JPH06176784A - Condensed water recovery device of fuel cell - Google Patents

Condensed water recovery device of fuel cell

Info

Publication number
JPH06176784A
JPH06176784A JP43A JP32204492A JPH06176784A JP H06176784 A JPH06176784 A JP H06176784A JP 43 A JP43 A JP 43A JP 32204492 A JP32204492 A JP 32204492A JP H06176784 A JPH06176784 A JP H06176784A
Authority
JP
Japan
Prior art keywords
water
cooling water
heat exchanger
cooling
condensation heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP43A
Other languages
Japanese (ja)
Other versions
JP2860213B2 (en
Inventor
Atsushi Takeda
淳 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4322044A priority Critical patent/JP2860213B2/en
Publication of JPH06176784A publication Critical patent/JPH06176784A/en
Application granted granted Critical
Publication of JP2860213B2 publication Critical patent/JP2860213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To keep the life of an ion exchange treaatment device long by keeping the amount of heat exchange by means of a condensation heat exchanger at a fixed level regardless of change in air temperature, and whereby not increasing the amount of recovered water and the amount of phosphoric acid even when the air temperature is low, in the condensed water recovery device of a fuel cell, in which the exhausted air of the fuel cell is cooled by cooling water in the condensation heat exchanger, for recovery, and phosphoric acid is removed by the ion exchange treatment device, and the water is supplied to cooling water for fuel cell. CONSTITUTION:The flow of cooling water fed to a condensation heat exchanger 2 by a fixed flow pump 4 is kept at a fixed level, and a flow control valve 12 provided on a bypass piping 11 communicated to cooling water piping 9 in which cooling water is flowed to the condensation heat exchanger 2, and to a hot water piping 10 in which hot water from the condensation heat exchanger 2 is flowed, is controlled by a water temperature control means 13, according to the temperature of the cooling water fed to the condensation heat exchanger 2. The temperature of the cooling water is kept constant by controlling the flow of the hot water to be mixed with the cooling water, and the amount of heat exchange at the condensation heat exchanger 2 is kept constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃料電池の排空気中
の水分を凝縮させて回収し純化して燃料電池用冷却水に
補給する燃料電池の凝縮水回収装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensed water collecting apparatus for a fuel cell, which collects and purifies water contained in the exhaust air of the fuel cell and purifies the water to supply the cooling water for the fuel cell.

【0002】[0002]

【従来の技術】図5は、例えば特開昭62−29186
5号公報及び特開平2−10664号公報に示された従
来の燃料電池の凝縮水回収装置を示す構成図である。同
図において、1は燃料極と空気極とを有して直流電力を
得る燃料電池で、図示しない改質器で燃料と改質用原料
スチームとの反応により得られた改質ガスを燃料極で空
気と反応させて直流電力を得ると共に、排空気を空気極
から排出する。
2. Description of the Related Art FIG. 5 shows, for example, JP-A-62-29186.
FIG. 5 is a configuration diagram showing a conventional condensed water recovery device for a fuel cell disclosed in Japanese Patent Laid-Open No. 5 and Japanese Patent Laid-Open No. 2-10664. In FIG. 1, reference numeral 1 denotes a fuel cell having a fuel electrode and an air electrode for obtaining DC power, and a reformed gas obtained by a reaction between a fuel and a reforming raw material steam in a reformer (not shown) is used as a fuel electrode. At the same time as reacting with air to obtain DC power, exhaust air is discharged from the air electrode.

【0003】2は燃料電池1の空気極からの排空気中の
水分を冷却水との熱交換により冷却し凝縮させて凝縮水
を得る凝縮熱交換器、3は凝縮熱交換器2での熱交換に
より温水となった冷却水を冷却する冷却塔、4は冷却水
を凝縮熱交換器1と冷却塔3を介して循環させる定流量
ポンプである。
Reference numeral 2 is a condensation heat exchanger for cooling the water in the exhaust air from the air electrode of the fuel cell 1 by heat exchange with cooling water to condense water to obtain condensed water, and 3 is heat in the condensation heat exchanger 2. Cooling towers 4 for cooling the cooling water that has become hot water by the exchange are constant flow rate pumps for circulating the cooling water through the condensing heat exchanger 1 and the cooling tower 3.

【0004】5は凝縮熱交換器2で得られた凝縮水を回
収した回収水や外部からの市水中の炭酸ガスなどのガス
成分を脱気して脱気水を得る脱気槽、6は脱気槽5で得
られた脱気水をイオン交換樹脂により純化して純水を得
るイオン交換処理装置である。
Reference numeral 5 denotes a degassing tank for degassing recovered water for collecting the condensed water obtained in the condensation heat exchanger 2 and gas components such as carbon dioxide gas in city water from the outside to obtain deaerated water. This is an ion exchange treatment device for purifying deaerated water obtained in the deaeration tank 5 with an ion exchange resin to obtain pure water.

