JPH06176777A - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPH06176777A
JPH06176777A JP43A JP32186092A JPH06176777A JP H06176777 A JPH06176777 A JP H06176777A JP 43 A JP43 A JP 43A JP 32186092 A JP32186092 A JP 32186092A JP H06176777 A JPH06176777 A JP H06176777A
Authority
JP
Japan
Prior art keywords
heat
fuel cell
cooling water
cooling
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Kazuyuki Matsuzawa
和幸 松沢
Hiroshi Yamada
洋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP43A priority Critical patent/JPH06176777A/en
Publication of JPH06176777A publication Critical patent/JPH06176777A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To stably control a fuel cell in a compact form, and to utilize high grade exhaust heat by connection supplying cell cooling water of a system to a heat utilizing unit outside of the cell, while the water is sealed and separated from the outside. CONSTITUTION:The separate flow of cell cooling water to an outside utilization unit 7a is controlled by adjusting the opening of control valves 9A, 9B, 9C, so that the temperature of a thermometer 10 at a point of confluence does not fall to a level of no more than a predetermined value. A cooler 4 is utilized when the temperature 10 is higher than the predetermined value. Since the cooling water is sealed in a system and a unit 7a without being released to atmospheric pressure, and is thus separated from the outside, the high grade water quality can be maintained once the two systems are flushed well. Since the quantity of heat of the cooling water is directly fed to the heat utilization unit outside, a steam generator is omitted, and compactness can be achieved for the entire system design.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力及び熱の両方を供給
する燃料電池発電システムに関する。
FIELD OF THE INVENTION The present invention relates to a fuel cell power generation system for supplying both electric power and heat.

【0002】[0002]

【従来の技術】燃料電池発電システムは、燃料電池本
体、都市ガス,プロパンガスなどの燃料から水素ガスを
生成する改質装置、直流電流を交流に変換するインバー
タ装置、燃料電池本体の動作や水素生成に適した温度に
作動ガスの温度を保つための熱交換器、電池本体の発熱
を冷却する冷却装置、二相流となった電池冷却水を改質
用蒸気と電池冷却水に分離するセパレータ等より構成さ
れており、都市ガス,プロパンガスなどの燃料が有して
いる化学エネルギーを電気エネルギーに変換する発電シ
ステムである。
2. Description of the Related Art A fuel cell power generation system includes a fuel cell body, a reformer for producing hydrogen gas from a fuel such as city gas or propane gas, an inverter device for converting direct current into alternating current, operation of the fuel cell body and hydrogen. A heat exchanger for maintaining the temperature of the working gas at a temperature suitable for generation, a cooling device for cooling the heat generation of the battery main body, a separator for separating the two-phase flow battery cooling water into reforming steam and battery cooling water Is a power generation system that converts the chemical energy of fuel such as city gas and propane gas into electric energy.

【0003】しかして、燃料電池発電システムは高効率
の発電方式であると共に、熱利用としても優れたポテン
シャルを有していることは、良く認められている。最近
では、環境問題に対応し、燃料電池発電システムの有用
性を更に発揮するために、電気及び熱を供給するシステ
ムいわゆるコジェネレーションシステムとしての有用性
が強く求められるようになってきた。
However, it is well accepted that the fuel cell power generation system is a highly efficient power generation system and has an excellent potential for heat utilization. Recently, in order to cope with environmental problems and to further exert the usefulness of a fuel cell power generation system, there has been a strong demand for its usefulness as a system for supplying electricity and heat, a so-called cogeneration system.

【0004】しかしながら、従来の燃料電池発電システ
ムは、排熱を効果的に回収し、高品位の熱エネルギーを
供給するという点では、必ずしも満足できるものではな
かった(ここでいう高品位の熱エネルギーとは、160
℃以上の蒸気等高い温度落差を有する熱をいう)。従来
の燃料電池発電システムにおける高品位の排熱回収の例
として、電池冷却水系から高温蒸気を直接取出す熱回収
方式が知られている。
However, the conventional fuel cell power generation system is not necessarily satisfactory in that it effectively recovers exhaust heat and supplies high-quality heat energy (the high-quality heat energy here is referred to as "high-quality heat energy"). Is 160
Heat that has a high temperature drop such as steam above ℃). As an example of high-quality exhaust heat recovery in a conventional fuel cell power generation system, a heat recovery system in which high-temperature steam is directly taken out from a cell cooling water system is known.

【0005】図4は高温蒸気を直接取出す熱回収方式の
従来例の系統図である。同図において、燃料電池本体1
は、燃料極1A,空気極1B及び発電時の発熱を吸収す
る電池冷却板1Cを備えている。この電池冷却板1Cを
通して流れる冷却水は、電池本体1の発電に伴う発熱に
より加熱されて水蒸気及び水の二相流となり、下流の気
水分離器2で分離された水は一次冷却水系の冷却水循環
ポンプ3により電池入口温度まで冷却する冷却器4を通
して再び電池本体1の電池冷却板1Cに送られる。
FIG. 4 is a system diagram of a conventional example of a heat recovery system for directly taking out high temperature steam. In the figure, the fuel cell body 1
Includes a fuel electrode 1A, an air electrode 1B, and a battery cooling plate 1C that absorbs heat generated during power generation. The cooling water flowing through the battery cooling plate 1C is heated by the heat generated by the power generation of the battery main body 1 to become a two-phase flow of steam and water, and the water separated by the steam / water separator 2 at the downstream side is cooled by the primary cooling water system. It is sent again to the battery cooling plate 1C of the battery body 1 through the cooler 4 which cools the battery inlet temperature by the water circulation pump 3.

