JPH06179909A - Production of steel material for very low temperature use - Google Patents
Production of steel material for very low temperature useInfo
- Publication number
- JPH06179909A JPH06179909A JP33210592A JP33210592A JPH06179909A JP H06179909 A JPH06179909 A JP H06179909A JP 33210592 A JP33210592 A JP 33210592A JP 33210592 A JP33210592 A JP 33210592A JP H06179909 A JPH06179909 A JP H06179909A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- toughness
- temperature
- low temperature
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、LNG、LPG、エ
チレン、アンモニア、酸素、窒素等の各種液化ガスの輸
送や貯蔵用の容器及びこれらの付帯装置用材料として使
用される靱性に優れた極低温用鋼材の製造方法に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a container for transporting and storing various liquefied gases such as LNG, LPG, ethylene, ammonia, oxygen and nitrogen, and an extremely tough electrode used as a material for auxiliary devices thereof. The present invention relates to a method for manufacturing a low temperature steel material.
【0002】[0002]
【従来の技術】近年、地球環境問題の深刻化にともなっ
て、クリーンなエネルギーとしての液化天然ガス(LN
G)が注目を集めている。LNGは化石燃料の中では燃
焼時の二酸化炭素の排出量が比較的少なく、また、液化
の際に硫黄分などの不純物が排除されるために燃焼廃ガ
スとして亜硫酸ガスなどの有害物を排出しないという利
点を有している。一般に、LNGの産地は消費地から離
れているために輸送並びに貯蔵の設備が必要である。こ
のような設備用の適当な材料としては、含Ni鋼、アルミ
ニウム合金、オーステナイト系ステンレス鋼等が使用さ
れているが、中でも含Ni鋼は比較的安価であり、 Ni
の添加によるマトリックスの靱性向上、熱処理による
組織の微細化、極低温の条件下でも安定な残留オース
テナイト相の存在による靱性の向上、等の作用効果によ
って優れた低温靱性を有することが知られている。2. Description of the Related Art In recent years, liquefied natural gas (LN) has been used as clean energy as global environmental problems have become more serious.
G) is drawing attention. Among fossil fuels, LNG emits relatively little carbon dioxide during combustion, and does not emit harmful substances such as sulfur dioxide as combustion waste gas because impurities such as sulfur are removed during liquefaction. It has the advantage of Generally, the production site of LNG is far from the consumption site, and therefore transportation and storage facilities are required. As suitable materials for such equipment, Ni-containing steel, aluminum alloys, austenitic stainless steel, etc. are used, but among them, Ni-containing steel is relatively inexpensive,
It is known that it has excellent low temperature toughness due to its effects such as improvement of matrix toughness by addition of Al, refinement of structure by heat treatment, improvement of toughness due to existence of stable retained austenite phase even under extremely low temperature conditions, etc. .
【0003】含Ni鋼の中でもNi含有量が約9%の鋼(9
%Ni鋼という。なお、本明細書において、合金成分の含
有量に関する%は全て重量%である。)は、1963年にL
NG貯蔵用のタンクに使用されて以来、タンク用材料と
して多くの実績を上げており、今後も使用量の増加が期
待されている。また、エネルギー需要の増加に伴ないL
NGタンクも大形化の検討が進められており、従来は容
量が 8〜14万キロリットルであったのに対して、20万キ
ロリットル級のタンクの建設計画も本格化する段階に入
っている。従って、使用される 9%Ni鋼の板厚は従来製
造されてきた30〜40mmから40mmを超えるものに厚肉化す
ることが予想される。このため厚肉材の場合でも従来材
と同様に、極低温において安定した性能を確保できるよ
うな製造方法を開発することが必要となってきた。Among the Ni-containing steels, the steel containing 9% of Ni (9
% Ni steel. In the present specification, all% related to the content of alloy components are% by weight. ) Is L in 1963
Since it was used as a tank for NG storage, it has made many achievements as a material for tanks, and it is expected that its usage will increase in the future. In addition, as energy demand increases, L
The NG tank is also being studied for larger size, and the capacity of the NG tank was 80 to 140,000 kiloliters in the past, but the plan to construct a tank of 200,000 kiloliter class is in full swing. There is. Therefore, it is expected that the plate thickness of the 9% Ni steel used will increase from the previously manufactured 30-40 mm to more than 40 mm. For this reason, it has become necessary to develop a manufacturing method capable of ensuring stable performance at extremely low temperatures even in the case of thick-walled materials, as with conventional materials.