【0005】7は燃料電池7の冷却により生じるスチー
ムと水とを分離して燃料電池7を冷却する冷却水と改質
器での反応に必要な改質用原料スチームを得ると共に、
燃料電池7の冷却水の補給水としてイオン交換処理装置
6で得られた純水が供給される気水分離器、8は気水分
離器7で得られた燃料電池用冷却水を燃料電池1に循環
させる燃料電池冷却水用ポンプである。
Numeral 7 separates steam and water generated by cooling the fuel cell 7 to obtain cooling water for cooling the fuel cell 7 and the reforming raw material steam necessary for the reaction in the reformer.
Pure water obtained by the ion exchange treatment device 6 is supplied as makeup water for the cooling water of the fuel cell 7, and 8 is the cooling water for fuel cell obtained by the steam separator 7. It is a fuel cell cooling water pump that circulates into the.

【0006】なお、9は冷却塔3から凝縮熱交換器2へ
冷却水が流れる冷却水配管、10は凝縮熱交換器2での
熱交換により温水となった冷却水が凝縮熱交換器2から
冷却塔3へ流れる温水配管である。
Reference numeral 9 denotes a cooling water pipe through which cooling water flows from the cooling tower 3 to the condensation heat exchanger 2, and 10 denotes cooling water which has become warm water due to heat exchange in the condensation heat exchanger 2 from the condensation heat exchanger 2. It is a hot water pipe that flows to the cooling tower 3.

【0007】次に、上述した構成の動作について説明す
る。燃料電池1の空気極からの排空気は凝縮熱交換器2
に導入されて定流量ポンプ4で凝縮熱交換器2に供給さ
れる冷却水との熱交換により冷却され、排空気中の水分
が燃料電池電解質から飛散したリン酸を含んで凝縮され
て凝縮水として得られる。
Next, the operation of the above configuration will be described. The exhaust air from the air electrode of the fuel cell 1 is condensed by the heat exchanger 2
Is cooled by heat exchange with the cooling water supplied to the condensing heat exchanger 2 by the constant flow pump 4 and the water in the exhaust air is condensed with phosphoric acid scattered from the fuel cell electrolyte to be condensed water. Obtained as.

【0008】この凝縮水を回収した回収水は脱気槽5に
導入されて脱気され脱気水となり、イオン交換処理装置
6に導入される。イオン交換処理装置6は、イオン交換
樹脂により脱気水中のリン酸イオンを取り除き脱気水を
純水にして気水分離器7に供給する。これにより、気水
分離器7で改質用スチームとして消費される燃料電池7
の冷却水が補給される。
The recovered water from which the condensed water is recovered is introduced into the deaeration tank 5 and deaerated to become deaerated water, which is then introduced into the ion exchange treatment device 6. The ion exchange treatment device 6 removes the phosphate ions in the degassed water with an ion exchange resin to convert the degassed water into pure water and supplies it to the steam separator 7. As a result, the fuel cell 7 consumed as steam for reforming in the steam separator 7
Cooling water is replenished.

【0009】また、回収水だけでは補給推量が不足する
ときは、市水を脱気槽5に供給して回収水の不足分を補
う。
When the estimated amount of supplementary water is insufficient with only the recovered water, city water is supplied to the degassing tank 5 to make up for the shortage of the recovered water.

【0010】一方、凝縮熱交換器2に供給された冷却水
は熱交換により温水となって冷却塔3に導入される。冷
却塔3で冷却された温水は冷水となって再び凝縮熱交換
器2に供給される。
On the other hand, the cooling water supplied to the condensation heat exchanger 2 becomes hot water by heat exchange and is introduced into the cooling tower 3. The hot water cooled in the cooling tower 3 becomes cold water and is supplied to the condensation heat exchanger 2 again.

【0011】[0011]

【発明が解決しようとする課題】従来の燃料電池の凝縮
水回収装置では、凝縮熱交換器2の冷却水の温度が季節
毎の気温の変化にともなって変化するため凝縮熱交換器
2での熱交換量が変化するので、凝縮熱交換器2からの
回収水量が変化してイオン交換処理装置で除去されるリ
ン酸量が変化する。即ち、冬季など冷却水の温度が低い
ときは凝縮熱交換器2の熱交換量が増えて回収水量が増
えるので、イオン交換処理装置7で除去されるリン酸量
が多くなる。
In the conventional condensate water recovery apparatus for a fuel cell, the temperature of the cooling water in the condensing heat exchanger 2 changes as the temperature changes seasonally. Since the amount of heat exchange changes, the amount of water recovered from the condensation heat exchanger 2 changes and the amount of phosphoric acid removed by the ion exchange treatment device also changes. That is, when the temperature of the cooling water is low such as in winter, the heat exchange amount of the condensation heat exchanger 2 increases and the recovered water amount increases, so that the amount of phosphoric acid removed by the ion exchange treatment device 7 increases.

【0012】回収水中のリン酸は、陰イオンであるリン
酸イオンがイオン交換樹脂装置7内のイオン交換樹脂の
陽イオンと中和することによって回収水から取り除かれ
るが、気温が低く除去すべきリン酸量が多いと、リン酸
イオンの中和に必要なイオン交換樹脂の陽イオンがすぐ
になくなってしまいイオン交換樹脂の寿命が短くなると
いう問題点があった。
Phosphoric acid in the recovered water is removed from the recovered water by neutralizing the anion phosphate ion with the cation of the ion exchange resin in the ion exchange resin device 7, but it should be removed at a low temperature. When the amount of phosphoric acid is large, there is a problem that the cations of the ion exchange resin, which are necessary for neutralizing the phosphate ions, are immediately lost and the life of the ion exchange resin is shortened.

