JPH06178908A - Device for separating liquid from gas by utilizing cyclone and permeable membrane - Google Patents

Device for separating liquid from gas by utilizing cyclone and permeable membrane

Info

Publication number
JPH06178908A
JPH06178908A JP35323092A JP35323092A JPH06178908A JP H06178908 A JPH06178908 A JP H06178908A JP 35323092 A JP35323092 A JP 35323092A JP 35323092 A JP35323092 A JP 35323092A JP H06178908 A JPH06178908 A JP H06178908A
Authority
JP
Japan
Prior art keywords
gas
gas passage
permeable membrane
container
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35323092A
Other languages
Japanese (ja)
Inventor
Shigeru Yanagihara
茂 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukasa Sokken KK
Original Assignee
Tsukasa Sokken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukasa Sokken KK filed Critical Tsukasa Sokken KK
Priority to JP35323092A priority Critical patent/JPH06178908A/en
Publication of JPH06178908A publication Critical patent/JPH06178908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To recover the liquid components in fluid through a permeable membrane into a container and to take out gaseous fluid after the recovery by providing a spiral gas passage in the container, forming the outer wall surface of the gas passage as the permeable membrane and passing the gaseous fluid therethrough at a high velocity CONSTITUTION:A gas passage member 7 consisting of nearly a circular column or cylinder is disposed in the hermetic pace 6 in the container 2. A gas passage groove 8 is formed spirally on the outer periphery of the gas passage member 7. The outer open surface 14 of the spiral gas passage groove 8 is closed by the permeable membrane 15 mounted on the outer surface of the gas passage member 7. The liquid components sticking to the gas passage groove 8 side of the permeable membrane 15 on the outer peripheral side are successively moved to the space 6 side of the container 2 by the swirling flow when a gaseous sample 10 is introduced through an introducing path 11 from an introducing pipe 16. The liquid components fall as liquid drops and accumulate in the bottom 18 of the container 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は燃焼排気ガスの分析・
測定など主として環境汚染防止の技術特にガス分析・測
定装置に使用する気液分離装置に関する。燃焼排気ガス
には一般に水分など常温において凝縮して液状となる成
分を含んでおり、ガス分析装置などにサンプルガスを常
温近傍で導入するときには液状成分などを分離する必要
がある。本発明はこの種の気液分離装置の改良に関す
る。
This invention relates to the analysis of combustion exhaust gas.
The present invention mainly relates to a technique for preventing environmental pollution such as measurement, and particularly to a gas-liquid separation device used in a gas analysis / measurement device. The combustion exhaust gas generally contains a component such as water that condenses into a liquid at room temperature, and it is necessary to separate the liquid component when introducing the sample gas into the gas analyzer near room temperature. The present invention relates to an improvement in this type of gas-liquid separator.

【0002】[0002]

【従来の技術】自動車排気ガスの分析計のサンプリング
系においては普通は水分を除去する。この水分を除去す
る方法としては、図2のようにサンプルラインをコンデ
ンサ容器40に導き、コンデンサ容器を氷で0℃近傍ま
で冷却してサンプルガス中の水分を凝縮してコンデンサ
容器40内に溜め、後に排水するようにしてサンプリン
グポンプや分析計に入らないようにトラップする方法や
図3のようにサンプルガスを冷却水槽内を蛇行するコン
デンサ管内に導いて冷却してコンデンサ管の下端に接続
しているコンデンサ容器50内に溜め、後に間欠的に排
水するようにしてトラップを用いる方法などがある。こ
れらの方法ではある時間内に凝縮する水分を収容できる
容積のトラップが必要であり、通常気体状態で14%に
も達する水分は凝縮しても排気ガス1m3 (10l/m
inの流量で100min)に対して110ml以上に
達する。このために凝縮水を収容する容器は通過流量に
もよるがトラップのための容器として50〜100ml
以上を要していた。
2. Description of the Prior Art Moisture is usually removed in the sampling system of automobile exhaust gas analyzers. As a method of removing this water, the sample line is introduced into the condenser container 40 as shown in FIG. 2, and the condenser container is cooled to near 0 ° C. with ice to condense the water in the sample gas and store it in the condenser container 40. , The method of trapping so that it will not drain into the sampling pump or the analyzer by draining it later, or introducing the sample gas into the condenser pipe meandering in the cooling water tank as shown in Fig. 3 to cool and connect it to the lower end of the condenser pipe. There is a method in which a trap is used so that it is stored in the condenser container 50 and then drained intermittently later. These methods require a trap with a volume capable of accommodating water that condenses within a certain time, and even if the water content which reaches 14% in a normal gas state is condensed, the exhaust gas is 1 m 3 (10 l / m 2).
The flow rate of in reaches 100 ml or more for 100 min). For this reason, the container that holds the condensed water is 50 to 100 ml as a container for the trap, depending on the flow rate of passage.
It took more than that.