【0004】従来 9%Ni鋼については、鋼板の低温靱性
を向上させるために、主に熱処理に関して種々の方法が
提案されてきた。例えば、鋼板を熱間圧延した後直ちに
焼入れ処理をして、その後の焼戻しを Ac1変態点以下の
温度で行う、いわゆる直接焼入れ法がある(特開昭58−
217629号公報、特開昭60−181227号公報、特開昭63−12
8118号公報、特公平2-9649号公報など)。この方法で
は、35〜40mmのごとく従来から使用されている板厚材で
は低温靱性にも強度にも優れた鋼板を製造することが可
能であるが、板厚が40mmを超えるような極厚肉の材料の
場合には、質量効果によって焼入れ速度が低下して組織
が変化し、そのために低温靱性の劣化が起こり、安定し
た性能が得られないという問題がある。Conventionally, for 9% Ni steel, various methods have been proposed mainly for heat treatment in order to improve the low temperature toughness of the steel sheet. For example, there is a so-called direct quenching method in which a steel sheet is hot-rolled, immediately quenched, and then tempered at a temperature not higher than the Ac 1 transformation point (JP-A-58-58).
217629, JP 60-181227, JP 63-12
8118 publication, Japanese Patent Publication No. 2-9649 publication, etc.). With this method, it is possible to manufacture steel sheets that have excellent low temperature toughness and strength with thick plate materials that have been conventionally used, such as 35-40 mm, but extremely thick plates with plate thickness exceeding 40 mm. In the case of the above material, there is a problem that the quenching rate is lowered due to the mass effect and the structure is changed, which causes deterioration of low temperature toughness and stable performance cannot be obtained.
【0005】更に、鋼板を熱間圧延後、 Ac3変態点以上
に加熱して冷却する第1回目の焼入れ処理、 Ac1変態点
〜 Ac3変態点間に加熱して冷却する第2回目の焼入れ処
理、及び Ac1変態点以下で焼戻し処理を施すという一連
の熱処理方法、いわゆる再加熱焼入れ法も提案されてい
る(特開昭62−205227号公報、特開平3−264617号公報
など)。この方法によると、鋼板中の残留オーステナイ
ト量を増加させることによって低温靱性を向上させるこ
とができるが、板厚が40mmを超えるような厚肉の9%Ni
鋼の製造に適用した場合には、極低温下での靱性が未だ
十分ではない。Further, after the hot rolling of the steel sheet, the first quenching treatment is performed by heating the steel sheet to the Ac 3 transformation point or higher and cooling, and the second quenching treatment is performed by heating between the Ac 1 transformation point and the Ac 3 transformation point. A series of heat treatment methods of quenching treatment and tempering treatment below the Ac 1 transformation point, so-called reheating quenching method, have also been proposed (JP-A-62-205227, JP-A-3-264617, etc.). According to this method, it is possible to improve the low temperature toughness by increasing the amount of retained austenite in the steel sheet, but it is possible to improve the low temperature toughness,
When applied to steel production, the toughness at cryogenic temperatures is still insufficient.
【0006】鋼材の靱性としては亀裂発生阻止特性と亀
裂伝播停止特性(アレスト特性)があり、LNGタンク
などの極低温用鋼材として使用する場合には両特性を確
保することが必須であるが、従来の方法は、例えば特公
平2-9649号公報に記載されているように、主として鋼材
の亀裂伝播停止特性の向上に関するものであり、必ずし
も鋼材の亀裂発生阻止と亀裂伝播停止の両特性を満足し
ていないという問題もある。As the toughness of steel materials, there are crack generation inhibiting characteristics and crack propagation stopping characteristics (arrest characteristics), and when used as cryogenic steel materials such as LNG tanks, it is essential to secure both characteristics. The conventional method, as described in, for example, Japanese Patent Publication No. 2-9649, is mainly related to the improvement of the crack propagation stop characteristics of the steel material, it does not necessarily satisfy the characteristics of both crack generation prevention and crack propagation stop of the steel material. There is also the problem of not doing it.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的は、板厚
が40mmを超える極厚材であっても十分な低温靱性を有す
る含Ni鋼の鋼板を製造する方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a steel plate of Ni-containing steel having sufficient low temperature toughness even with an extremely thick material having a thickness of more than 40 mm.
【0008】[0008]
【課題を解決するための手段】本発明は、下記の極低温
用鋼材の製造方法を要旨とする。DISCLOSURE OF THE INVENTION The gist of the present invention is the following method for producing a cryogenic steel material.
【0009】重量%で、C:0.10%以下、Ni:8.0 〜1
0.0%およびMn:1.0 %以下を含み残部が Fe および不
可避的不純物からなり、不純物中のPが 0.001%以下、
Sが 0.001%以下である鋼を、熱間圧延後 Ac3変態点以
上の温度から焼入れし、次いで680〜710 ℃に再加熱の
後に再焼入れし、570 〜600 ℃で焼戻しすることを特徴
とする極低温用鋼材の製造方法。% By weight, C: 0.10% or less, Ni: 8.0-1
0.0% and Mn: 1.0% or less and the balance Fe and unavoidable impurities, and P in the impurities is 0.001% or less,
It is characterized in that steel having S of 0.001% or less is hot-rolled, quenched from a temperature of Ac 3 transformation point or higher, reheated to 680 to 710 ° C, then rehardened, and tempered at 570 to 600 ° C. Cryogenic steel material manufacturing method.
