JPS5947428B2 - Incandescent light bulb with no heat rays and its manufacturing method - Google Patents

Incandescent light bulb with no heat rays and its manufacturing method

Info

Publication number
JPS5947428B2
JPS5947428B2 JP51034351A JP3435176A JPS5947428B2 JP S5947428 B2 JPS5947428 B2 JP S5947428B2 JP 51034351 A JP51034351 A JP 51034351A JP 3435176 A JP3435176 A JP 3435176A JP S5947428 B2 JPS5947428 B2 JP S5947428B2
Authority
JP
Japan
Prior art keywords
light bulb
incandescent light
film
manufacturing
heat rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51034351A
Other languages
Japanese (ja)
Other versions
JPS52118871A (en
Inventor
好樹 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Koito Manufacturing Co Ltd
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd, Shingijutsu Kaihatsu Jigyodan filed Critical Koito Manufacturing Co Ltd
Priority to JP51034351A priority Critical patent/JPS5947428B2/en
Publication of JPS52118871A publication Critical patent/JPS52118871A/en
Publication of JPS5947428B2 publication Critical patent/JPS5947428B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、赤外光部の投射を可及的に阻止せんとする白
熱電球、とくに、オールグラスシールドビーム電球(以
下、単にシールドビーム電球と云う)のレンズ部若しく
は一般白熱電球の所定部位に、酸化錫(5n02 )土
酸化アンチモy (5b203 )からなる金属酸化被
膜を、高周波励起によるイオンブレーティング法即ち、
真空装置内に高周波コイルを設け、真空排気した後雰囲
気ガスを導入し、高周波励起により雰囲気ガスを活性化
し、反反応性を高めた状態で蒸発源を加熱し、蒸発粒子
との反応を促進させ、被着面に該蒸発粒子を被着させる
方法、により形成せしめたことを特徴とする方法に関す
るもので、その目的とするところは、前記各電球の製作
課程における損傷を皆無とし、その寿命を長からしめる
と共に、その価値も亦安価にぜんとすることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an incandescent light bulb, particularly an all-glass sealed beam light bulb (hereinafter simply referred to as a sealed beam light bulb), which is designed to prevent the projection of infrared light as much as possible. A metal oxide film consisting of tin oxide (5n02) and antimoy oxide (5b203) is applied to a predetermined portion of a general incandescent light bulb using the ion brating method using high frequency excitation.
A high-frequency coil is installed in the vacuum device, and after evacuation, atmospheric gas is introduced, the atmospheric gas is activated by high-frequency excitation, and the evaporation source is heated in a state with increased anti-reactivity, promoting reaction with evaporated particles. This invention relates to a method characterized in that the evaporated particles are deposited on the surface to which they are deposited, and the purpose thereof is to eliminate any damage during the manufacturing process of each of the above-mentioned light bulbs and to extend their lifespan. Not only does it last for a long time, but its value also lies in the fact that it can be made at a low price.

通常、赤外光部の投射を阻止するため、シールドビーム
電球のレンズ部や一般白熱電球の所定部位の各外面に蒸
着法やスプレー法により形成された金属酸化物よりなる
被膜を形成する手段が講ぜられている。
Usually, in order to prevent the projection of infrared light, a method is used to form a film made of metal oxide by vapor deposition or spraying on the lens of a sealed beam light bulb or on the outer surface of a predetermined part of a general incandescent light bulb. It is being taught.

そして、その具体的手段をみると、排気管を封止する前
に酸化膜処理をすると、被膜の成分である粒子が排気管
外側より侵入して電球内に被着し、該電球のレンズ部や
所定部位に当該被膜を施したと同様の弊害をもたらすば
かりか、シールドビーム電球においては、反射面を汚す
こととなり、しかも、既存の電球製造ラインに大きな改
造変更を加えねばならないという弊害を蒙る。
Looking at the specific method, if the exhaust pipe is treated with an oxide film before being sealed, the particles that are the components of the film will enter from the outside of the exhaust pipe and adhere to the inside of the light bulb, causing the lens of the light bulb to be coated. Not only does this cause the same problems as applying the coating to a predetermined area, it also stains the reflective surface of sealed beam light bulbs, and furthermore, it has the disadvantage of requiring major modifications to the existing light bulb manufacturing line. .