【0003】[0003]

【発明が解決しようとする課題】一方、従来のガス分析
計はガス濃度の変化に対してほぼ秒単位の応答性しかも
っていなかったので、サンプル流路系もこれに相当する
程度の時間遅れが許容されてきた。しかし、最近、高速
応答のガス分析計が実現し、10ms以下の応答性が可
能となってきて、これに対応してサンプル流路系の時間
遅れも100ms以下が必要とされるようになった。こ
のために、流路系内のデッドスペースをできるだけ小さ
くすることが要求される。従来の技術では気液分離のた
めのスペースが20ml以上にも達して、10ml/m
in程度の流量において、120ms以上の平均滞留時
間を要して、高速応答に対応できなくなってきた。
On the other hand, since the conventional gas analyzer has a response of about a second unit to the change of the gas concentration, the sample flow path system has a time delay corresponding to this. Has been accepted. However, recently, a gas analyzer with a high-speed response has been realized, and a response of 10 ms or less has become possible, and in response to this, the time delay of the sample flow path system also needs to be 100 ms or less. . For this reason, it is required to make the dead space in the flow path system as small as possible. In the conventional technology, the space for gas-liquid separation reaches more than 20 ml, and the space is 10 ml / m.
At a flow rate of about in, an average residence time of 120 ms or more was required, and it became impossible to respond to high-speed response.

【0004】ガス分析計のサンプル流路系においては、
応答速度を重要視するとき、流速として30m/s以上
で、デッドスペースも全体で1秒間の流量の1/30以
下が望ましい。このような目標を実現するためには気・
液分離装置として、実質的なデッドスペースが小さく、
しかも流路としても断面積などの変化が少なく滞留のな
い形状が必要となる。本発明はこのように、デッドスペ
ースを小さくしかつ流速も適当に保って試料ガスの前後
の混合をできるだけ小さくする課題を解決しようとする
ものである。
In the sample flow path system of the gas analyzer,
When the response speed is important, it is desirable that the flow velocity is 30 m / s or more and the dead space is 1/30 or less of the total flow rate per second. In order to achieve such a goal
As a liquid separation device, the actual dead space is small,
Moreover, it is necessary for the flow path to have a shape in which there is little change in the cross-sectional area and the like and there is no retention. The present invention is thus intended to solve the problem of reducing the dead space and maintaining an appropriate flow velocity to minimize the mixing of the sample gas before and after.

【0005】[0005]

【課題を解決するための手段】この目的に対応して、こ
の発明のサイクロンと滲透膜を利用した気液分離装置
は、容器内にらせん状のガス通路を設け、ガス通路の外
側壁面を滲透膜で構成し、凝縮水分などを含むガス状流
体を高速度でガス通路を通過させて、水分などの液状成
分を滲透膜を通過させてガス通路から容器内に分離し、
分離した後のガス状流体を取り出すことを特徴としてい
る。
To solve this problem, a gas-liquid separator using a cyclone and a permeable membrane according to the present invention is provided with a spiral gas passage in a container, and an outer wall surface of the gas passage is permeable. It is composed of a membrane, a gaseous fluid containing condensed moisture is passed through the gas passage at a high speed, liquid components such as moisture are passed through the permeable membrane and separated from the gas passage into a container,
The feature is that the separated gaseous fluid is taken out.