【0006】冷却器4の冷却には、その二次側4Aに適
当な冷温流体を使用すればよい。この冷却器4の二次側
の低温冷媒が持ち去る熱は、一般に低品位の熱エネルギ
ーとして回収される。
To cool the cooler 4, a suitable cold / hot fluid may be used on the secondary side 4A thereof. The heat carried away by the low-temperature refrigerant on the secondary side of the cooler 4 is generally recovered as low-grade heat energy.

【0007】気水分離器2で分離された水蒸気は、制御
弁5を介して図示していない燃料改質系に送られ、主原
燃料の改質等に用いられる。余剰の水蒸気は制御弁6を
通して二次冷却系に設置された吸収式冷凍機7bに供給
され、この冷凍機7bを駆動した後、水蒸気は凝縮水と
なり、凝縮水タンク12に集められ、給水ポンプ8によ
り水処理装置13を経て冷却水循環ポンプ3の入口に送
られる。この凝縮水タンク12一端は大気圧に開放され
ている。
The steam separated by the steam separator 2 is sent to a fuel reforming system (not shown) through the control valve 5 and used for reforming the main raw fuel. The surplus steam is supplied to the absorption type refrigerator 7b installed in the secondary cooling system through the control valve 6, and after driving the refrigerator 7b, the steam becomes condensed water, which is collected in the condensed water tank 12 and supplied by the water supply pump. 8 is sent to the inlet of the cooling water circulation pump 3 via the water treatment device 13. One end of the condensed water tank 12 is open to the atmospheric pressure.

【0008】燃料電池発電システムは、都市ガス,プロ
パンガスなどの燃料ガスと水蒸気とを改質器等で化学反
応させて水素ガスを生成し、その水素ガスと空気の電気
化学反応から電力を取り出している。しかし、気水分離
器2の蒸気を直接取り出して排熱に利用する発電システ
ムは、吸収式冷凍機7bの運転状況により吸収式冷凍機
7bに必要な蒸気量が変化する一方、気水分離器2から
は改質器に供給する蒸気も同時に取り出している。この
ため、吸収式冷凍機7bが多量の蒸気を必要とする運転
状態の場合、吸収式冷凍機7bに供給する蒸気の圧力,
温度が低下するので、その制御が困難であった。
The fuel cell power generation system produces hydrogen gas by chemically reacting fuel gas such as city gas and propane gas with steam in a reformer or the like, and takes out electric power from the electrochemical reaction of the hydrogen gas and air. ing. However, in the power generation system that directly takes out the steam of the steam separator 2 and uses it for exhaust heat, the steam amount required for the absorption refrigerator 7b changes depending on the operating condition of the absorption refrigerator 7b, while the steam separator At the same time, the steam supplied to the reformer is also taken out. Therefore, when the absorption refrigerating machine 7b is in an operating state requiring a large amount of steam, the pressure of steam supplied to the absorption refrigerating machine 7b,
It was difficult to control because the temperature decreased.

【0009】また、電池冷却水を一旦外部に取り出し、
大気圧に開放した後、再度電池本体の冷却系に戻してい
るので、燃料電池外部の物質が電池冷却水に混入する恐
れがあり、電池冷却水の水質管理が難しく、高能力の水
処理装置13を必要としていた。
Also, the battery cooling water is taken out once,
After opening to atmospheric pressure, it is returned to the cooling system of the cell body again, so substances outside the fuel cell may mix into the cell cooling water, making it difficult to control the quality of the cell cooling water, and a high-performance water treatment device. I needed thirteen.

【0010】図6は、従来の間接式蒸気取出し法による
従来例の系統図である。同図に示すように、、電池冷却
水系の気水分離器2の下流側に蒸気発生器11を設け、
この蒸気発生器11から高品位の排熱を回収している。
9A,9B,9Cは制御弁、10は温度計である。
FIG. 6 is a system diagram of a conventional example by the conventional indirect vapor extraction method. As shown in the figure, a steam generator 11 is provided downstream of the steam / water separator 2 of the battery cooling water system,
High-quality exhaust heat is recovered from this steam generator 11.
9A, 9B and 9C are control valves and 10 is a thermometer.