然るに、排気管を封止後、即ち電球の完成後に酸化膜処
理をする場合、被膜形成手段として、通常行われている
スプレー法や、蒸着法を採ることが考えられる。
However, when performing oxide film treatment after sealing the exhaust pipe, that is, after completing the light bulb, it is conceivable to use the commonly used spray method or vapor deposition method as a means for forming the film.

しかし乍ら、これらの手法を講じたのでは、シールドビ
ーム電球においては、形成された反射鏡に、排気管取付
、アルミニウム真空蒸着、フィラメントサポート蒸着お
よびフィラメント装着なる工程を経て、前記応射鏡と前
面レンズとの溶着、然る後、排気管封止、又、一般白熱
電球においても、電球とステム部を溶着し然る後、排気
管封止ど云った各工程を経てから前記酸化膜の処理をす
ることになり、この際、熱線カットを奏する金属酸化膜
を成牛ずるためには、前記スプレー法では、500℃以
上に加熱する必要があり、又、前記蒸着法では、300
℃以上で数時間の加熱工程が必要となる。
However, when these methods are used, in a sealed beam light bulb, the formed reflector has to undergo the following steps: exhaust pipe attachment, aluminum vacuum deposition, filament support deposition, and filament attachment. Welding with the lens, then sealing the exhaust pipe, and in the case of general incandescent light bulbs, welding the bulb and stem part, then sealing the exhaust pipe, etc.After each process, the oxide film is treated. At this time, in order to form a metal oxide film that cuts heat rays, the spray method requires heating to 500°C or higher, and the vapor deposition method requires heating to 300°C or higher.
A heating process of several hours at temperatures above ℃ is required.

従って、これらの加熱による電球の内圧上昇のため機械
的強度が維持し得す、とくに一般白熱電球においては、
軟質ガラスを用いているので溶融変形し、結局、両電球
共、事実上製作不能という、これ亦難点がある。
Therefore, mechanical strength can be maintained due to the increase in the internal pressure of the bulb due to this heating, especially in general incandescent bulbs.
Since soft glass is used, it melts and deforms, making both bulbs virtually impossible to manufacture.

ところで、金属酸化膜を材質の面から考察すると、例え
ば、酸化インジュム(In2O3)十酸化錫(5n02
)は、蒸着法を用いると、基板加熱なしに熱線カラト
ラ奏する特性の被膜を容易に形成可能であるので、一応
良降と考えられるが、第1図に特性が示されているよう
に、300℃(点灯時に局部的に最高温度となる箇所)
を越えると、熱線カット率が低下して0.7μmを越え
る長波長を多量に透過ししめるという特性上の変化をき
たす重大な欠点を備える。
By the way, when considering metal oxide films from the viewpoint of materials, for example, indium oxide (In2O3), tin decaoxide (5n02
) can be easily formed using the vapor deposition method without heating the substrate, so it is considered to be a good film, but as the characteristics are shown in Figure 1, °C (locally highest temperature when turned on)
If it exceeds 0.7 μm, the heat ray cutting rate decreases and a large amount of long wavelengths exceeding 0.7 μm are transmitted, which is a serious drawback.

本発明は、紙上の諸欠点を可及的に解消せんとするもの
で、以下、第2図を参照し乍ら、その一実施例につき、
実施の態様と共に具体的構成を詳述する。
The present invention aims to eliminate the various disadvantages of paper as much as possible, and below, with reference to FIG. 2, one embodiment thereof will be described.
The specific configuration will be described in detail along with the embodiment.