【0010】[0010]
【作用】本発明は、素材のNi含有鋼としてC、Niおよび
Mnを上記の範囲で含有し、かつ不純物中のPおよびSを
それぞれ 0.001%以下と極めて低く抑えたものを使用す
ること、およびこの鋼を熱間圧延した後に、上記のよう
な特定の条件で二回焼入れと焼戻しの処理を施すこと、
の組合せによって前記の目的を達成するものである。[Function] The present invention uses C, Ni and
Use Mn in the above range and keeping P and S in the impurities as low as 0.001% or less, and after hot rolling this steel under the specific conditions as described above. Applying twice hardening and tempering,
The above object is achieved by the combination of.
【0011】以下に、素材鋼の化学組成と、製造プロセ
スにおける諸条件を限定する理由を作用効果とともに説
明する。Below, the chemical composition of the raw material steel and the reasons for limiting various conditions in the manufacturing process will be explained together with the action and effect.
【0012】(1) 素材鋼の化学組成 C:0.10%以下 Cは鋼に所定の静的強度を付与するのに必要な元素であ
るが、その反面靱性を低下させる。本発明の主要な対象
である板厚が40mmを超える極低温用鋼材においては特に
靱性の確保に留意する必要があるが、Cが0.10%を超え
ると靱性が急激に低下するためにその上限を0.10%とす
る。(1) Chemical composition of material steel C: 0.10% or less C is an element necessary for imparting a predetermined static strength to the steel, but on the other hand, it lowers toughness. It is necessary to pay particular attention to ensuring toughness in the cryogenic steel material having a plate thickness of more than 40 mm, which is the main object of the present invention, but if C exceeds 0.10%, the toughness sharply decreases, so its upper limit is set. 0.10%
【0013】Ni: 8.0〜10.0% Niは鋼材の靱性を向上させるのに有効な元素であるが、
特に低温靱性を向上させるためには低温においても残留
オーステナイト相が安定に存在している必要があり、残
留オーステナイト相の安定化に有効なNiの含有は必須で
ある。その効果を発揮させるためには、Niは 8.0%以上
を含有させることが必要で、これよりNiが低下した場合
には、−165 ℃での靱性が低下するためにLNGタンク
用鋼材としての使用が困難となる。また、10.0%を超え
て含有させてもその向上効果は飽和し、経済性を損なう
ので10.0%を上限とする。Ni: 8.0 to 10.0% Ni is an element effective in improving the toughness of steel,
In particular, in order to improve the low temperature toughness, the retained austenite phase needs to exist stably even at a low temperature, and the Ni content effective for stabilizing the retained austenite phase is essential. In order to exert its effect, Ni must be contained in an amount of 8.0% or more, and when Ni is lower than this, the toughness at -165 ° C decreases, so use as a steel material for LNG tanks. Will be difficult. Further, even if the content exceeds 10.0%, the improvement effect is saturated and the economical efficiency is impaired, so 10.0% is made the upper limit.
【0014】Mn:1.0 %以下 Mnは、その含有量が 1.0%を超えるとPの偏析を助長す
るばかりでなく鋼板の焼戻し脆化感受性を増大させる。
従って、Mnは 1.0%以下とする。Mn: 1.0% or less If the content of Mn exceeds 1.0%, it not only promotes the segregation of P, but also increases the temper embrittlement susceptibility of the steel sheet.
Therefore, Mn should be 1.0% or less.
【0015】以上の合金成分の外、残部は不可避的な不
純物からなるが、その不純物の中で、特にPとSの含有
量を低く抑えたことが本発明の特徴の一つである。In addition to the above alloy components, the balance consists of unavoidable impurities, and one of the features of the present invention is that the content of P and S among the impurities is kept low.
【0016】P:0.001 %以下 Pは鋼の焼戻し脆性を促進する元素であり、これを防止
するためにはなるべく低く抑制することが望ましい。特
に本発明の主要な対象である板厚が40mmを超える極低温
用鋼材においてはこの点の配慮が必要であり、0.001 %
を上限とする。P: 0.001% or less P is an element that promotes temper embrittlement of steel, and in order to prevent this, it is desirable to suppress it as low as possible. This point must be taken into consideration especially for cryogenic steel materials with a plate thickness of more than 40 mm, which is the main subject of the present invention. 0.001%
Is the upper limit.
【0017】図1は、C:0.06%、Si:0.22%、Mn:0.
57、Ni:9.09%、S:0.001 %の基本組成の鋼のP含有
量のみを変化させた鋼を 1050 ℃で加熱し、仕上げ温度
900℃の条件で圧延し、810 ℃から焼入れ、680 ℃に再
加熱して焼入れ、更に 570℃で焼戻しという条件で熱処
理した試験片を用いて、−196 ℃での圧延方向(L方
向)のシャルピー衝撃エネルギーを調査した結果を示す
図である。In FIG. 1, C: 0.06%, Si: 0.22%, Mn: 0.