【0013】この発明は、このような問題点を解決する
ためになされたもので、冬季など気温が低いときでもイ
オン交換樹脂の寿命を長く保つことができる燃料電池の
凝縮水回収装置を得ることを目的とする。
The present invention has been made in order to solve the above problems, and provides a condensed water recovery device for a fuel cell which can keep the life of the ion exchange resin long even when the temperature is low such as in winter. With the goal.

【0014】[0014]

【課題を解決するための手段】この発明の請求項1に係
る燃料電池の凝縮水回収装置は、燃料電池の空気極から
の排空気を冷却水により冷却し凝縮させて回収水を得る
凝縮熱交換器に、この凝縮熱交換器での熱交換により生
じる温水を冷却手段により冷却水に変換し上記凝縮熱交
換器に供給する冷却水回路を備え、上記凝縮熱交換器か
ら得られる回収水を純化するイオン交換処理装置を介し
て純化し気水分離器への補給水を得るようにした燃料電
池の凝縮水回収装置において、上記冷却水回路に、上記
冷却手段から上記凝縮熱交換器へ冷却水が流れる冷却水
配管と上記凝縮熱交換器から上記冷却手段へ温水が流れ
る温水配管とに連通して上記温水配管中を流れる温水を
上記冷却水配管中に供給するバイパス配管と、このバイ
パス配管に設けられた流量調節弁と、上記冷却水の温度
を測定しその測定値に応じて上記流量調節弁を制御して
上記凝縮熱交換器へ流れる冷却水の温度を一定に保つ水
温制御手段とを備えたものである。
According to a first aspect of the present invention, there is provided a condensed heat recovery device for a fuel cell, which comprises a heat of condensation for collecting recovered water by cooling exhaust air from an air electrode of the fuel cell with cooling water to condense it. The exchanger is provided with a cooling water circuit that converts hot water generated by heat exchange in the condensation heat exchanger into cooling water by a cooling means and supplies the cooling water to the condensation heat exchanger, and collects recovered water from the condensation heat exchanger. In a condensed water recovery device for a fuel cell, which is purified through an ion exchange treatment device for purification to obtain makeup water to a steam separator, in the cooling water circuit, cooling from the cooling means to the condensation heat exchanger A bypass pipe for supplying hot water flowing in the cooling water pipe into the cooling water pipe by communicating with the cooling water pipe through which the water flows and the hot water pipe through which the hot water flows from the condensation heat exchanger to the cooling means. Provided in And a water temperature control means for measuring the temperature of the cooling water and controlling the flow control valve according to the measured value to keep the temperature of the cooling water flowing to the condensation heat exchanger constant. It is a thing.

【0015】また、この発明の請求項2に係る燃料電池
の凝縮水回収装置は、燃料電池の空気極からの排空気を
冷却水により冷却し凝縮させて回収水を得る凝縮熱交換
器に、この凝縮熱交換器での熱交換により生じる温水を
冷却手段により冷却水に変換し上記凝縮熱交換器に供給
する冷却水回路を備え、上記凝縮熱交換器から得られる
回収水を純化するイオン交換処理装置を介して純化し気
水分離器への補給水を得るようにした燃料電池の凝縮水
回収装置において、上記冷却水回路に、上記冷却水の流
量を測定する流量測定手段と、上記冷却水の温度を測定
する水温測定手段と、上記流量測定手段と上記温度測定
手段の測定値に基づき冷却水の温度測定値に対して上記
凝縮熱交換器の熱交換量を一定にすべく上記凝縮熱交換
器に供給する冷却水の流量を制御する流量制御手段とを
備えたものである。
Further, a condensed water recovery apparatus for a fuel cell according to a second aspect of the present invention is a condensing heat exchanger for collecting recovered water by cooling and condensing exhaust air from an air electrode of the fuel cell with cooling water, Ion exchange for purifying recovered water obtained from the condensation heat exchanger, which is provided with a cooling water circuit for converting hot water generated by heat exchange in the condensation heat exchanger into cooling water by a cooling means and supplying the cooling water to the condensation heat exchanger. In a condensed water recovery device for a fuel cell, which is purified through a processing device to obtain makeup water to a steam separator, a flow rate measuring means for measuring a flow rate of the cooling water in the cooling water circuit, and the cooling Water temperature measuring means for measuring the temperature of water, and the condensation in order to make the heat exchange amount of the condensing heat exchanger constant with respect to the temperature measured value of the cooling water based on the measured values of the flow rate measuring means and the temperature measuring means. Cooling supplied to the heat exchanger It is obtained by a flow control means for controlling the flow rate of.