【0006】[0006]

【作用】本発明では、流速をある程度大きく維持しなが
ら凝縮水分などを分離するための旋回流を与えてサイク
ロン作用によって液滴を外周側に付着させ、その外周壁
を液体に対して滲透性をもつ材料で構成して液体成分を
スペースのある容器内に滲透させ収容する。すなわち、
燃焼排気ガスの試料ガスは気液分離装置の入口に達する
までに必要な温度、例えば室温近くまで冷却されて、液
滴またはミストとして含んでいる。この試料ガスがガス
導入管からスパイラルに設けられたガス通路溝を通過す
るとき、早い旋回流となるので、その中に含まれるほぼ
5μ以上の粒径の液滴やミストは強い遠心力の作用によ
り旋回流の外側方向、すなわち滲透膜の方向に移動す
る。このような作用で試料ガス中の液体成分を滲透膜に
付着させることができる。滲透膜では徐々に液体成分が
ガス通路溝の側から容器内の空間の側に滲透し、液滴と
なって容器内で重力作用などにより落下する。一方、試
料ガス中のガス成分は滲透膜の表裏での圧力差がないた
めに、ほとんど滲透膜を通過しない。これによって試料
ガス中の液体成分を分離して、容器内の底部に収容する
ことができる。
In the present invention, a swirl flow for separating condensed water and the like is applied while maintaining a high flow velocity to a certain extent so that the liquid droplets adhere to the outer peripheral side by the cyclone action, and the outer peripheral wall thereof is made to be permeable to liquid. It is made of a material having a liquid content, and the liquid component is permeated and contained in a container having a space. That is,
The sample gas of the combustion exhaust gas is cooled to a temperature required for reaching the inlet of the gas-liquid separation device, for example, near room temperature, and is contained as droplets or mist. When this sample gas passes through the gas passage groove spirally provided from the gas introduction pipe, it becomes a swirling flow, so that the liquid droplets or mist having a particle size of about 5 μ or more contained therein have a strong centrifugal force. Move toward the outer side of the swirl flow, that is, toward the permeable membrane. With such an action, the liquid component in the sample gas can be attached to the permeable membrane. In the permeable membrane, the liquid component gradually permeates from the side of the gas passage groove to the side of the space in the container, and becomes a droplet, which falls due to gravity or the like in the container. On the other hand, the gas component in the sample gas hardly passes through the permeable membrane because there is no pressure difference between the front and back sides of the permeable membrane. Thereby, the liquid component in the sample gas can be separated and stored in the bottom of the container.

【0007】[0007]

【実施例】本発明の実施例を図1を参照して説明する。
図1において1は気液分離装置である。気液分離装置1
は容器2と蓋体3とを有する。蓋体3は容器2の上端部
にねじ4によりシールリング5を挟んで取り付けられて
いて、容器2内に密閉された空間6を形成する。空間6
内にほぼ円柱若しくは円筒からなるガス通路部材7が配
置されている。ガス通路部材7は蓋体3の下面に取り付
けられて支持されている。ガス通路部材の外周にはらせ
ん状にガス通路溝8が形成されている。ガス通路溝8の
上端は蓋体3内に形成されているガス導入路11に連通
し、また、ガス通路溝8の下端は通路21とガス通路部
材7の中心方向に形成されているガス通路13を介して
蓋体3内に形成されているガス導出路12に連通してい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
In FIG. 1, 1 is a gas-liquid separation device. Gas-liquid separation device 1
Has a container 2 and a lid 3. The lid 3 is attached to the upper end of the container 2 with screws 4 sandwiching a seal ring 5, and forms a sealed space 6 in the container 2. Space 6
A gas passage member 7 having a substantially columnar shape or a cylindrical shape is arranged therein. The gas passage member 7 is attached to and supported by the lower surface of the lid 3. A gas passage groove 8 is spirally formed on the outer periphery of the gas passage member. The upper end of the gas passage groove 8 communicates with a gas introduction passage 11 formed in the lid 3, and the lower end of the gas passage groove 8 is formed in the center of the passage 21 and the gas passage member 7. It communicates with the gas lead-out path 12 formed in the lid body 3 via 13.

【0008】らせん状のガス通路溝8の外側開放面14
はガス通路部材7の外面に取り付けられている滲透膜1
5によって閉じられている。滲透膜15は例えば濾紙の
ような滲透膜で構成することができる。蓋体3に構成さ
れているガス導入路11はガス導入管16に接続してお
り、またガス導出路12はガス導出管17と接続してい
る。このように構成された気液分離装置において、サン
プルガス中に含まれる液状成分を分離する作用は次の通
りである。
Outer open surface 14 of spiral gas passage groove 8
Is a permeable membrane 1 attached to the outer surface of the gas passage member 7.
Closed by 5. The permeable membrane 15 can be formed of a permeable membrane such as a filter paper. The gas introduction passage 11 formed in the lid 3 is connected to the gas introduction pipe 16, and the gas discharge passage 12 is connected to the gas discharge pipe 17. In the gas-liquid separation device thus configured, the operation of separating the liquid component contained in the sample gas is as follows.