【0011】この間接式蒸気取り出し法では、排熱回収
用の蒸気と、改質用の蒸気とが、別々に取り出され、蒸
気発生器11がバッファタンクの役割を果たすため、燃
料電池の制御が安定して行える利点がある。また、電池
冷却水と取り出し蒸気とは完全に隔離されているため、
電池冷却水の水質管理が容易で高品位の排熱を回収しな
い燃料電池発電システムと同等的な水処理装置が利用で
きる利点がある。しかし、蒸気発生器11に多くのスペ
ースを割かなくてはならない欠点があり、また蒸気発生
器11のピンチ温度の分だけ、取り出し蒸気の温度,圧
力が低くなる欠点があった。
In this indirect steam extraction method, the exhaust heat recovery steam and the reforming steam are taken out separately, and the steam generator 11 plays the role of a buffer tank. It has the advantage of being stable. Also, since the battery cooling water and the extracted steam are completely isolated,
There is an advantage that a water treatment device equivalent to a fuel cell power generation system that can easily control the water quality of battery cooling water and does not recover high-quality exhaust heat can be used. However, there is a drawback that a lot of space has to be allocated to the steam generator 11, and there is a drawback that the temperature and pressure of the taken-out steam are lowered by the pinch temperature of the steam generator 11.

【0012】図7は従来の燃料電池発電設備の排熱回収
系統図であり、同図において、燃料電池プラント20の
排熱回収系統のうち、系内で回収した熱エネルギーを蒸
気の状態で取り出し、吸収式冷凍機21を用いて冷熱と
して利用するが、この冷熱を定格量利用する時には吸収
式冷凍機21を運転して系内で回収した高温排熱蒸気2
2の有する熱エネルギーを全量冷熱に変換し、冷熱媒体
23を用いて冷熱利用設備24に供給し、熱エネルギー
を冷熱に変換する際に吸収式冷凍機21において生じる
排熱は、冷却塔25を用いて大気へ放散する。
FIG. 7 is a diagram of an exhaust heat recovery system of a conventional fuel cell power generation facility. In the same figure, in the exhaust heat recovery system of the fuel cell plant 20, the thermal energy recovered in the system is taken out in a vapor state. The absorption refrigerating machine 21 is used as cold heat. When the rated quantity of this refrigerating heat is used, the absorption refrigerating machine 21 is operated to recover the high temperature exhaust heat steam 2 in the system.
The entire heat energy of 2 is converted into cold heat, supplied to the cold heat utilization equipment 24 using the cold heat medium 23, and the waste heat generated in the absorption refrigerator 21 when converting the heat energy into cold heat is generated in the cooling tower 25. Dissipate to atmosphere.

【0013】冷熱の需要が低減した場合には、燃料電池
プラント20の熱収支バランスをとる目的で、定格冷熱
需要時の回収排熱分と実際の利用分との差に相当する分
の高温排熱蒸気22を流量調節バルブ26を用いて冷却
塔25の系統中に設置した熱交換器27へ分岐し、高温
排熱蒸気22を冷却塔25の熱媒体28を用いて冷却・
凝縮することで余剰の高温排熱蒸気22の有する熱エネ
ルギーを大気などに放散していた。
When the demand for cold heat is reduced, for the purpose of balancing the heat balance of the fuel cell plant 20, a high temperature exhaust gas corresponding to the difference between the recovered exhaust heat amount at the time of rated cold heat demand and the actual utilization amount is used. The hot steam 22 is branched to the heat exchanger 27 installed in the system of the cooling tower 25 by using the flow rate control valve 26, and the high temperature exhaust heat steam 22 is cooled by using the heat medium 28 of the cooling tower 25.
By condensing, the thermal energy of the surplus high temperature exhaust heat steam 22 was dissipated to the atmosphere.

【0014】上述したように、従来の燃料電池発電設備
の排熱回収系統においては、吸収式冷凍機の有する冷却
塔系統中に高温排熱蒸気を凝縮させる熱交換器を有して
いた。このような熱交換器は蒸気の凝縮器であるため大
型機器となる傾向が強いことから設置面積に関する要求
の厳しい都市設置型のプラントなどにおいては機器の小
型化が望まれていた。
As described above, in the conventional exhaust heat recovery system of the fuel cell power generation facility, the cooling tower system of the absorption refrigerator has the heat exchanger for condensing the high temperature exhaust heat steam. Since such a heat exchanger is a steam condenser and tends to be a large-sized device, it has been desired to reduce the size of the device in a city-installed plant or the like where the installation area is strictly required.

【0015】[0015]

【発明が解決しようとする課題】本発明は上記事情に鑑
みて成されたもので、コンパクトで燃料電池の制御が安
定して行うことができ、また燃料電池の電池冷却水の水
質管理が容易で高能力の水処理装置を必要とせず、さら
に高品位の排熱回収が可能でかつ熱交換器などの機器の
小型化を図った燃料電池発電システムを提供することを
目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and is compact, allows stable control of the fuel cell, and facilitates water quality control of the cell cooling water of the fuel cell. It is an object of the present invention to provide a fuel cell power generation system that does not require a high-capacity water treatment device, is capable of recovering high-quality exhaust heat, and has downsized devices such as heat exchangers. .