【0016】[0016]

【作用】この発明の請求項1に係る燃料電池の凝縮水回
収装置において、水温制御手段により、凝縮熱交換器に
供給される冷却水の温度を測定し測定値に応じて、バイ
パス配管に設けられた流量調節弁を制御し冷却水に混ぜ
る温水の流量を制御することにより凝縮熱交換器に流れ
る冷却水の温度を一定に保つ。これにより、凝縮熱交換
器での熱交換量を一定にして、イオン交換処理装置で純
化される凝縮熱交換器の回収水量を一定にする。
In the condensed water recovery apparatus for a fuel cell according to the first aspect of the present invention, the temperature of the cooling water supplied to the condensation heat exchanger is measured by the water temperature control means, and the cooling water is provided in the bypass pipe according to the measured value. The temperature of the cooling water flowing to the condensing heat exchanger is kept constant by controlling the flow rate control valve provided to control the flow rate of the warm water mixed with the cooling water. Thereby, the amount of heat exchange in the condensation heat exchanger is made constant, and the amount of water recovered in the condensation heat exchanger purified by the ion exchange treatment device is made constant.

【0017】また、この発明の請求項2に係る燃料電池
の凝縮水回収装置は、流量制御手段により、流量測定手
段と温度測定手段の測定値に基づき、凝縮熱交換器の熱
交換量が一定になるように冷却水の温度測定値に応じて
凝縮熱交換器に供給する冷却水の流量を制御する。これ
により、イオン交換処理装置で純化される凝縮熱交換器
の回収水量を一定にする。
In the condensate water recovery apparatus for a fuel cell according to a second aspect of the present invention, the heat exchange amount of the condensing heat exchanger is constant based on the measured values of the flow rate measuring means and the temperature measuring means by the flow rate controlling means. The flow rate of the cooling water supplied to the condensation heat exchanger is controlled in accordance with the measured temperature value of the cooling water. As a result, the amount of water recovered from the condensation heat exchanger purified by the ion exchange treatment device is kept constant.

【0008】[0008]

【実施例】以下、この発明の諸実施例を図について説明
する。 実施例1.図1は、この発明の実施例1を示す構成図で
ある。同図において、1〜10は図5と同様な構成であ
り、11は温水配管10中を流れる温水を冷却水配管9
中にフィードバックして冷却水に混入するバイパス配管
である。
Embodiments of the present invention will be described below with reference to the drawings. Example 1. First Embodiment FIG. 1 is a configuration diagram showing a first embodiment of the present invention. In the figure, 1 to 10 have the same configuration as that of FIG. 5, and 11 denotes the hot water flowing through the hot water pipe 10 and the cooling water pipe 9.
It is a bypass pipe that feeds back inside and mixes into the cooling water.

【0019】10はバイパス配管11に設けられた流量
調節弁、13は定流量ポンプ4と凝縮熱交換器2との間
の冷却水配管9に設けられて凝縮熱交換器2に供給され
る冷却水の温度を測定し測定値に応じて流量調節弁12
を制御する水温制御手段である。
Reference numeral 10 is a flow control valve provided in the bypass pipe 11, 13 is provided in the cooling water pipe 9 between the constant flow pump 4 and the condensation heat exchanger 2, and cooling is supplied to the condensation heat exchanger 2. Measure the water temperature and adjust the flow rate control valve 12 according to the measured value.
It is a water temperature control means for controlling.

【0020】次に、上述した構成の動作について説明す
る。水温制御手段13は、凝縮熱交換器2に供給される
冷却水の温度を測定し、測定値が常に一定になるよう
に、流量調節弁12を制御しバイパス配管11を通って
冷却配管9中の冷却水に混ぜる温水の流量を制御する。
Next, the operation of the above configuration will be described. The water temperature control means 13 measures the temperature of the cooling water supplied to the condensation heat exchanger 2, controls the flow rate adjusting valve 12 so that the measured value is always constant, and passes through the bypass pipe 11 to the inside of the cooling pipe 9. Control the flow rate of hot water mixed with the cooling water of.

【0021】また、冷却水は、このように一定温度に制
御されると共に、定流量ポンプ4により一定流量で凝縮
熱交換器2に供給される。
The cooling water is controlled to a constant temperature in this way and is supplied to the condensing heat exchanger 2 at a constant flow rate by the constant flow rate pump 4.

【0022】従って、凝縮熱交換器2に供給される冷却
水の流量及び温度が常に一定に保たれることから、凝縮
熱交換器2での熱交換量が常に一定となる。そのため、
気温にかかわらず熱交換器2から回収される回収水量が
一定なので、イオン交換処理装置6で除去するリン酸量
が一定である。
Therefore, since the flow rate and the temperature of the cooling water supplied to the condensation heat exchanger 2 are always kept constant, the heat exchange amount in the condensation heat exchanger 2 is always constant. for that reason,
Since the amount of water recovered from the heat exchanger 2 is constant regardless of the temperature, the amount of phosphoric acid removed by the ion exchange treatment device 6 is constant.

【0023】実施例2.図2は、この発明の実施例2の
構成図である。この実施例2では、冷却水配管9に遠心
式ポンプ4Aを設けこれにより冷却水を循環させる。ま
た、遠心式ポンプ4aの突出口付近に流量調節弁12を
設け、かつ流量調節弁12の出口に流量測定手段14を
設けてこれにより流量調節弁12を経て凝縮熱交換器2
に供給される冷却水の流量を測定する。
Example 2. Second Embodiment FIG. 2 is a configuration diagram of a second embodiment of the present invention. In the second embodiment, the cooling water pipe 9 is provided with a centrifugal pump 4A to circulate the cooling water. Further, a flow rate adjusting valve 12 is provided in the vicinity of the projecting port of the centrifugal pump 4a, and a flow rate measuring means 14 is provided at the outlet of the flow rate adjusting valve 12, whereby the condensation heat exchanger 2 passes through the flow rate adjusting valve 12.
Measure the flow rate of the cooling water supplied to the.