【0009】試料ガス10はガス導入管16からガス導
入路11を通して導入されて、容器2の内部に配置され
た円柱状のガス通路部材7の外周面に設けられたスパイ
ラル状のガス通路溝8を経て、中心部のガス通路13か
らガス導出路12、ガス導出管17を経由して吸引され
る。スパイラル状のガス通路溝8の外周側の壁面は、滲
透膜15で構成されており、旋回流で外周側の滲透膜1
5のガス通路溝8の側に付着した液状成分は順次容器2
の空間6の側に移動し、液滴として落下し、容器2の底
部18に溜る。
A sample gas 10 is introduced from a gas introduction pipe 16 through a gas introduction passage 11, and a spiral gas passage groove 8 provided on the outer peripheral surface of a cylindrical gas passage member 7 arranged inside the container 2. Then, the gas is discharged from the central gas passage 13 via the gas outlet 12 and the gas outlet pipe 17. The wall surface on the outer peripheral side of the spiral gas passage groove 8 is formed of the permeable membrane 15, and the permeable membrane 1 on the outer peripheral side is formed by the swirling flow.
Liquid components adhering to the gas passage groove 8 side of the container 5
To the space 6 side, drops as droplets, and collects on the bottom 18 of the container 2.

【0010】試料ガスの通路としては、滲透膜15内部
のスパイラル状のガス通路溝8と、円柱状のガス通路部
材7の中心のガス通路13と、これに連絡する通路21
であり、それらのデッドスペースは例えば1ml以下と
小さくすることができる。
As the sample gas passage, the spiral gas passage groove 8 inside the permeable membrane 15, the gas passage 13 at the center of the cylindrical gas passage member 7, and the passage 21 communicating therewith.
The dead space thereof can be reduced to, for example, 1 ml or less.

【0011】[0011]

【発明の効果】燃焼排気ガスの試料ガスは気液分離装置
の入口に達するまでに必要な温度、例えば室温近くまで
冷却されて、液滴またはミストとして含んでいる。この
試料ガスがガス導入管16からスパイラルに設けられた
ガス通路溝8を通過するとき、早い旋回流となるので、
その中に含まれるほぼ5μ以上の粒径の液滴やミストは
強い遠心力の作用により旋回流の外側方向、すなわち滲
透膜の方向に移動する。このような作用で試料ガス中の
液体成分を滲透膜に付着させることができる。滲透膜で
は徐々に液体成分がガス通路溝8の側から容器内の空間
6の側に滲透し、液滴となって容器内で重力作用などに
より落下する。
The sample gas of the combustion exhaust gas is cooled to a temperature required to reach the inlet of the gas-liquid separation device, for example, near room temperature, and is contained as droplets or mist. When this sample gas passes from the gas introduction pipe 16 through the gas passage groove 8 spirally provided, it becomes a swirling flow,
Droplets or mist having a particle size of approximately 5 μ or more contained therein move toward the outer side of the swirling flow, that is, toward the permeable membrane due to the action of a strong centrifugal force. With such an action, the liquid component in the sample gas can be attached to the permeable membrane. In the permeable membrane, the liquid component gradually permeates from the gas passage groove 8 side to the space 6 side in the container, and becomes a droplet, which falls due to gravity or the like in the container.

【0012】一方、試料ガス中のガス成分は滲透膜の表
裏での圧力差がないために、ほとんど滲透膜を通過しな
い。これによって試料ガス中の液体成分を分離して、容
器2内の底部18に収容することができる。この場合、
試料ガスの通過する空間はスパイラル状のガス通路溝8
と、これに連絡する前後の通路21及びガス通路13で
あり、これらの容積は小さくでき、またここを通過する
時間も小さくすることができる。
On the other hand, the gas component in the sample gas hardly passes through the permeable membrane because there is no pressure difference between the front and back of the permeable membrane. Thereby, the liquid component in the sample gas can be separated and stored in the bottom portion 18 in the container 2. in this case,
The space through which the sample gas passes has a spiral gas passage groove 8
And the passage 21 and the gas passage 13 before and after they are connected to each other, and their volumes can be made small, and the time for passing therethrough can be made small.