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、燃料極と空気極と電解質とで
構成する電池セルと、この電池セルを多数層積層し,冷
却媒体を循環させて電池本体から発生する熱を吸収する
冷却板を前記積層間に配してなる燃料電池本体と、前記
電池冷却板を通過して循環させる一次冷却系と、この一
次冷却系に設けた冷却媒体を気相と液相に分離させる気
液分離器と、この気液分離器で分離された冷却媒体を循
環させるポンプを備えた燃料電池発電システムにおい
て、前記一次冷却系の冷却媒体液相部分の冷却媒体を燃
料電池外部の熱利用機器に接続したことを特徴とする。
また、本発明の請求項2は、水素分に富む燃料ガスをア
ノード極へ,空気をカソード極へ導入して発電を行う燃
料電池と、プラント内作動流体から蒸気の状態で得られ
た熱エネルギーを冷熱に変換する吸収式冷凍機と、この
吸収式冷凍機で得られる冷熱を消費する冷熱利用系とを
有する燃料電池発電システムにおいて、冷熱利用時には
吸収式冷凍機の排熱を大気等に放散させるための冷却塔
等の冷却機器へ、また冷熱の需要が低減した場合には冷
熱媒体の有する冷熱エネルギーの余剰分を系外に放散す
るように構成したことを特徴とする。
In order to achieve the above object, the first aspect of the present invention provides a battery cell comprising a fuel electrode, an air electrode and an electrolyte, and a plurality of the battery cells are laminated and cooled. A fuel cell body in which a cooling plate that circulates a medium to absorb heat generated from the cell body is arranged between the stacks, a primary cooling system that circulates through the cell cooling plate, and a primary cooling system In a fuel cell power generation system including a gas-liquid separator that separates a cooling medium provided into a gas phase and a liquid phase, and a pump that circulates the cooling medium separated by the gas-liquid separator, the cooling medium of the primary cooling system The cooling medium in the liquid phase portion is connected to a heat utilization device outside the fuel cell.
According to claim 2 of the present invention, a fuel cell for generating power by introducing a fuel gas rich in hydrogen into the anode and air into the cathode, and thermal energy obtained in a vapor state from the working fluid in the plant. In a fuel cell power generation system that has an absorption chiller that converts heat into cold heat and a cold heat utilization system that consumes the cold heat obtained by this absorption chiller, the exhaust heat of the absorption chiller is dissipated to the atmosphere when using the cold heat. It is characterized in that it is configured to dissipate the surplus of the cooling heat energy of the cooling heat medium to the outside of the system to the cooling equipment such as a cooling tower or when the demand for the cooling heat is reduced.

【0017】[0017]

【作用】本発明の請求項1は、燃料電池発電システムの
電池冷却水(一次系冷却水)を、外界から封止し、隔離
した状態で、燃料電池外部の熱利用機器に接続するよう
に構成しているので、コンパクトでかつ高品位の排熱利
用が可能である。また請求項2は冷熱利用時の冷却塔の
機器を冷熱の需要が低減した場合には系外に放散するよ
うに構成しているので、プラントの設置面積の増加なし
に定常運転が可能である。
According to the first aspect of the present invention, the cell cooling water (primary system cooling water) of the fuel cell power generation system is sealed from the outside and is connected to the heat utilization equipment outside the fuel cell in an isolated state. Since it is configured, it is compact and can use high-quality waste heat. Further, in claim 2, since the equipment of the cooling tower at the time of utilizing cold energy is configured to be dissipated outside the system when the demand for cold energy is reduced, steady operation is possible without increasing the installation area of the plant. .

【0018】[0018]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は、本発明の一実施例の系統図である。同図に
おいて、冷却水循環ポンプ3の下流側に制御弁9A,9
B,9Cを設け、電池冷却水の一部分(あるいは全部)
を燃料電池発電システムから外部に取り出している。こ
の外部に取り出された電池冷却水は、外部の熱利用機器
7aに接続されているが、この熱利用機器7a内では、
電池冷却水は封止され、外部と隔離された状態となって
おり、電池冷却水の外部への流出はなく、熱量のみが外
部の熱利用機器7aに受け渡されている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a system diagram of an embodiment of the present invention. In the figure, control valves 9A, 9 are provided on the downstream side of the cooling water circulation pump 3.
B and 9C are provided, and a part (or all) of the battery cooling water
Is taken out of the fuel cell power generation system. The battery cooling water taken out to the outside is connected to the external heat utilization device 7a.
The battery cooling water is sealed and isolated from the outside, and the battery cooling water does not flow out to the outside and only the amount of heat is transferred to the external heat utilization device 7a.

【0019】この燃料電池発電システムでは、電池冷却
水は、冷却水循環ポンプ3の下流側の制御弁9A,9
B,9Cにより電池冷却水の一部分(あるいは全部)を
燃料電池発電システムから外部に取り出し、外部の熱利
用機器7aでその熱量を利用している。熱量を失い温度
の低下した電池冷却水は再び燃料電池本体に戻り、燃料
電池本体の電池冷却水と合流する。この間電池冷却水は
閉ループとなっており、大気圧に開放させることはな
い。
In this fuel cell power generation system, the cell cooling water is the control valves 9A, 9A on the downstream side of the cooling water circulation pump 3.
A part (or all) of the cell cooling water is taken out from the fuel cell power generation system by B and 9C, and the heat amount is utilized by the external heat utilization device 7a. The cell cooling water, which has lost its heat and has decreased in temperature, returns to the fuel cell body again and joins with the cell cooling water of the fuel cell body. During this time, the battery cooling water is in a closed loop and is not opened to atmospheric pressure.