57, Ni: 9.09%, S: 0.001% of the basic composition of the steel with only P content changed, heated at 1050 ℃, finish temperature
Using a test piece that was rolled under the conditions of 900 ° C, quenched from 810 ° C, reheated to 680 ° C and tempered, and further tempered at 570 ° C, the rolling direction (L direction) at -196 ° C was used. It is a figure which shows the result of having investigated the Charpy impact energy.
【0018】図2は、上記の熱処理後に更に引張予歪を
5%与えてから 250℃×1時間の時効処理を施したもの
について、−196 ℃での圧延方向(L方向)およびこれ
に直角の方向(C方向)のシャルピー衝撃エネルギーを
調査した結果を示す図である。この試験は、加工歪の付
与によるオーステナイトからマルテンサイトへの変態傾
向(残留オーステナイトの安定性)を見る試験である。FIG. 2 shows a rolling direction (L direction) at -196 ° C. and a right angle to the rolling direction at 250 ° C. for 1 hour after applying 5% of tensile prestrain after the above heat treatment. It is a figure which shows the result of having investigated the Charpy impact energy of the direction (C direction). This test is a test for observing the transformation tendency of austenite to martensite (stability of retained austenite) due to application of work strain.
【0019】図3は、上記図1の試験に供した鋼材(熱
処理後)を被覆アーク溶接法(SMAW)により、X開先、入
熱36kJ/cm の条件で溶接した継手部の−196 ℃でのCT
OD値(その定義は実施例の項で説明)を示す図であ
る。FIG. 3 shows a joint portion obtained by welding the steel material (after heat treatment) used in the test of FIG. 1 by the covered arc welding method (SMAW) under the conditions of X groove and heat input of 36 kJ / cm. CT at
It is a figure which shows OD value (the definition is described in the Example section).
【0020】図1〜図3から明らかなように、Pを 0.0
01%以下にすることにより、鋼板自体および溶接継手の
低温靱性が飛躍的に向上する。以上の試験結果に基づい
て、本発明では素材鋼のPの含有量を 0.001%以下に抑
えることとした。As is clear from FIGS. 1 to 3, P is 0.0
By setting it to 01% or less, the low temperature toughness of the steel plate itself and the welded joint is dramatically improved. Based on the above test results, it was decided in the present invention that the P content of the material steel is suppressed to 0.001% or less.
【0021】鋼の溶製プロセスにおいて、溶銑の予備脱
燐と転炉吹錬およびその後の取鍋精錬等による脱燐の技
術とを組み合わせて実施することにより、上記のような
極低P鋼を製造することが可能である。In the steel melting process, preliminary dephosphorization of hot metal is combined with the technology of dephosphorization by converter blowing and subsequent ladle refining to obtain the above-mentioned ultra-low P steel. It is possible to manufacture.
【0022】S:0.001 %以下 Sは介在物 (MnS) を形成して、鋼の圧延方向に直角な
方向の靱性を低下させるためになるべく低値に抑制する
ことが望ましい。極低温用極厚鋼材を主な対象とする本
発明においては 0.001%を上限とする。S: 0.001% or less S forms an inclusion (MnS) and lowers the toughness of the steel in the direction perpendicular to the rolling direction, so it is desirable to suppress it to a low value as much as possible. In the present invention, which mainly targets extremely thick steel for cryogenic temperatures, the upper limit is 0.001%.
【0023】(2) 製造プロセスの諸条件 熱間圧延条件 熱間圧延に供するのは、造塊−分塊法で製造したスラ
ブ、または連続鋳造したスラブである。熱間圧延条件は
従来の9%Ni鋼と同じでよい。望ましいのは、加熱温度
を1000〜1150℃とし、直接焼入れが可能な 800〜900 ℃
で圧延を終了することである。(2) Various Conditions of Manufacturing Process Hot Rolling Conditions Hot rolling is a slab manufactured by the ingot-agglomeration method or a continuously cast slab. The hot rolling conditions may be the same as the conventional 9% Ni steel. Desirable heating temperature is 1000 to 1150 ℃, and direct quenching is possible 800 to 900 ℃
Is to finish rolling.
【0024】熱処理条件 板厚の増加による鋼材の破壊靱性の低下は、力学的な原
因の他に熱処理、主として焼入れでの冷却速度の低下に
よる冶金的な組織の変化にも起因している。低温での靱
性を確保することを眼目とする本発明では、この冶金的
な組織の変化に対してこれを補完改善するために次の条
件による熱処理が重要である。Heat Treatment Conditions The decrease in fracture toughness of a steel material due to an increase in plate thickness is due to heat treatment, mainly due to a change in metallurgical structure due to a decrease in cooling rate during quenching. In the present invention, which is intended to secure the toughness at a low temperature, the heat treatment under the following conditions is important to complement and improve this metallurgical structure change.