【0013】このように本装置によれば試料ガスに含ま
れる液状成分を、ガス流路としては極めて小さなデッド
スペースと早い流速で、ガス相から分離することができ
る。そしてサンプリング流路系としては極めて小さい遅
れ時間で気液分離できる装置を構成できる。
As described above, according to this apparatus, the liquid component contained in the sample gas can be separated from the gas phase with a very small dead space as the gas flow path and a high flow velocity. As a sampling channel system, a device that can separate gas and liquid with an extremely small delay time can be configured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わるサイクロンと滲透膜
を利用した気液分離装置の断面説明図。
FIG. 1 is a cross-sectional explanatory view of a gas-liquid separator using a cyclone and a permeable membrane according to an embodiment of the present invention.

【図2】従来の気液分離装置を示す構成説明図。FIG. 2 is a structural explanatory view showing a conventional gas-liquid separation device.

【図3】従来の例の気液分離装置を示す構成説明図。FIG. 3 is a structural explanatory view showing a conventional gas-liquid separation device.

【符号の簡単な説明】[Simple explanation of symbols]

1 気液分離装置 2 容器 3 蓋体 4 ねじ 5 シールリング 6 空間 7 ガス通路部材 8 ガス通路溝 10 試料ガス 11 ガス導入路 12 ガス導出路 13 ガス通路 14 外側開放面 15 滲透膜 16 ガス導入管 17 ガス導出管 18 底部 21 通路 40 コンデンサ容器 50 コンデンサ容器 1 Gas-Liquid Separator 2 Container 3 Lid 4 Screw 5 Seal Ring 6 Space 7 Gas Passage Member 8 Gas Passage Groove 10 Sample Gas 11 Gas Introducing Path 12 Gas Outflowing Path 13 Gas Passage 14 Outer Opening Surface 15 Outer Membrane 16 Gas Introducing Pipe 17 Gas Outlet Pipe 18 Bottom 21 Passage 40 Condenser Container 50 Condenser Container

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01N 1/22 P 7519−2J K 7519−2J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location G01N 1/22 P 7519-2J K 7519-2J

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 容器内にらせん状のガス通路を設け、前
記ガス通路の外側壁面を滲透膜で構成し、凝縮水分など
を含むガス状流体を高速度で前記ガス通路を通過させ
て、水分などの液状成分を前記滲透膜を通過させて前記
ガス通路から前記容器内に分離し、前記分離した後のガ
ス状流体を取り出すことを特徴とするサイクロンと滲透
膜を利用した気液分離装置。
1. A spiral gas passage is provided in a container, an outer wall surface of the gas passage is formed of a permeable membrane, and a gaseous fluid containing condensed moisture is passed through the gas passage at a high speed to obtain a water content. A gas-liquid separation device using a cyclone and a permeable membrane, wherein a liquid component such as is passed through the permeable membrane to be separated from the gas passage into the container, and the separated gaseous fluid is taken out.
【請求項2】 容器内に置かれた円柱状の外周面に、ガ
ス入口導管から通ずるらせん溝状のガス通路を設け、そ
の外側を液状成分を滲透できる円筒状の膜で覆い、凝縮
水分などを含むガス状流体を高速度でらせん溝状のガス
通路を通過させて、水分など液状成分を滲透膜を通過さ
せてガス通路から容器内に分離し、ガス成分は円柱状の
外周面から中心部のガス通路を経由して、ガス出口を通
じて吸引するように構成した請求項1記載のサイクロン
と滲透膜を利用した気液分離装置。
2. A spiral groove-shaped gas passage communicating from a gas inlet conduit is provided on a cylindrical outer peripheral surface placed in a container, and the outside thereof is covered with a cylindrical film capable of permeating a liquid component, condensed water, etc. A gaseous fluid containing water is passed through the spiral groove-shaped gas passage at high speed, liquid components such as water are passed through the permeable membrane and separated from the gas passage into the container. The gas-liquid separator using a cyclone and a permeable membrane according to claim 1, wherein the gas is sucked through a gas outlet via a gas passage of the part.
JP35323092A 1992-12-11 1992-12-11 Device for separating liquid from gas by utilizing cyclone and permeable membrane Pending JPH06178908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35323092A JPH06178908A (en) 1992-12-11 1992-12-11 Device for separating liquid from gas by utilizing cyclone and permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35323092A JPH06178908A (en) 1992-12-11 1992-12-11 Device for separating liquid from gas by utilizing cyclone and permeable membrane