【0024】また、凝縮熱交換器2の冷却水流入口付近
に冷却水2の温度を測定する温度測定手段13Aを設け
ると共に、その測定値と流量測定手段14の測定値とに
基づいて流量調節弁12の開度を制御して凝縮熱交換器
2に供給する流量を制御する流量制御器15を設ける。
その他の構成は図1と同じである。
Further, temperature measuring means 13A for measuring the temperature of the cooling water 2 is provided near the cooling water inlet of the condensation heat exchanger 2, and the flow rate control valve is based on the measured value and the measured value of the flow rate measuring means 14. A flow rate controller 15 that controls the opening degree of 12 to control the flow rate supplied to the condensation heat exchanger 2 is provided.
Other configurations are the same as those in FIG.

【0025】次に、上述した構成の動作について説明す
る。凝縮熱交換器2の熱交換量Hは、H=KAΔT
(1)で表され、凝縮熱交換器2の材質によって決まる総
括熱伝達係数Kと、凝縮熱交換器2の形状によって決ま
る伝熱面積Aと、凝縮熱交換器2での与熱側(排空気)
と受熱側(冷却水側)との対数平均温度差ΔTとによ
って決まる。なお、対数平均温度差ΔTは、熱交換前
の排空気の温度cと熱交換後の排空気の温度a及び熱交
換前の冷却水温bと熱交換後の冷却水温dを用いて、Δ
={(c−d)−(a−b)}/ln{(c−d)/
(a−b)}と表される。
Next, the operation of the above configuration will be described. The heat exchange amount H of the condensing heat exchanger 2 is H = KAΔT m ...
(1), the overall heat transfer coefficient K determined by the material of the condensing heat exchanger 2, the heat transfer area A determined by the shape of the condensing heat exchanger 2, and the heating side (discharging side) of the condensing heat exchanger 2. air)
And the logarithmic average temperature difference ΔT m between the heat receiving side (cooling water side). The logarithmic average temperature difference ΔT m is calculated by using the temperature c of exhaust air before heat exchange, the temperature a of exhaust air after heat exchange, the cooling water temperature b before heat exchange, and the cooling water temperature d after heat exchange.
T m = {(cd)-(ab)} / ln {(cd) /
(Ab)}.

【0026】また、冷却水流量Qは、Q=H/(b−
a)…(2)で表される。
The flow rate Q of the cooling water is Q = H / (b-
a) ... (2).

【0027】上記(1)式で、総括熱伝達係数K及び伝熱
面積Aは凝縮熱交換器2固有であるので一定であり、ま
た熱交換前の排空気の温度a及び熱交換後の排空気の温
度cはプロセス条件として予め決まっているので、熱交
換量Hは、熱交換前の冷却水温bと熱交換後の冷却水温
dとの差b−dに依存する。
In the above equation (1), the overall heat transfer coefficient K and the heat transfer area A are constant because they are specific to the condensing heat exchanger 2, and the temperature a of the exhaust air before heat exchange and the exhaust air after heat exchange are constant. Since the air temperature c is predetermined as a process condition, the heat exchange amount H depends on the difference b-d between the cooling water temperature b before the heat exchange and the cooling water temperature d after the heat exchange.

【0028】よって、(1)式から、熱交換量Hを一定と
した場合、熱交換前の冷却水温bが水温測定手段13A
の測定によりわかれば、熱交換後の冷却水温dが決まる
ので、(2)式で、凝縮熱交換器2の熱交換量Hを一定と
した場合、冷却水量Qは、熱交換前の冷却水温b即ち水
温測定手段13Aで測定した冷却水温に依存する。
Therefore, from the equation (1), when the heat exchange amount H is constant, the cooling water temperature b before the heat exchange is the water temperature measuring means 13A.
If the heat exchange amount H of the condensation heat exchanger 2 is set to a constant value in Eq. (2), the cooling water amount Q will be the cooling water temperature before the heat exchange. b, that is, the cooling water temperature measured by the water temperature measuring means 13A.

【0029】従って、凝縮熱交換器2の熱交換量Hが一
定となるための、冷却水温bに対する冷却水流量Qは、
図3に実線で示すようになり、冷却水温bの上昇ととも
に増す特性となる。
Therefore, since the heat exchange amount H of the condensation heat exchanger 2 is constant, the cooling water flow rate Q with respect to the cooling water temperature b is
As shown by the solid line in FIG. 3, the characteristics increase as the cooling water temperature b increases.

【0030】そこで、流量制御器15に、図3の特性か
ら得られる、冷却水温bに対応する冷却水量Qを予め設
定し、流量制御器15により、水温測定手段13Aで測
定した冷却水温に応じて流量測定手段14で測定した冷
却水量が設定値となるように、流量調節弁12の開度を
制御する。これにより、冷却水が所要の流量で凝縮熱回
収装置2に供給される。
Therefore, the flow rate controller 15 is preset with the cooling water amount Q corresponding to the cooling water temperature b obtained from the characteristics of FIG. 3, and the flow rate controller 15 determines the cooling water temperature measured by the water temperature measuring means 13A. The opening degree of the flow rate adjusting valve 12 is controlled so that the cooling water amount measured by the flow rate measuring means 14 becomes a set value. Thereby, the cooling water is supplied to the condensation heat recovery device 2 at a required flow rate.