酸化錫に酸化アンチモンを5係添加した粉末を加圧成形
、これを蒸発試料として、カソード電位−6KVの磁気
偏向型スィーブ電子銃のバース上にのせ蒸発、蒸発源上
に、150φ−8Turnのスパイラル状RFコイルを
置き、13.56 (ME(z)、■〔kW〕のRF電
源よりマツチングボックスを通して接続、基板はソーダ
ガラスとし、蒸発源上350mの位置に排気管を封止し
た電球を設置し、基板加熱はとくに行わないで真空槽内
を2×105Torr ;で排気、後、99.9911
02ガスヲ導入し、槽内k 5 X 10−4Torr
に設定、基盤における直流加速電位はOV、この状態で
RF電力500Wを投入、RFコイル周辺に高密度のプ
ラズマを発生させた後、電子銃ガンにより蒸発材料を蒸
発、蒸発物質は、前記酸素プラズマ中を通過する際充分
励起され、酸素と反応して酸化錫−酸化アンチモンの透
明膜が堆積し、堆積速度’io、08μm/―に制御、
膜厚0.4μmの透明膜を得た。
A powder made by adding 5 parts of antimony oxide to tin oxide was pressure-molded, and this was placed as an evaporation sample on the berth of a magnetic deflection type sweep electron gun with a cathode potential of -6 KV for evaporation. A 13.56 (ME(z), ■ [kW] RF power source was connected through a matching box, the substrate was made of soda glass, and a light bulb with a sealed exhaust pipe was placed 350 m above the evaporation source. The vacuum chamber was evacuated at 2 x 105 Torr without any particular heating of the substrate, and then 99.9911
02 gas was introduced and the temperature inside the tank was 5 x 10-4 Torr.
The DC acceleration potential at the board is set to OV. In this state, RF power of 500 W is applied. After generating high-density plasma around the RF coil, the evaporation material is evaporated with an electron gun. The evaporation material is the oxygen plasma. As it passes through, it is sufficiently excited and reacts with oxygen to deposit a transparent film of tin oxide and antimony oxide, and the deposition rate is controlled at 'io, 08 μm/-.
A transparent film with a film thickness of 0.4 μm was obtained.

又、以上と同一条件で堆積速度のみを増加、0.2μm
/yytinとした場合、および基板加熱温度:250
℃、RF電カニ800W、DC電圧: 500■として
、前記同様の膜厚0.4μmの透明膜を得た。
Also, under the same conditions as above, only the deposition rate was increased to 0.2 μm.
/yytin and substrate heating temperature: 250
℃, RF electric crab 800 W, and DC voltage: 500 μm, a transparent film having a thickness of 0.4 μm as described above was obtained.

鼓に、第2図は、酸化錫(Sn203)に5係の酸化ア
ンチモン(Sb203)ヲ加えたものの300℃以上で
使用した各特性を示すもので、前記第1図図示の被膜材
質にみられるような、温度上昇による変化(特性劣化)
は全く見受けられない。
Figure 2 shows the properties of tin oxide (Sn203) with 5% antimony oxide (Sb203) used at temperatures above 300°C, as seen in the coating material shown in Figure 1 above. Changes due to temperature rise (characteristic deterioration)
is not observed at all.

なお、この種熱線カット特性をもつ白熱電球の実用温度
は、略300℃以下であるので、300℃における特性
を確認すれば充分である。
Incidentally, since the practical temperature of an incandescent light bulb having this type of heat ray cutting characteristic is approximately 300° C. or lower, it is sufficient to confirm the characteristics at 300° C.

即ち、第2図に示す特性につき更に詳述すると、堆積速
度、基板加熱温度、RF電力、の設定によって同図図示
のものが得られるのであるが、とくに基板加熱を行わな
くても、特性aにみられるように、可視光の平均透過率
90%、熱線の透過率が可視光の平均透過率のl/2に
なる波長が1.4μmとなり、充分な熱線カット特性を
示していることが判る。
That is, to explain the characteristics shown in FIG. 2 in more detail, the characteristics shown in FIG. 2 can be obtained by setting the deposition rate, substrate heating temperature, and RF power, but even without substrate heating, the characteristics As can be seen, the wavelength at which the average transmittance of visible light is 90% and the transmittance of heat rays is 1/2 of the average transmittance of visible light is 1.4 μm, indicating sufficient heat ray cutting characteristics. I understand.

このように、低温で熱線カッIf奏する特性をもつ金属
酸化膜を形成することが可能となるため、排気管を封止
した後、即ち電球の完成後に電球内の内圧上昇をさせず
に希望する特性のものが得られる。
In this way, it is possible to form a metal oxide film that has the property of producing hot rays at low temperatures, so it can be used without increasing the internal pressure inside the bulb after the exhaust pipe is sealed, that is, after the bulb is completed. Characteristics can be obtained.

