して支持させバルブの外表面に被膜を
形成するようにしたことを特徴とする管球への被膜形成
方法。5. A tube having the sealing portion according to any one of claims 1 to 4 is supported horizontally or inclined in the chamber to form a coating on the outer surface of the valve. A method for forming a coating film on a tube characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23062992A JPH06181048A (en) | 1992-08-31 | 1992-08-31 | Bulb and coat forming method on bulb thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23062992A JPH06181048A (en) | 1992-08-31 | 1992-08-31 | Bulb and coat forming method on bulb thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06181048A true JPH06181048A (en) | 1994-06-28 |
Family
ID=16910783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23062992A Pending JPH06181048A (en) | 1992-08-31 | 1992-08-31 | Bulb and coat forming method on bulb thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06181048A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6635330B2 (en) | 1999-04-09 | 2003-10-21 | Matsushita Electric Industrial Co., Ltd. | Method for forming thin film, spheroid coated with thin film, light bulb using the spheroid and equipment for film formation |
US6685525B1 (en) | 1999-06-23 | 2004-02-03 | Matsushita Electric Industrial Co., Ltd. | Method for manufacturing an incandescent lamp |
JP2015152835A (en) * | 2014-02-17 | 2015-08-24 | キヤノン株式会社 | Wavelength selective polarizing element, optical system, and projection display device |
-
1992
- 1992-08-31 JP JP23062992A patent/JPH06181048A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6635330B2 (en) | 1999-04-09 | 2003-10-21 | Matsushita Electric Industrial Co., Ltd. | Method for forming thin film, spheroid coated with thin film, light bulb using the spheroid and equipment for film formation |
US6726816B2 (en) | 1999-04-09 | 2004-04-27 | Matsushita Electric Industrial Co., Ltd. | Method for forming thin film, spheroid coated with thin film, light bulb using the spheroid and equipment for film formation |
US6685525B1 (en) | 1999-06-23 | 2004-02-03 | Matsushita Electric Industrial Co., Ltd. | Method for manufacturing an incandescent lamp |
JP2015152835A (en) * | 2014-02-17 | 2015-08-24 | キヤノン株式会社 | Wavelength selective polarizing element, optical system, and projection display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0049586A1 (en) | Method and apparatus for forming thin film oxide layers using reactive evaporation techniques | |
EP0908531A2 (en) | Apparatus and method for forming a thin film of a compound | |
WO2010018639A1 (en) | Deposition apparatus and method for manufacturing thin-film device | |
EP0754777A2 (en) | Process for producing thin film, and optical instrument including the same | |
EP0516436B1 (en) | Sputtering device | |
JPWO2004108980A1 (en) | Thin film forming apparatus and thin film forming method | |
JP4482972B2 (en) | Optical thin film manufacturing equipment | |
JP2001234338A (en) | Deposition method of metallic compound thin film and deposition system therefor | |
JP2004204304A (en) | Thin film manufacturing method and sputtering apparatus | |
US6494997B1 (en) | Radio frequency magnetron sputtering for lighting applications | |
JPS63238260A (en) | Formation of heat ray reflecting film | |
EP0691419A1 (en) | A process and apparatus for forming multi-layer optical films | |
JPH06181048A (en) | Bulb and coat forming method on bulb thereof | |
JPH11269643A (en) | Deposition apparatus and deposition method using the same | |
KR101238807B1 (en) | Hybrid interference coatings, lamps, and methods | |
JP2001355068A (en) | Sputtering apparatus, and deposited film forming method | |
JPH09291358A (en) | Production of optical thin film and optical thin film | |
JPH06290761A (en) | Bulb | |
JPH0992133A (en) | Manufacture of plasma display panel | |
JP3424756B2 (en) | Incandescent light bulb | |
JP3738154B2 (en) | Thin film forming method of composite metal compound and thin film forming apparatus | |
JPS5947428B2 (en) | Incandescent light bulb with no heat rays and its manufacturing method | |
JPH04329256A (en) | Manufacture of bulb | |
JPS5941509B2 (en) | Equipment for depositing highly adhesive, particularly hard carbon layers over large areas | |
JPH03183760A (en) | Production of oxide transparent conductive film |