【0020】次に、本実施例の作用について説明する。
本実施例では、制御弁9A,9B,9Cの開度調整によ
り、電池冷却水の外部熱利用機器7aへの分流流量を制
御し、合流点の温度(温度計10の温度)が所定の電池
入口温度より低下しないように制御されている。冷却器
4は合流点の温度が、所定の電池入口温度より高い場合
に利用される。また、本実施例では、電池冷却水は、大
気圧に開放されることはなく、電池発電システムと外部
熱利用機器7aの二つの系のなかで封止され、他の外界
から隔離された状態となっているので、電池発電システ
ムと外部熱利用機器7aの電池冷却水系をよくフラッシ
ングした後は、電池冷却水の水質は高品質に保つことが
できる。
Next, the operation of this embodiment will be described.
In the present embodiment, by adjusting the opening degree of the control valves 9A, 9B, 9C, the split flow rate of the battery cooling water to the external heat utilization device 7a is controlled, and the temperature of the confluence (the temperature of the thermometer 10) is a predetermined battery. The temperature is controlled so that it does not drop below the inlet temperature. The cooler 4 is used when the temperature at the confluence is higher than a predetermined battery inlet temperature. Further, in the present embodiment, the battery cooling water is not released to the atmospheric pressure, is sealed in the two systems of the battery power generation system and the external heat utilization device 7a, and is isolated from other external environment. Therefore, after well flushing the battery cooling water system of the battery power generation system and the external heat utilization device 7a, the water quality of the battery cooling water can be kept high.

【0021】また、従来の燃料電池発電システムでは、
電池冷却水の持つ熱量を一旦蒸気に変換し、蒸気と外部
熱利用機器とで熱交換を行っているのに対し、本実施例
では、電池冷却水の持つ熱量を直接外部の熱利用機器に
供給している。燃料電池本体と外部の熱利用機器とを複
合的に結合することにより蒸気発生器がなくなり、全体
としてコンパクトな設計が可能となる。
Further, in the conventional fuel cell power generation system,
While the heat quantity of the battery cooling water is once converted into steam and heat exchange is performed between the steam and the external heat utilizing equipment, in the present embodiment, the heat quantity of the battery cooling water is directly transferred to the external heat utilizing equipment. We are supplying. By combining the fuel cell body and the external heat utilization device in a complex manner, the steam generator is eliminated, and a compact design as a whole is possible.

【0022】図2は本発明の他の実施例の系統図であ
る。同図において、冷却水循環ポンプ3の下流側に制御
弁9A,9B,9Cを設け、電池冷却水の一部分(ある
いは全部)を燃料電池発電システムから外部に取り出し
ている。この外部に取り出された電池冷却水は、臭化ナ
トリウム、臭化リチウム液等の吸収式冷凍機の冷媒溶液
15を蒸発させる冷凍機再生機14内に導かれている。
吸収式冷凍機7bの再生機14で冷却された電池冷却水
は、再び燃料電池本体に戻り、燃料電池本体の電池冷却
水と合流し、電池本体1の冷却板1Cの入口に導入され
ている。制御弁9A,9B,9C、合流後の温度を測定
する温度計10及び冷却器4が電池冷却水系に設けられ
ている。この冷却水系でも電池冷却水は大気圧に開放さ
れることはなく、外部とは封止,隔離されている。
FIG. 2 is a system diagram of another embodiment of the present invention. In the figure, control valves 9A, 9B and 9C are provided on the downstream side of the cooling water circulation pump 3, and a part (or all) of the cell cooling water is taken out from the fuel cell power generation system. The battery cooling water taken out to the outside is introduced into the refrigerator regenerator 14 that evaporates the refrigerant solution 15 of the absorption refrigerator such as sodium bromide or lithium bromide liquid.
The cell cooling water cooled by the regenerator 14 of the absorption chiller 7b returns to the fuel cell body again, merges with the cell cooling water of the fuel cell body, and is introduced into the inlet of the cooling plate 1C of the cell body 1. . A control valve 9A, 9B, 9C, a thermometer 10 for measuring the temperature after joining, and a cooler 4 are provided in the battery cooling water system. Even in this cooling water system, the battery cooling water is not opened to the atmospheric pressure and is sealed and isolated from the outside.

【0023】本実施例では、電池冷却水は冷却水循環ポ
ンプ3の下流側の制御弁9A,9B,9Cにより電池冷
却水の一部分(あるいは全部)を燃料電池発電システム
から外部に取り出し、吸収式冷凍機7bの冷媒溶液15
中の臭化ナトリウム、臭化リチウム液等の吸収式冷凍機
の冷媒16を蒸発させ、濃縮再生させる。吸収式冷凍機
7bの再生機14で冷却された電池冷却水は、再び燃料
電池本体に戻り、燃料電池本体の電池冷却水と合流す
る。
In this embodiment, a part (or all) of the cell cooling water is taken out of the fuel cell power generation system by the control valves 9A, 9B and 9C on the downstream side of the cooling water circulation pump 3 to perform absorption refrigeration. Refrigerant solution 15 of machine 7b
The refrigerant 16 of the absorption refrigerator, such as sodium bromide or lithium bromide liquid, is evaporated and concentrated and regenerated. The cell cooling water cooled by the regenerator 14 of the absorption chiller 7b returns to the fuel cell body again and joins with the cell cooling water of the fuel cell body.