【0025】まず、均一なマルテンサイト組織を得るた
めに Ac3変態点以上に再加熱して水冷し、焼入れ処理を
施す。加熱温度は 800〜900 ℃が望ましい。900 ℃を超
えた場合には、オーステナイト粒が再結晶により著しく
粗大化するために鋼板の低温靱性の低下を招き、800 ℃
未満では焼入れが不十分となり強度不足が懸念される。
熱間圧延終了温度が 800〜900 ℃であれば、圧延終了後
に直接焼入れを行ってもよい。First, in order to obtain a uniform martensite structure, it is reheated to the Ac 3 transformation point or higher, water-cooled, and quenched. The heating temperature is preferably 800-900 ℃. If the temperature exceeds 900 ° C, the austenite grains become remarkably coarsened due to recrystallization, resulting in a decrease in the low-temperature toughness of the steel sheet.
If the amount is less than the above, quenching may be insufficient and strength may be insufficient.
If the hot rolling finish temperature is 800 to 900 ° C, quenching may be performed directly after the rolling is finished.
【0026】次いで再加熱して再焼入れを行うのである
が、これはフェライトとオーステナイトが共存する二相
域へ再加熱して冷却する、いわゆる二相域焼入れであ
る。この再加熱ではオーステナイトを部分的に生成させ
て、その中へC、Ni、Mn等の元素を濃化させ、その後の
急冷によって清浄なフェライトと溶質元素の高いマルテ
ンサイトの混合組織を生成させる。Next, reheating and re-quenching are performed. This is so-called two-phase region quenching, in which re-heating is performed to a two-phase region in which ferrite and austenite coexist and cooling is performed. In this reheating, austenite is partially formed, elements such as C, Ni, and Mn are concentrated in the austenite, and by subsequent quenching, a clean mixed structure of ferrite and martensite having a high solute element is formed.
【0027】上記のようにして得られたフェライトとマ
ルテンサイトの混合組織を有する鋼を焼戻し処理するこ
とによってC、Ni、Mn等の元素が濃化した安定なオース
テナイト (残留オーステナイト) 相が部分的に生成す
る。この時の再加熱温度および焼戻し温度を適正に設定
することによって鋼材中の残留オーステナイト相の生成
量および分散の程度を制御することが可能で、安定した
低温靱性を得ることができるのである。By tempering the steel having a mixed structure of ferrite and martensite obtained as described above, a stable austenite (residual austenite) phase in which elements such as C, Ni and Mn are concentrated is partially formed. To generate. By appropriately setting the reheating temperature and the tempering temperature at this time, it is possible to control the generation amount and the degree of dispersion of the retained austenite phase in the steel material, and it is possible to obtain stable low temperature toughness.
【0028】ここで再加熱温度と焼戻し温度を限定した
理由は次のとおりである。The reasons for limiting the reheating temperature and the tempering temperature are as follows.
【0029】再加熱温度: 680〜710 ℃ 再加熱温度が 680℃よりも低い場合には、鋼材の亀裂発
生阻止特性を得ることはできても、充分な亀裂伝播停止
特性が得られない。また、710 ℃を超える温度で再加熱
すると、組織の粗大化が起こって亀裂発生阻止および亀
裂伝播停止の両特性ともに低下する。従って、再加熱温
度は 680〜710 ℃とする。Reheating temperature: 680 to 710 ° C. When the reheating temperature is lower than 680 ° C., the crack initiation inhibiting property of the steel material can be obtained, but the sufficient crack propagation stopping property cannot be obtained. Further, when reheated at a temperature higher than 710 ° C, coarsening of the structure occurs, and both properties of preventing crack initiation and stopping crack propagation deteriorate. Therefore, the reheating temperature is 680-710 ℃.
【0030】焼戻し温度: 570〜600 ℃ この温度が 570℃よりも低いと、残留オーステナイトの
量が少ないために充分な低温靱性が得られない。他方、
600 ℃を超える温度で焼戻しをすると、室温状態での残
留オーステナイトの大きさ、量が共に増加するため、低
温での使用中にオーステナイトのマルテンサイトへの変
態が起こったり、破壊が発生する核となったりして低温
靱性を低下させる。また、強度確保の点からも高すぎる
焼戻し温度は避けるべきである。従って、焼戻し温度を
570〜600 ℃とする。Tempering temperature: 570 to 600 ° C. If this temperature is lower than 570 ° C., sufficient low temperature toughness cannot be obtained because the amount of retained austenite is small. On the other hand,
Tempering at a temperature above 600 ° C increases both the size and amount of retained austenite at room temperature, which leads to the transformation of austenite to martensite during use at low temperatures, and to the core where fracture occurs. And deteriorates the low temperature toughness. Also, from the viewpoint of ensuring strength, tempering temperature that is too high should be avoided. Therefore, the tempering temperature
570 to 600 ° C
【0031】本発明の製造方法は、板厚が30〜40mm程度
の従来の低温用鋼板の製造に適用しても有効である。そ
して、本発明方法によれば、板厚が 40mm を超える厚
板、さらに従来は製造が極めて困難であった板厚50mm以
上の厚肉材も比較的に容易に製造することができる。本
発明方法によって製造された極低温用鋼材は極低温下に
おける亀裂発生阻止および亀裂伝播停止の両特性が良好
であるという優れた特徴を有しているので、LNGの
他、LPG、エチレン、アンモニア、酸素、窒素等の各
種液化ガスの輸送、貯蔵容器およびこれらの付帯装置用
材料として有用である。The production method of the present invention is also effective when applied to the production of a conventional low temperature steel sheet having a sheet thickness of about 30 to 40 mm. Further, according to the method of the present invention, it is possible to relatively easily manufacture a thick plate having a plate thickness of more than 40 mm, and a thick material having a plate thickness of 50 mm or more, which has been extremely difficult to manufacture in the past. The cryogenic steel material produced by the method of the present invention has an excellent feature that both crack generation prevention and crack propagation arrest characteristics under cryogenic temperature are excellent. Therefore, in addition to LNG, LPG, ethylene, and ammonia. It is useful as a material for transporting and storing various liquefied gases such as oxygen, oxygen, and nitrogen, and their associated devices.