【0031】このように、この実施例2では、冷却水温
に応じて冷却水量を制御して、凝縮熱交換器2での熱交
換量を一定にしているので、気温に拘わらず凝縮熱交換
器2からの回収水量が一定であり、従ってイオン交換処
理装置6で除去されるリン酸量が一定に保持される。
As described above, in the second embodiment, the amount of cooling water is controlled according to the temperature of the cooling water to make the heat exchange amount in the condensation heat exchanger 2 constant, so that the condensation heat exchanger is irrespective of the temperature. The amount of water recovered from 2 is constant, so the amount of phosphoric acid removed by the ion exchange treatment device 6 is kept constant.

【0032】実施例3.図4は、この発明の実施例3を
示す構成図である。この実施例3は、流量調節弁12
を、冷却水配管9と温水配管10とに連通するバイパス
配管11に設けていることが、図2と異なる。その他の
構成は、図2と同じである。
Example 3. FIG. 4 is a configuration diagram showing a third embodiment of the present invention. The third embodiment is a flow control valve 12
Is provided in the bypass pipe 11 that communicates with the cooling water pipe 9 and the hot water pipe 10. Other configurations are the same as those in FIG.

【0033】次に、動作について説明する。水温測定手
段13Aにより測定した冷却水温に対応する冷却水量を
図3の特性により求めて流量制御器15に設定する。流
量制御器15は、水温測定手段13Aにより測定した冷
却水温に応じて、流量測定手段14により測定した冷却
水流量が設定値になるように流量調節弁12の開度を制
御し、冷却水配管9から温水配管10へ流れる冷却水量
を制御する。
Next, the operation will be described. The cooling water amount corresponding to the cooling water temperature measured by the water temperature measuring means 13A is obtained from the characteristics of FIG. 3 and set in the flow rate controller 15. The flow rate controller 15 controls the opening degree of the flow rate control valve 12 so that the cooling water flow rate measured by the flow rate measurement means 14 becomes a set value in accordance with the cooling water temperature measured by the water temperature measurement means 13A, and the cooling water piping The amount of cooling water flowing from 9 to the hot water pipe 10 is controlled.

【0034】このようにして、凝縮熱交換器2を流れる
冷却水の温度に応じて凝縮熱交換器2に供給される冷却
水の流量を間接的に制御することによって、凝縮熱交換
器2での熱交換量を一定にする。これにより、気温にか
かわらず凝縮熱交換器2から得られる回収水量が一定と
なるので、イオン交換処理装置6で除去されるリン酸量
が一定となる。
In this way, by indirectly controlling the flow rate of the cooling water supplied to the condensation heat exchanger 2 in accordance with the temperature of the cooling water flowing through the condensation heat exchanger 2, the condensation heat exchanger 2 The heat exchange amount of is kept constant. As a result, the amount of recovered water obtained from the condensation heat exchanger 2 becomes constant regardless of the temperature, so that the amount of phosphoric acid removed by the ion exchange treatment device 6 becomes constant.

【0035】実施例4.上記実施例2では、流量制御器
15により流量調節弁12の開度を制御するが、流量調
節弁12を用いずに、遠心式ポンプ4Aの回転数を制御
するようにしても良い。これは、例えば、遠心式ポンプ
4Aを駆動するモータの回転数を流量制御器15により
制御するか、モータと遠心式ポンプ4Aとの間にすべり
継手を設けてこれを流量制御器15により制御するなど
して達成される。
Example 4. In the second embodiment, the opening degree of the flow rate adjusting valve 12 is controlled by the flow rate controller 15, but the rotational speed of the centrifugal pump 4A may be controlled without using the flow rate adjusting valve 12. For this, for example, the rotation speed of the motor that drives the centrifugal pump 4A is controlled by the flow rate controller 15, or a slip joint is provided between the motor and the centrifugal pump 4A and is controlled by the flow rate controller 15. It is achieved by

【0036】このように、遠心式ポンプ4の回転数を制
御するようにすれば、動力費が低減される。
By controlling the rotational speed of the centrifugal pump 4 as described above, the power cost can be reduced.

【0037】[0037]

【発明の効果】以上のように、この発明の請求項1に係
る燃料電池の凝縮水回収装置は、凝縮熱交換器に供給さ
れる冷却水の温度に応じて、凝縮熱交換器へ冷却水が流
れる冷却水配管と凝縮熱交換器からの温水が流れる温水
配管とに連通するバイパス配管に設けられた流量調節弁
を制御して、冷却水に混ぜる温水の流量を制御すること
により冷却水の温度を一定に保つようにしたことによっ
て、気温が変化しても、冷却水の温度が一定に維持され
凝縮熱交換器での熱交換量が一定であるので、冬季など
気温が低いときでも、イオン交換処理装置で純化される
凝縮熱交換器の回収水量が増さず除去されるリン酸量が
増えないため、イオン交換処理装置のイオン交換樹脂の
寿命を長く保つことができるという効果を奏する。
As described above, the condensate water recovery apparatus for a fuel cell according to claim 1 of the present invention provides cooling water to the condensing heat exchanger according to the temperature of the cooling water supplied to the condensing heat exchanger. Control the flow control valve provided in the bypass pipe that communicates with the cooling water pipe that flows through and the hot water pipe through which the hot water from the condensation heat exchanger flows, and control the flow rate of the hot water mixed with the cooling water. By keeping the temperature constant, even if the temperature changes, the temperature of the cooling water is kept constant and the amount of heat exchange in the condensation heat exchanger is constant, so even when the temperature is low such as in winter, Since the amount of recovered water in the condensation heat exchanger purified by the ion exchange treatment device does not increase and the amount of phosphoric acid removed does not increase, it is possible to maintain the life of the ion exchange resin of the ion exchange treatment device for a long time. .