【0024】本実施例でも、制御弁9A,9B,9Cの
開度調整により、電池冷却水の吸収式冷凍機側への分流
流量を制御し、合流点の温度(温度計10の温度)が所
定の電池入口温度より低下しないように制御されてい
る。冷却器4は合流点の温度が、所定の電池入口温度よ
り高い場合に利用される。吸収式冷凍機7bの再生機1
4がバッファタンクの役割を果たしており、安定した燃
料電池発電システムの制御が可能である。また、電池冷
却水は大気圧に開放されることはなく、電池冷却水系
は、電池発電システムと吸収式冷凍機の二つの系のなか
で封止され、他の外界から隔離された状態となってお
り、電池発電システムと吸収式冷凍機の電池冷却水系を
よくフラッシングした後は、電池冷却水の水質は高品質
に保つことができる。
Also in this embodiment, by adjusting the opening degree of the control valves 9A, 9B, 9C, the branching flow rate of the battery cooling water to the absorption refrigerator side is controlled, and the temperature at the confluence point (temperature of the thermometer 10) is controlled. The temperature is controlled so as not to drop below a predetermined battery inlet temperature. The cooler 4 is used when the temperature at the confluence is higher than a predetermined battery inlet temperature. Regenerator 1 of absorption refrigerator 7b
4 plays the role of a buffer tank, which enables stable control of the fuel cell power generation system. In addition, the battery cooling water is not released to atmospheric pressure, and the battery cooling water system is sealed in the two systems, the battery power generation system and the absorption refrigerator, and is in a state of being isolated from the outside world. Therefore, after thoroughly flushing the battery power generation system and the battery cooling water system of the absorption chiller, the water quality of the battery cooling water can be kept high.

【0025】図3は本発明のさらに他の実施例の系統図
である。同図に示すように、制御弁9A,9Cに代えて
3方弁9Dを使用して、電池冷却水の分流流量を制御し
ても効果は同一である。また、吸収式冷凍機に代えて他
の熱利用機器を使用しても効果は同一である。
FIG. 3 is a system diagram of still another embodiment of the present invention. As shown in the figure, the same effect can be obtained by controlling the split flow rate of the battery cooling water by using the three-way valve 9D instead of the control valves 9A and 9C. Further, the effect is the same even if another heat utilization device is used instead of the absorption refrigerator.

【0026】図4は本発明の別の実施例の系統図であ
る。同図に示すように、定格量の冷熱を利用する時に
は、燃料電池プラント20から取り出された高温排熱蒸
気22の有する熱エネルギーは、吸収式冷凍機21にお
いて冷熱に変換され冷熱媒体23を用いて冷熱利用設備
24に供給される。高温排熱蒸気22はその有する熱エ
ネルギーを吸収式冷凍機21を介して冷熱に変換され、
戻り凝縮水29として燃料電池プラント20へ戻され
る。
FIG. 4 is a system diagram of another embodiment of the present invention. As shown in the figure, when the rated amount of cold heat is used, the heat energy of the high temperature exhaust heat steam 22 extracted from the fuel cell plant 20 is converted into cold heat in the absorption refrigerator 21 and the cold heat medium 23 is used. And is supplied to the cold heat utilization equipment 24. The high-temperature exhaust heat steam 22 converts its thermal energy into cold heat via the absorption refrigerator 21.
Returned condensed water 29 is returned to the fuel cell plant 20.

【0027】冷熱の需要が低減した場合、吸収式冷凍機
21へは冷熱需要定格時に相当する高温排熱蒸気22を
供給する。吸収式冷凍機21からは冷熱需要定格時に相
当する温度,流量の冷熱媒体23が得られるが、冷熱利
用設備24側の冷熱需要は低減していることから冷熱の
余剰分が生じることとなる。余剰分の冷熱に相当する冷
熱媒体23は流量調節バルブ26によって流路を変更さ
れ熱交換器30へと送られる。冷熱は吸収式冷凍機21
から送出される熱媒体28の熱を奪うことで昇温し、冷
熱利用設備24からの戻り冷熱媒体23と混合して再び
吸収式冷凍機21へと戻される。
When the demand for cold heat is reduced, the absorption chiller 21 is supplied with the high-temperature exhaust heat steam 22 corresponding to the cold heat demand rating. From the absorption refrigerator 21, a cold heat medium 23 having a temperature and a flow rate corresponding to the cold heat demand rating is obtained, but since the cold heat demand on the cold heat utilization equipment 24 side is reduced, a surplus of cold heat is generated. The flow path of the cold heat medium 23 corresponding to the excess cold heat is changed by the flow rate control valve 26 and is sent to the heat exchanger 30. Cold heat is absorption refrigerator 21
The temperature of the heat medium 28 is increased by removing the heat of the heat medium 28 sent from the heat exchanger 28, mixed with the return cold heat medium 23 from the cold heat utilization facility 24, and returned to the absorption refrigerator 21 again.