【0032】[0032]
【実施例】表1に示す化学組成の連続鋳造スラブを1080
℃に加熱し、熱間圧延により板厚50mmの鋼板とし、810
℃に加熱して水冷にする第1回目の焼入れをし、続いて
第2回目の再加熱と再焼入れ、焼戻し処理を順次に施し
た。再加熱温度と焼戻し温度は、表2に示すように変え
て実施した。加熱時間は、いずれの場合も鋼板の厚さ1
インチ当たり1時間を基準として決定した。[Example] 1080 continuous cast slabs having the chemical composition shown in Table 1 were used.
Heated to ℃ and hot rolled into a steel plate with a thickness of 50 mm.
The first quenching was performed by heating to 0 ° C. and cooling with water, and then the second reheating, requenching, and tempering treatment were sequentially performed. The reheating temperature and the tempering temperature were changed as shown in Table 2. In all cases, the heating time is the thickness of the steel plate 1
It was decided based on 1 hour per inch.
【0033】熱処理を終えた鋼板から所定形状の試験片
を切り出し、3面スリットシャルピー衝撃試験およびC
TOD試験を行った。試験温度は−196 ℃とした。CT
OD試験は液体窒素中で行い、3面スリットシャルピー
衝撃試験は試験片を液体窒素に浸漬し、所定時間保持し
て温度を調節した後にこれを取り出して試験をした。A test piece having a predetermined shape was cut out from the steel sheet that had been subjected to the heat treatment, and a three-sided slit Charpy impact test and C
A TOD test was conducted. The test temperature was -196 ° C. CT
The OD test was carried out in liquid nitrogen, and the three-sided slit Charpy impact test was carried out by immersing the test piece in liquid nitrogen, holding it for a predetermined time to adjust the temperature, and then taking out the test.
【0034】3面スリットシャルピー衝撃試験とは、10
mm角、55mm長の試験片の中央部3面に幅0.14mm、深さ2
mmの溝を切ったものを使用する衝撃試験で、亀裂伝播阻
止特性を簡便に評価できる試験である (詳しくは、日本
造船学会論文集、第 167号(1990)271 頁参照) 。The three-sided slit Charpy impact test is 10
Width 0.14 mm, depth 2 on the central 3 faces of a 55 mm long, 55 mm long test piece
This is a test that can easily evaluate the crack propagation inhibition property in an impact test using a groove of mm (for details, refer to the Japan Society of Shipbuilding, No. 167 (1990), page 271).
【0035】CTOD試験は、BS−5762規格にある試
験で、亀裂発生阻止特性を評価するため、疲労ノッチを
入れた試験片の3点曲げによって荷重と亀裂開口変位と
の関係を測定するものである。9%Ni鋼の破壊靱性の評
価によく使用される試験であり、3点曲げによって試験
片が破断してしまうまでのノッチ部からの亀裂進展長さ
を測定する。この長さが長い程、靱性が優れていること
になる。The CTOD test is a test according to the BS-5762 standard, in which the relationship between load and crack opening displacement is measured by three-point bending of a test piece having a fatigue notch in order to evaluate crack initiation inhibition characteristics. is there. This test is often used to evaluate the fracture toughness of 9% Ni steel, and measures the crack growth length from the notch portion until the test piece is broken by three-point bending. The longer the length, the better the toughness.
【0036】試験結果を表3に示す。これで見るよう
に、素材鋼の化学組成および熱処理が適切である本発明
例(試験No.1〜3) は、板厚が50mmの厚肉材であるにも
かかわらず、極低温下でも優れた亀裂発生阻止特性と亀
裂伝播停止特性を示している。The test results are shown in Table 3. As can be seen, the present invention examples (test Nos. 1 to 3) in which the chemical composition and heat treatment of the material steel are appropriate are excellent even at extremely low temperatures, despite the fact that the plate thickness is 50 mm. It shows the crack initiation inhibition property and the crack propagation stopping property.