【0038】また、この発明の請求項2に係る燃料電池
の凝縮水回収装置は、凝縮熱交換器の熱交換量が一定に
なるように冷却水の温度測定値に応じて凝縮熱交換器に
供給する冷却水の流量を制御するようにしたことによっ
て、気温が変化しても熱交換量が一定であるので、冬季
など気温が低いときでも、イオン交換処理装置で純化さ
れる凝縮熱交換器の回収水量が増さず除去されるリン酸
量が増えないため、イオン交換処理装置のイオン交換樹
脂の寿命を長く保つことができるという効果を奏する。
According to the second aspect of the present invention, in the condensed water recovery apparatus for a fuel cell, the condensing heat exchanger is connected to the condensing heat exchanger according to the temperature measurement value of the cooling water so that the heat exchange amount of the condensing heat exchanger becomes constant. By controlling the flow rate of the cooling water to be supplied, the amount of heat exchange is constant even if the temperature changes, so even when the temperature is low such as in winter, the condensation heat exchanger is purified by the ion exchange treatment device. Since the amount of recovered phosphoric acid does not increase and the amount of phosphoric acid to be removed does not increase, there is an effect that the life of the ion exchange resin of the ion exchange treatment device can be maintained for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】この発明の実施例2を示す構成図である。FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】この発明の実施例2の動作を動作を説明するた
めの特性図である。
FIG. 3 is a characteristic diagram for explaining the operation of the second embodiment of the present invention.

【図4】この発明の実施例3を示す構成図である。FIG. 4 is a configuration diagram showing a third embodiment of the present invention.

【図5】従来の燃料電池の凝縮水回収装置を示す構成図
である。
FIG. 5 is a configuration diagram showing a conventional condensed water recovery device for a fuel cell.

【符号の説明】 1 燃料電池 2 凝縮熱交換器 3 冷却塔 4A 遠心式ポンプ 6 イオン交換処理装置 7 気水分離間 9 冷却水配管 10 温水配管 11 バイパス配管 12 流量調節弁 13 水温制御手段 13A 水温測定手段 14 流量測定手段 15 流量制御手段[Explanation of Codes] 1 Fuel Cell 2 Condensation Heat Exchanger 3 Cooling Tower 4A Centrifugal Pump 6 Ion Exchange Treatment Device 7 Gas / Water Separation 9 Cooling Water Pipe 10 Hot Water Pipe 11 Bypass Pipe 12 Flow Control Valve 13 Water Temperature Control Means 13A Water Temperature Measuring means 14 Flow rate measuring means 15 Flow rate controlling means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池の空気極からの排空気を冷却水
により冷却し凝縮させて回収水を得る凝縮熱交換器に、
この凝縮熱交換器での熱交換により生じる温水を冷却手
段により冷却水に変換し上記凝縮熱交換器に供給する冷
却水回路を備え、上記凝縮熱交換器から得られる回収水
を純化するイオン交換処理装置を介して純化し気水分離
器への補給水を得るようにした燃料電池の凝縮水回収装
置において、上記冷却水回路に、上記冷却手段から上記
凝縮熱交換器へ冷却水が流れる冷却水配管と上記凝縮熱
交換器から上記冷却手段へ温水が流れる温水配管とに連
通して上記温水配管中を流れる温水を上記冷却水配管中
に供給するバイパス配管と、このバイパス配管に設けら
れた流量調節弁と、上記冷却水の温度を測定しその測定
値に応じて上記流量調節弁を制御して上記凝縮熱交換器
へ流れる冷却水の温度を一定に保つ水温制御手段とを備
えたことを特徴とする燃料電池の凝縮水回収装置。
1. A condensing heat exchanger for collecting recovered water by cooling and condensing exhaust air from an air electrode of a fuel cell with cooling water,
Ion exchange for purifying recovered water obtained from the condensation heat exchanger, which is provided with a cooling water circuit for converting hot water generated by heat exchange in the condensation heat exchanger into cooling water by a cooling means and supplying the cooling water to the condensation heat exchanger. In a condensed water recovery device for a fuel cell, which is purified through a treatment device to obtain makeup water for a steam separator, cooling in which cooling water flows from the cooling means to the condensation heat exchanger in the cooling water circuit. A bypass pipe, which is connected to a water pipe and a hot water pipe in which hot water flows from the condensation heat exchanger to the cooling means, and which supplies hot water flowing in the hot water pipe into the cooling water pipe, and the bypass pipe A flow rate control valve and water temperature control means for measuring the temperature of the cooling water and controlling the flow rate control valve according to the measured value to keep the temperature of the cooling water flowing to the condensation heat exchanger constant. Featuring Condensed water recovery system of a fuel cell that.
【請求項2】 燃料電池の空気極からの排空気を冷却水
により冷却し凝縮させて回収水を得る凝縮熱交換器に、
この凝縮熱交換器での熱交換により生じる温水を冷却手
段により冷却水に変換し上記凝縮熱交換器に供給する冷
却水回路を備え、上記凝縮熱交換器から得られる回収水
を純化するイオン交換処理装置を介して純化し気水分離
器への補給水を得るようにした燃料電池の凝縮水回収装
置において、上記冷却水回路に、上記冷却水の流量を測
定する流量測定手段と、上記冷却水の温度を測定する水
温測定手段と、上記流量測定手段と上記温度測定手段の
測定値に基づき冷却水の温度測定値に対して上記凝縮熱
交換器の熱交換量を一定にすべく上記凝縮熱交換器に供
給する冷却水の流量を制御する流量制御手段とを備えた
ことを特徴とする燃料電池の凝縮水回収装置。
2. A condensing heat exchanger for collecting recovered water by cooling exhaust air from an air electrode of a fuel cell with cooling water and condensing it.
Ion exchange for purifying recovered water obtained from the condensation heat exchanger, which is provided with a cooling water circuit for converting hot water generated by heat exchange in the condensation heat exchanger into cooling water by a cooling means and supplying the cooling water to the condensation heat exchanger. In a condensed water recovery device for a fuel cell, which is purified through a processing device to obtain makeup water to a steam separator, a flow rate measuring means for measuring a flow rate of the cooling water in the cooling water circuit, and the cooling Water temperature measuring means for measuring the temperature of the water, and the condensation in order to make the heat exchange amount of the condensation heat exchanger constant with respect to the temperature measured value of the cooling water based on the measured values of the flow rate measuring means and the temperature measuring means. A condensate water recovery apparatus for a fuel cell, comprising: a flow rate control means for controlling a flow rate of cooling water supplied to the heat exchanger.
JP4322044A 1992-12-01 1992-12-01 Fuel cell condensate recovery system Expired - Lifetime JP2860213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4322044A JP2860213B2 (en) 1992-12-01 1992-12-01 Fuel cell condensate recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4322044A JP2860213B2 (en) 1992-12-01 1992-12-01 Fuel cell condensate recovery system