【0028】ここで、熱交換器30へ送られる冷熱媒体
23と冷熱利用設備24へ送られる分との流量分配は、
熱交換器30からの戻りの冷熱媒体23と冷熱利用設備
24からの戻り冷熱媒体23との混合温度を熱電対等の
温度測定手段31を用いて測定し、その信号を制御器3
2において計算・判断し、流量調節バルブ26の開度を
制御して冷熱利用設備24及び熱交換器30への冷熱媒
体23の割り振りを制御する。
Here, the flow rate distribution between the cold heat medium 23 sent to the heat exchanger 30 and the amount sent to the cold heat utilization equipment 24 is
The mixed temperature of the returning cooling heat medium 23 from the heat exchanger 30 and the returning cooling heat medium 23 from the cooling heat utilization equipment 24 is measured by using the temperature measuring means 31 such as a thermocouple, and the signal is measured by the controller 3
In step 2, calculation / judgment is performed, and the opening degree of the flow rate control valve 26 is controlled to control the allocation of the cold heat medium 23 to the cold heat utilization equipment 24 and the heat exchanger 30.

【0029】[0029]

【発明の効果】以上説明したように、本発明の請求項1
によれば、蒸気発生器や大容量の水処理装置を必要とせ
ず、コンパクトでかつ低コストの高品位排熱利用の燃料
電池発電システムを提供することができる。また、本発
明の請求項2によれば、高温排熱蒸気を凝縮させる熱交
換器を設置することなく、高温側流体,低温側流体の双
方に液体を用いる熱交換器を設置することで、冷熱の需
要が低減した場合においてもプラント設置面積の増加を
ほとんど伴わずにプラントの定常的な運転が可能とな
り、また、冷熱需要の低減時には、吸収式冷凍機の運転
時に生じる熱を大気等へ放出する冷却塔等の機器の負荷
をその分低減可能である。冷却塔の場合、負荷の低減に
伴いファンを一部停止する等の制御を組み込むことで電
力の消費量の低減が可能である。
As described above, according to the first aspect of the present invention.
According to this, it is possible to provide a compact and low-cost fuel cell power generation system using high-grade exhaust heat, which does not require a steam generator or a large-capacity water treatment device. Further, according to claim 2 of the present invention, by installing a heat exchanger using a liquid for both the high temperature side fluid and the low temperature side fluid without installing a heat exchanger for condensing the high temperature exhaust heat steam, Even when the demand for cold heat is reduced, the plant can be operated steadily with almost no increase in the installation area of the plant.When the cold heat demand is reduced, the heat generated during operation of the absorption chiller is released to the atmosphere. It is possible to reduce the load on the equipment such as the cooling tower to be discharged. In the case of a cooling tower, it is possible to reduce the power consumption by incorporating control such as partially stopping the fan as the load decreases.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の系統図。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】本発明の他の実施例の系統図。FIG. 2 is a system diagram of another embodiment of the present invention.

【図3】本発明のさらに他の実施例の系統図。FIG. 3 is a system diagram of still another embodiment of the present invention.

【図4】本発明の別の実施例の系統図。FIG. 4 is a system diagram of another embodiment of the present invention.

【図5】従来の直接式蒸気取り出し方式の系統図。FIG. 5 is a system diagram of a conventional direct vapor extraction system.

【図6】従来の間接式蒸気取り出し方式の系統図。FIG. 6 is a system diagram of a conventional indirect vapor extraction system.

【図7】従来の燃料電池システムの排熱回収系統の系統
図。
FIG. 7 is a system diagram of an exhaust heat recovery system of a conventional fuel cell system.

【符号の説明】[Explanation of symbols]