【0037】一方、素材鋼のP含有量が本発明の規定値
を外れたC鋼は、熱処理を本発明で定めた条件で実施し
たのであるが、低温靱性の評価値は他に比して悪く、ま
た、素材の化学組成が本発明で定めた範囲にあるA鋼、
B鋼であっても、再加熱焼入れの温度または焼戻し温度
が不適当なものは、亀裂発生阻止特性か亀裂伝播停止特
性のいずれかが劣る。即ち、素材の化学組成と熱処理条
件が共に本発明で定める条件を満たす場合においての
み、良好な極低温用鋼材を得ることができる。On the other hand, with respect to the C steel in which the P content of the raw material steel deviates from the specified value of the present invention, the heat treatment was carried out under the conditions specified in the present invention, but the evaluation value of the low temperature toughness was higher than the other values. A steel which is bad and whose chemical composition is within the range defined in the present invention,
Even in the case of B steel, if the reheating and quenching temperature or the tempering temperature is inappropriate, either the crack initiation preventing property or the crack propagation stopping property is inferior. That is, a good cryogenic steel material can be obtained only when both the chemical composition of the material and the heat treatment conditions satisfy the conditions defined in the present invention.
【0038】図4は、上記の試験のNo.1、3 および6の
3面スリットシャルピー衝撃値を素材鋼のP含有量との
関係で示した図である。ここでもPを 0.001%以下に抑
えることによる靱性向上の効果が顕著に現れている。FIG. 4 is a view showing the three-sided slit Charpy impact values of Nos. 1, 3 and 6 of the above test in relation to the P content of the raw steel. Here too, the effect of improving the toughness by suppressing P to 0.001% or less is conspicuous.
【0039】[0039]
【発明の効果】本発明の製造方法によって製造された極
低温用鋼材は、板厚が40mmを超える極厚材であっても低
温靱性に優れており、LNGの他、LPG、エチレン、
アンモニア、酸素、窒素等の各種液化ガスの輸送、貯蔵
用容器やこれらの付帯装置用材料として使用するのに好
適である。EFFECT OF THE INVENTION The cryogenic steel material produced by the production method of the present invention has excellent low temperature toughness even if it is an extremely thick material having a plate thickness of more than 40 mm. In addition to LNG, LPG, ethylene,
It is suitable for use as a container for transportation and storage of various liquefied gases such as ammonia, oxygen, and nitrogen, and as a material for auxiliary devices thereof.
【0040】[0040]
【表1】 [Table 1]
【0041】[0041]
【表2】 [Table 2]
【0042】[0042]
【表3】 [Table 3]
【図1】9%Ni鋼板のP含有量と2mmVノッチシャルピ
ー衝撃値との関係を示す図である。FIG. 1 is a diagram showing a relationship between a P content of a 9% Ni steel plate and a 2 mmV notch Charpy impact value.
【図2】同じくP含有量と歪時効シャルピー衝撃値との
関係を示す図である。FIG. 2 is a diagram showing the relationship between P content and strain-aged Charpy impact value.
【図3】同じくP含有量とSMAW継手の限界CTOD値と
の関係を示す図である。FIG. 3 is a diagram showing a relationship between the P content and the limit CTOD value of the SMAW joint.
【図4】同じくP含有量と3面スリットシャルピー衝撃
値との関係を示す図である。FIG. 4 is a diagram showing a relationship between P content and a three-sided slit Charpy impact value.