次に、特性Cのものは、堆積速度のみを前記特性aのも
のに比べて2倍以上とした場合、可視光の透過率が低下
し、熱線が幾分放出し易くなるが、より短時間で熱線カ
ット膜が形成できる利点を有する。
Next, in the case of characteristic C, when only the deposition rate is made twice or more compared to that of characteristic a, the transmittance of visible light decreases and heat rays are somewhat easier to emit, but it takes a shorter time. It has the advantage of being able to form a heat ray cutting film.

更に、特性すのものは、基板加熱温度、RF電力、DC
電圧、堆積速度、を変化させることにより、前記特性a
とCの中間に相当する特性のものが得らすることを示す
Furthermore, the characteristics include substrate heating temperature, RF power, DC
By changing the voltage and deposition rate, the characteristic a
and C.

又、第2図に示す各特性のものを、300℃、600℃
において240時間加熱した処、前記第1図にみられる
ような温度上昇により熱線を透過する特性変化は全く見
受けられなかった。
In addition, the properties shown in Figure 2 were tested at 300°C and 600°C.
When heated for 240 hours, no change in the heat ray transmission characteristics was observed due to the temperature rise as seen in FIG. 1 above.

本発明によるものは、以上のように、前記各電球を、排
気封止作業を終えてから真空槽内に入れ、低温状態で、
高周波励起によるイオンブレーティング法を採用し、且
つ、被膜を形成する金属材質に、酸化錫と微量の酸化ア
ンチモンとを用いるので、即ち、作業条件を低温とし、
その被膜材料に耐熱性の強い配合のものを用いているた
め、換言すると、最善の製作手段を積極的に選択実施し
ているので、スプレー法における500℃という高温や
蒸着法にみられるような再加熱といった2次工程が省略
でき、それだけ作業時間が短縮でき、且つ、各電球に生
ずる破損、被膜材粒子の各電球内への侵入、が共に皆無
となり、寿命や外観などの特性が向上し、更に、各電球
の封止完了後に被膜処理をするため、既存のラインに大
きな変更を要することなく製作でき、製作工数が少なく
て済む、のみならず、スプレー法に比べて被膜形成時に
膜厚の制御が極めて自由となる附随的効果をも備え、更
に被膜形成速度が早くでき、しかも、各電球の温度上昇
による特性劣化が全くなく、熱線放射エネルギーを充分
低く抑制できる等、本項冒頭に述べた所期の目的を充分
達成する諸効果を奏する。
As described above, according to the present invention, each of the above-mentioned light bulbs is placed in a vacuum chamber after completing the exhaust sealing work, and in a low temperature state,
The ion blating method using high-frequency excitation is adopted, and the metal material used to form the film is tin oxide and a trace amount of antimony oxide.
Because we use a highly heat-resistant formulation for the coating material, in other words, we actively select the best manufacturing method, so it is possible to avoid high temperatures of 500 degrees Celsius in the spray method or as seen in the vapor deposition method. Secondary processes such as reheating can be omitted, which reduces work time, and also eliminates damage to each bulb and penetration of coating material particles into each bulb, improving characteristics such as life and appearance. Furthermore, since the film is processed after each bulb is sealed, it can be manufactured without major changes to the existing line, which not only reduces the number of manufacturing steps but also reduces the film thickness during film formation compared to the spray method As stated at the beginning of this section, it also has the additional effect of allowing extremely free control of the heat rays, can speed up film formation, has no characteristic deterioration due to temperature rise of each light bulb, and can suppress heat radiant energy to a sufficiently low level. It produces various effects that fully achieve the stated purpose.