Publications (2)

Publication Number Publication Date
JPH06176784A true JPH06176784A (en) 1994-06-24
JP2860213B2 JP2860213B2 (en) 1999-02-24

Family

ID=18139299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4322044A Expired - Lifetime JP2860213B2 (en) 1992-12-01 1992-12-01 Fuel cell condensate recovery system

Country Status (1)

Country Link
JP (1) JP2860213B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777121B1 (en) * 1999-06-30 2004-08-17 Honda Giken Kogyo Kabushiki Kaisha Fuel cell system and gas/liquid separation method for the same
JP2008126911A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Cooperation cooling system of fuel cell and air-conditioner
JP2009238391A (en) * 2008-03-25 2009-10-15 Equos Research Co Ltd Fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777121B1 (en) * 1999-06-30 2004-08-17 Honda Giken Kogyo Kabushiki Kaisha Fuel cell system and gas/liquid separation method for the same
JP2008126911A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Cooperation cooling system of fuel cell and air-conditioner
JP2009238391A (en) * 2008-03-25 2009-10-15 Equos Research Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP2860213B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
CA2315135C (en) Method and apparatus for humidification and temperature control of incoming fuel cell process gas
US4120787A (en) Fuel cell water conditioning process and system and deaerator for use therein
WO2002035632A1 (en) Fuel cell system and method of operating the system
JP2002525805A (en) Fuel cell power supply with exhaust recovery for improved water management
JPH0821403B2 (en) How to operate a fuel cell power plant
JP5092186B2 (en) Fuel cell cogeneration system
JPH0922716A (en) Cooling water refilling device of water-cooled fuel cell
US20030175568A1 (en) Apparatus for humidification and temperature control of incoming fuel cell process gas
JP5383111B2 (en) Fuel cell
JPH06176784A (en) Condensed water recovery device of fuel cell
JP3555160B2 (en) Fuel cell device
CN1326277C (en) System and method for management of gas and water in fuel cell system
JP2002313405A (en) Fuel cell system
US6787255B2 (en) Fuel cell power generating system and operation method
JP5025929B2 (en) Fuel cell power generation system
JP2811905B2 (en) Steam generator for fuel cell power generation system
US20040072043A1 (en) Fuel cell system
JP2005050639A (en) Fuel cell system
JPH0766828B2 (en) Fuel cell body cooling system
JPH11333267A (en) Liquid filtration device and fuel cell generator using the device
JP2002280033A (en) Exhaust heat treatment method of fuel cell generator and device
EP0069763B1 (en) Fuel cell power plant coolant cleaning system and method
JP2003157869A (en) Water treating device for fuel cell
JP4684576B2 (en) Fuel cell power generation system
JP3796887B2 (en) Fuel cell power generation system