Publications (1)

Publication Number Publication Date
JPH06178908A true JPH06178908A (en) 1994-06-28

Family

ID=18429436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35323092A Pending JPH06178908A (en) 1992-12-11 1992-12-11 Device for separating liquid from gas by utilizing cyclone and permeable membrane

Country Status (1)

Country Link
JP (1) JPH06178908A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181674A (en) * 2000-08-03 2002-06-26 Ge Marquette Medical Systems Inc Method and device for separating water from gas in gas analyzing system
CN104020020A (en) * 2014-06-11 2014-09-03 中国环境科学研究院 Multifunctional onboard powerless sampler
KR101465022B1 (en) * 2014-05-12 2014-11-27 이상필 Purification apparatus for compressed air
JP2015501400A (en) * 2011-10-27 2015-01-15 エムジーアイ・クーティエ Method and apparatus for oil decantation in gas flow
JP2018071438A (en) * 2016-10-28 2018-05-10 ジャパン・ニュー・エナジー株式会社 Gas-liquid separation device, geothermal power generation device and geothermal power generation method
WO2023101351A1 (en) * 2021-11-30 2023-06-08 테슬론 주식회사 Separator including multi-flow drain

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181674A (en) * 2000-08-03 2002-06-26 Ge Marquette Medical Systems Inc Method and device for separating water from gas in gas analyzing system
JP2015501400A (en) * 2011-10-27 2015-01-15 エムジーアイ・クーティエ Method and apparatus for oil decantation in gas flow
KR101465022B1 (en) * 2014-05-12 2014-11-27 이상필 Purification apparatus for compressed air
CN104020020A (en) * 2014-06-11 2014-09-03 中国环境科学研究院 Multifunctional onboard powerless sampler
JP2018071438A (en) * 2016-10-28 2018-05-10 ジャパン・ニュー・エナジー株式会社 Gas-liquid separation device, geothermal power generation device and geothermal power generation method
WO2023101351A1 (en) * 2021-11-30 2023-06-08 테슬론 주식회사 Separator including multi-flow drain

Similar Documents

Publication Publication Date Title
AU590616B2 (en) Method and device for separating serum/plasma from blood
JP4864854B2 (en) Liquid filtration system
CA2370926C (en) Separation and collection of analyte materials
CN100335882C (en) Air samplers
US5145497A (en) In-line filter device for compressed air having mist filter and air collector
CA2463057A1 (en) Gas/liquid separator including a liquid trap filter
US4647376A (en) Device for removing the liquid phase from a suspension
JPH06178908A (en) Device for separating liquid from gas by utilizing cyclone and permeable membrane
EP0169469A3 (en) Analytical apparatus
CN112213454A (en) Pharmaceutical chemical intermediate production process gas analysis pretreatment system
US7150773B1 (en) Liquid extractor
US5355719A (en) Drain separator in gas analyzer
US3112190A (en) Method and apparatus for decontaminating hydraulic fluids
SE8101460L (en) DEVICE FOR SEPARATION OF LIQUID FROM LIQUID COMPRESSED GAS
SU1357750A1 (en) Method and device for sampling liquid surface microlayer
SU1432389A1 (en) Method of separating submicrobe particles from gas phase into liquid one
GB842270A (en) Process and apparatus for separating liquids from gases
JP2721734B2 (en) Device for removing bubbles in liquid
SU1389826A1 (en) Combination installation for cleaning gas
SU1490548A1 (en) Device for suppression of dust from gas-fluid mixture
RU2009698C1 (en) Coalescent filter-drier
SU628426A1 (en) Aerosol sampler
SU1284996A1 (en) Device for microbiological analysis of air
KR960041177A (en) Method for separating tetrahydrocannabinol and cannabidiol from hemp and apparatus used therein
JPS5951855B2 (en) Ion exchange separation device