なお、斜上のようにして施こされた金属酸化膜上に、該
膜を保護するため、済宜の物質により保護被膜を形成す
ることを妨げないこと勿論である。
It goes without saying that this does not preclude the formation of a protective film of a suitable material on the metal oxide film formed diagonally in order to protect the film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、各種電球に形成する金属酸化膜物質の特性を
示す一例で、第2図は、本発明による熱線カット特性を
示し、各図共、縦軸は透過率%t、横軸は波長μm’r
、夫々表わす。
Fig. 1 shows an example of the characteristics of metal oxide film materials formed in various light bulbs, and Fig. 2 shows the heat ray cutting characteristics according to the present invention. In each figure, the vertical axis is the transmittance %t, and the horizontal axis is the Wavelength μm'r
, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 レンズ部とレフレクタ部を備える反射形白熱電球若
くは一般り白熱電球において、前記各電球の内部を排気
し、所定のガスを導入し、封止した後、これらを真空槽
内に設置し、酸素ガスを導入し、高周波励起によるイオ
ンブレーティングにより酸化錫(SnO2)土酸化アン
チモン(Sb203)からなる熱線カッl−効する金属
酸化被膜を前記レンズ部若しくは所定部位の外表面に形
成せしめることを特徴とする熱線をカットした白熱電球
の製法。
1. In a reflective incandescent light bulb or a general incandescent light bulb comprising a lens part and a reflector part, the inside of each of the light bulbs is evacuated, a prescribed gas is introduced and sealed, and then these are placed in a vacuum chamber, Introducing oxygen gas and forming a metal oxide film made of tin oxide (SnO2) and antimony oxide (Sb203) on the outer surface of the lens portion or a predetermined portion by ion blating using high frequency excitation. A manufacturing method for incandescent light bulbs that features cut-off heat rays.
JP51034351A 1976-03-31 1976-03-31 Incandescent light bulb with no heat rays and its manufacturing method Expired JPS5947428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51034351A JPS5947428B2 (en) 1976-03-31 1976-03-31 Incandescent light bulb with no heat rays and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51034351A JPS5947428B2 (en) 1976-03-31 1976-03-31 Incandescent light bulb with no heat rays and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS52118871A JPS52118871A (en) 1977-10-05
JPS5947428B2 true JPS5947428B2 (en) 1984-11-19

Family

ID=12411720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51034351A Expired JPS5947428B2 (en) 1976-03-31 1976-03-31 Incandescent light bulb with no heat rays and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5947428B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH019373Y2 (en) * 1983-05-07 1989-03-15

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755059A (en) * 1980-09-18 1982-04-01 Tokyo Shibaura Electric Co Method of producing beam type bulb
JPS57205964A (en) * 1981-06-11 1982-12-17 Tokyo Shibaura Electric Co Beamed bulb
CN109613411B (en) * 2018-12-12 2021-03-19 国网山东省电力公司电力科学研究院 Preparation method of test sample for electrical insulation performance of external insulation anti-pollution flashover coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH019373Y2 (en) * 1983-05-07 1989-03-15

Also Published As

Publication number Publication date
JPS52118871A (en) 1977-10-05

Similar Documents

Publication Publication Date Title
US4006378A (en) Optical coating with selectable transmittance characteristics and method of making the same
US2932592A (en) Method for producing thin films and articles containing same
US3949259A (en) Light-transmitting, thermal-radiation reflecting filter
JP4713461B2 (en) Titanium oxide transparent film having at least one of aluminum and aluminum oxide and having a rutile structure
JPS5947428B2 (en) Incandescent light bulb with no heat rays and its manufacturing method
US6494997B1 (en) Radio frequency magnetron sputtering for lighting applications
US2553289A (en) Method for depositing thin films
KR101238807B1 (en) Hybrid interference coatings, lamps, and methods
US2918595A (en) Coating composition for electric lamps
JP2006515827A (en) Permeable zirconium oxide-tantalum and / or tantalum oxide coating
JP2006515827A5 (en)
JPS626746B2 (en)
US5449535A (en) Light controlled vapor deposition
JP5452209B2 (en) Transparent body and method for producing the same
US3902091A (en) Incandescent lamp
US3875454A (en) Low-pressure mercury vapour discharge lamp and method of manufacturing said lamp
US3982046A (en) Incandescent lamps
RU2777062C1 (en) Method for obtaining nanosized films of titanium nitride
JPH0827566A (en) Production of observation window of vacuum device
JPH06181048A (en) Bulb and coat forming method on bulb thereof
JPH08337435A (en) Production of quartz glass film
JPH04285154A (en) Formation of carbon thin film
JPH04329256A (en) Manufacture of bulb
JP3424756B2 (en) Incandescent light bulb
JPH06290761A (en) Bulb