Claims (1)
0.0%およびMn:1.0 %以下を含み残部が Fe および不
可避的不純物からなり、不純物中のPが 0.001%以下、
Sが 0.001%以下である鋼を、熱間圧延した後 Ac3変態
点以上の温度から焼入れし、次いで 680〜710 ℃に再加
熱の後に再焼入れし、570 〜600 ℃で焼戻しすることを
特徴とする極低温用鋼材の製造方法。1. By weight%, C: 0.10% or less, Ni: 8.0 to 1
0.0% and Mn: 1.0% or less and the balance Fe and unavoidable impurities, and P in the impurities is 0.001% or less,
A steel with S of 0.001% or less is hot-rolled, then quenched from a temperature of Ac 3 transformation point or higher, then reheated to 680 to 710 ℃, then re-hardened, and tempered at 570 to 600 ℃. And a method for producing a cryogenic steel material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33210592A JPH06179909A (en) | 1992-12-14 | 1992-12-14 | Production of steel material for very low temperature use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33210592A JPH06179909A (en) | 1992-12-14 | 1992-12-14 | Production of steel material for very low temperature use |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06179909A true JPH06179909A (en) | 1994-06-28 |
Family
ID=18251212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33210592A Pending JPH06179909A (en) | 1992-12-14 | 1992-12-14 | Production of steel material for very low temperature use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06179909A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100957929B1 (en) * | 2002-12-18 | 2010-05-13 | 주식회사 포스코 | Method for manufacturing high-tensile steel sheets having excellent low temperature toughness |
US7967923B2 (en) | 2008-10-01 | 2011-06-28 | Nippon Steel Corporation | Steel plate that exhibits excellent low-temperature toughness in a base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof |
WO2012005330A1 (en) | 2010-07-09 | 2012-01-12 | 新日本製鐵株式会社 | Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME |
US9260771B2 (en) | 2011-09-28 | 2016-02-16 | Nippon Steel & Sumitomo Metal Corporation | Ni-added steel plate and method of manufacturing the same |
WO2019039339A1 (en) | 2017-08-25 | 2019-02-28 | 株式会社神戸製鋼所 | Method for production of ni-containing steel sheet |
US20200347487A1 (en) * | 2017-11-17 | 2020-11-05 | Posco | Cryogenic steel plate and method for manufacturing same |
US11434557B2 (en) | 2017-11-17 | 2022-09-06 | Posco | Low-temperature steel plate having excellent impact toughness, and method for manufacturing same |
-
1992
- 1992-12-14 JP JP33210592A patent/JPH06179909A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100957929B1 (en) * | 2002-12-18 | 2010-05-13 | 주식회사 포스코 | Method for manufacturing high-tensile steel sheets having excellent low temperature toughness |
US7967923B2 (en) | 2008-10-01 | 2011-06-28 | Nippon Steel Corporation | Steel plate that exhibits excellent low-temperature toughness in a base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof |
WO2012005330A1 (en) | 2010-07-09 | 2012-01-12 | 新日本製鐵株式会社 | Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME |
US8882942B2 (en) | 2010-07-09 | 2014-11-11 | Nippon Steel & Sumitomo Metal Corporation | Ni-added steel plate and method of manufacturing the same |
US9260771B2 (en) | 2011-09-28 | 2016-02-16 | Nippon Steel & Sumitomo Metal Corporation | Ni-added steel plate and method of manufacturing the same |
WO2019039339A1 (en) | 2017-08-25 | 2019-02-28 | 株式会社神戸製鋼所 | Method for production of ni-containing steel sheet |
KR20200033291A (en) | 2017-08-25 | 2020-03-27 | 가부시키가이샤 고베 세이코쇼 | Manufacturing method of Ni-containing steel sheet |
US20200347487A1 (en) * | 2017-11-17 | 2020-11-05 | Posco | Cryogenic steel plate and method for manufacturing same |
US11434557B2 (en) | 2017-11-17 | 2022-09-06 | Posco | Low-temperature steel plate having excellent impact toughness, and method for manufacturing same |
US11608549B2 (en) | 2017-11-17 | 2023-03-21 | Posco Co., Ltd | Cryogenic steel plate and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1025272B1 (en) | Ultra-high strength, weldable steels with excellent ultra-low temperature toughness | |
KR100628360B1 (en) | Hot-rolled steel strip for high strength electric resistance welding pipe | |
JP3116156B2 (en) | Method for producing steel pipe with excellent corrosion resistance and weldability | |
CA2295586C (en) | Ultra-high strength, weldable, essentially boron-free steels with superior toughness | |
US4946516A (en) | Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking | |
JPH029650B2 (en) | ||
JP5741260B2 (en) | Cryogenic steel material excellent in CTOD characteristics after imparting strain and method for producing the same | |
JPH0453929B2 (en) | ||
JP3226278B2 (en) | Method of manufacturing steel material and steel pipe excellent in corrosion resistance and weldability | |
JPH06179909A (en) | Production of steel material for very low temperature use | |
JPH09143557A (en) | Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength | |
JPH0941088A (en) | Production of high toughness steel plate for low temperature use | |
JP6947922B2 (en) | High-temperature manganese steel with excellent surface quality and its manufacturing method | |
JPH08283906A (en) | High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance | |
JP2002003983A (en) | Low yielding ratio, high-tensile steel excellent in weldability and toughness at low temperature, and its manufacturing method | |
JP3858647B2 (en) | High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same | |
JPS59166655A (en) | High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof | |
JP2004250766A (en) | METHOD OF PRODUCING Ni-CONTAINING STEEL HAVING EXCELLENT STRENGTH/LOW TEMPERATURE TOUGHNESS | |
JPH029649B2 (en) | ||
JP2001342538A (en) | High tensile steel with low yield ratio, excellent in weldability and low temperature toughness, and production of the same | |
JPH05156409A (en) | High-strength martensite stainless steel having excellent sea water resistance and production thereof | |
JP3329578B2 (en) | Method for producing high-strength Ni steel plate having excellent low-temperature toughness | |
JPH10168516A (en) | Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness | |
JPH10130721A (en) | Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness | |
JP2000080416A (en) | MANUFACTURE OF HIGH Cr MARTENSITIC WELDED STEEL PIPE FOR LINE PIPE EXCELLENT IN WELDABILITY AND CORROSION RESISTANCE |