1…電池本体、1A…燃料極、1B…空気極、1C…冷
却板、2…気水分離器、3…冷却水循環ポンプ、4…冷
却器、5,6…制御弁、7a…外部熱利用機器、7b…
吸収式冷凍機、8…給水ポンプ、9A,9B,9C…制
御弁、10…温度計、11…蒸気発生器、12…凝縮水
タンク、13…水処理装置、14…冷凍機再生機、20
…燃料電池プラント、21…吸収式冷凍機、22…高温
排熱蒸気、23…冷熱媒体、24…冷熱利用設備、25
…冷却塔、26…流量調節バルブ、27…熱交換器(凝
縮器)、30…熱交換器、31…温度測定手段、32…
制御器。
DESCRIPTION OF SYMBOLS 1 ... Battery main body, 1A ... Fuel electrode, 1B ... Air electrode, 1C ... Cooling plate, 2 ... Steam separator, 3 ... Cooling water circulation pump, 4 ... Cooler, 5, 6 ... Control valve, 7a ... Utilization of external heat Equipment, 7b ...
Absorption refrigerator, 8 ... Water supply pump, 9A, 9B, 9C ... Control valve, 10 ... Thermometer, 11 ... Steam generator, 12 ... Condensed water tank, 13 ... Water treatment device, 14 ... Refrigerator regenerator, 20
... Fuel cell plant, 21 ... Absorption refrigerator, 22 ... High temperature exhaust heat steam, 23 ... Cold heat medium, 24 ... Cold heat utilization equipment, 25
... cooling tower, 26 ... flow control valve, 27 ... heat exchanger (condenser), 30 ... heat exchanger, 31 ... temperature measuring means, 32 ...
Controller.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料極と空気極と電解質とで構成する電
池セルと、この電池セルを多数層積層し,冷却媒体を循
環させて電池本体から発生する熱を吸収する冷却板を前
記積層間に配してなる燃料電池本体と、前記電池冷却板
を通過して循環させる一次冷却系と、この一次冷却系に
設けた冷却媒体を気相と液相に分離させる気液分離器
と、この気液分離器で分離された冷却媒体を循環させる
ポンプを備えた燃料電池発電システムにおいて、前記一
次冷却系の冷却媒体液相部分の冷却媒体を燃料電池外部
の熱利用機器に接続したことを特徴とする燃料電池発電
システム。
1. A battery cell comprising a fuel electrode, an air electrode, and an electrolyte, and a plurality of layers of the battery cell, and a cooling plate for circulating a cooling medium to absorb heat generated from the battery body. A fuel cell body, a primary cooling system that circulates through the cell cooling plate, a gas-liquid separator that separates a cooling medium provided in the primary cooling system into a gas phase and a liquid phase, and In a fuel cell power generation system including a pump that circulates a cooling medium separated by a gas-liquid separator, the cooling medium in the liquid phase portion of the cooling medium of the primary cooling system is connected to a heat utilization device outside the fuel cell. And fuel cell power generation system.
【請求項2】 水素分に富む燃料ガスをアノード極へ,
空気をカソード極へ導入して発電を行う燃料電池と、プ
ラント内作動流体から蒸気の状態で得られた熱エネルギ
ーを冷熱に変換する吸収式冷凍機と、この吸収式冷凍機
で得られる冷熱を消費する冷熱利用系とを有する燃料電
池発電システムにおいて、冷熱利用時には吸収式冷凍機
の排熱を大気等に放散させるための冷却塔等の冷却機器
へ、また冷熱の需要が低減した場合には冷熱媒体の有す
る冷熱エネルギーの余剰分を系外に放散するように構成
したことを特徴とする燃料電池発電システム。
2. A fuel gas rich in hydrogen is supplied to the anode,
A fuel cell that introduces air into the cathode to generate electricity, an absorption refrigerator that converts the heat energy obtained from the working fluid in the plant in the form of steam into cold heat, and the cold heat obtained by this absorption refrigerator In a fuel cell power generation system having a consuming cold heat utilization system, when the cold heat is used, it becomes a cooling device such as a cooling tower for dissipating the exhaust heat of the absorption chiller to the atmosphere, or when the demand for the cold heat is reduced. A fuel cell power generation system, characterized in that a surplus of cold energy of a cold heat medium is dissipated to the outside of the system.
JP43A 1992-12-01 1992-12-01 Fuel cell power generation system Pending JPH06176777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06176777A (en) 1992-12-01 1992-12-01 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06176777A (en) 1992-12-01 1992-12-01 Fuel cell power generation system

Publications (1)

Publication Number Publication Date
JPH06176777A true JPH06176777A (en) 1994-06-24

Family

ID=18137228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06176777A (en) 1992-12-01 1992-12-01 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH06176777A (en)

Similar Documents

Publication Publication Date Title
Rashidi et al. Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolysers, and supercapacitors
US5345786A (en) Absorption heat pump and cogeneration system utilizing exhaust heat
CN110544786B (en) Combined cooling, heating and power system of high-temperature proton exchange membrane fuel cell and working method thereof
CN101576330B (en) Airborne combined cooling and heating system and method for all-electric aircraft
CN105576269A (en) Thermal control system of fixed mini-type fuel cell cogeneration device
KR101828938B1 (en) High efficiency tri-generation systems based on fuel cells
JPH05299107A (en) System for utilizing exhaust heat of fuel battery and control method therefor
JP2004211979A (en) Absorption refrigerating system
CN117293349A (en) Hydrogen-heat integrated power generation system and method based on PEMFC and organic Rankine cycle
US20120122002A1 (en) Phosphoric acid fuel cell with integrated absorption cycle refrigeration system
JPH0831435A (en) Method for adjusting temperature of cooling water of fuel cell power generating device
JPH06176777A (en) Fuel cell power generation system
JP6666148B2 (en) Electrical installation having a cooled fuel cell with an absorption heat engine
KR101555125B1 (en) Generator cooling system
KR101828937B1 (en) Combined power generation system of high-temperature polymer electrolyte membrane fuel cell with a rankine cycle system
JPH05225993A (en) Phosphoric acid type fuel cell
JPH0554903A (en) Fuel cell power generation system
JPH05223389A (en) Fuel cell-refrigerator integral system and controlling method therefor
CN219778923U (en) Cold, heat and electricity triple supply system of hydrogen fuel cell
JPH062981A (en) Fuel cell refrigerator integral system
JPH0529013A (en) Fuel cell power generation system
JP3426620B2 (en) Fuel cell waste heat utilization system
JP2000082478A (en) Phospholic acid type fuel cell generation plant
JPS5828177A (en) Fuel-cell generation plant
JPH0817455A (en) Exhaust heat recovery device for fuel cell generating unit