JPH0617523B2 - Low melting point alloy for simple mold - Google Patents

Low melting point alloy for simple mold

Info

Publication number
JPH0617523B2
JPH0617523B2 JP63176498A JP17649888A JPH0617523B2 JP H0617523 B2 JPH0617523 B2 JP H0617523B2 JP 63176498 A JP63176498 A JP 63176498A JP 17649888 A JP17649888 A JP 17649888A JP H0617523 B2 JPH0617523 B2 JP H0617523B2
Authority
JP
Japan
Prior art keywords
melting point
alloy
mold
low melting
point alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63176498A
Other languages
Japanese (ja)
Other versions
JPH0225533A (en
Inventor
清哉 中尾
幸 糀谷
寛 皿井
幸男 門田
裕幸 社本
雅人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63176498A priority Critical patent/JPH0617523B2/en
Publication of JPH0225533A publication Critical patent/JPH0225533A/en
Publication of JPH0617523B2 publication Critical patent/JPH0617523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プレス型または射出成形型としての簡易型に
用いる低融点合金に関する。
TECHNICAL FIELD The present invention relates to a low melting point alloy used for a simple mold as a press mold or an injection molding mold.

(従来の技術) 簡易型の製作法としては、従来より種々の方法があり、
例えば石こう等のモデルを転写した砂型を用いる汎用の
重力鋳造法(「トヨタ技術」第27巻第4 号P102〜11
5)、板金モデルを溶湯中に浸漬してそのまゝ凝固させ
るデュアルフォーム法(「機械と工具」1975年6 月 P21
〜25、特開昭51-55733号公報)、鋳造枠内に複数の鋳造
空間を形成しこの鋳造空間に順次注湯して複数の型を順
次鋳造する直接鋳込法(特願昭62-175641 号、特願昭62
-251259 号)等が既に実用化されている。
(Prior Art) There are various methods for manufacturing a simple type,
For example, a general-purpose gravity casting method using a sand mold to which a model such as gypsum is transferred ("Toyota Technology" Vol. 27, No. 4, P102-11).
5), the dual-form method in which a sheet metal model is immersed in molten metal and solidified as it is (“Machine and Tool”, June 1975, P21).
No. 25, JP-A-51-55733), a direct casting method in which a plurality of casting spaces are formed in a casting frame and the molds are sequentially poured to successively cast a plurality of molds (Japanese Patent Application No. 62- No. 175641, Japanese Patent Application Sho 62
-251259) is already in practical use.

そして従来、上記した種々の簡易型の製作には、Bi,Pb,
Cd,Sn,Sb等の2種以上からなる低融点合金が一般に用い
られていた(「型技術」1987年第2 巻第10号P26 )。
And, conventionally, Bi, Pb,
Low melting point alloys consisting of two or more of Cd, Sn, Sb, etc. were generally used (“Mold technology”, Vol. 2, No. 10, P26, 1987).

(発明が解決しようとする課題) ところで、上記低融点合金の中では、融点が低く(50〜
200 ℃)、かつ凝固時にわずか膨張するだけで製造性に
優れているところから、Biを主成分とする合金が注目さ
れ、上記デュアルフォーム法等に多用されている。しか
しながら、従来のBi系の合金は、機械的強度が小さいば
かりか耐摩耗性に劣り、例えばプレス型として高張力鋼
板の加工に適用することは到底不可能で、普通鋼板へ適
用しても著しく寿命が短いという問題があった。またそ
の融点の低さにより、例えば成形温度の高い射出成形型
へ適用することも不可能な状況にあった。
(Problems to be Solved by the Invention) By the way, among the low melting point alloys, the melting point is low (50-
At 200 ℃), and because it expands a little during solidification and is excellent in manufacturability, alloys containing Bi as the main component have attracted attention and are widely used in the above-mentioned dual foam method and the like. However, conventional Bi-based alloys not only have low mechanical strength but also poor wear resistance, and it is extremely impossible to apply them to the processing of high-tensile steel sheets as a press die, for example. There was a problem that the life was short. Further, due to its low melting point, it is impossible to apply it to, for example, an injection mold having a high molding temperature.

そこで、上記Bi系の合金に代えてZnを主成分とする合金
(三井金属鉱業ZAS)が使用される例が多くなってい
る。このZnを主成分とする合金は、機械的強度が軟鋼程
度と高く、かつ耐摩耗性も良好であり、プレス型として
高張力鋼板等の加工に、あるいは射出成形型として成形
温度の高い樹脂成形に適用できる利点がある。しかしな
がら、このZn系の合金は、融点が比較的高く(約 380
℃)、かつ凝固時に大きく収縮する性質を有しているた
め、製造性に難点があり、コストも高くつくという問題
があった。
Therefore, in many cases, an alloy containing Zn as a main component (Mitsui Mining & Smelting ZAS) is used in place of the Bi-based alloy. This Zn-based alloy has high mechanical strength as high as mild steel and good wear resistance, and is used for processing high-strength steel sheets as a press mold, or as a resin mold with a high molding temperature as an injection mold. There are advantages that can be applied to. However, this Zn-based alloy has a relatively high melting point (approximately 380
Since it has the property of shrinking significantly at the time of solidification), it has problems in productivity and cost.

本発明は、上記従来の問題を解決することを課題として
なされたもので、機械的性質および耐摩耗性に優れ、か
つ製造性にも優れた簡易型用低融点合金を提供すること
を目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to provide a low melting point alloy for simple molds which is excellent in mechanical properties and wear resistance, and is also excellent in manufacturability. To do.

(課題を解決するための手段) 本発明は、上記課題を解決するため、Bi50〜60wt% 、Sb
4〜10wt% ,残部Snよりなるように構成したことを要旨
とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides Bi50-60 wt%, Sb
The gist is that it is composed of 4 to 10 wt% and the balance is Sn.

本発明において、BiとSnとの成分比率は共晶比率[58:4
2 ]とするのが望ましい。これは、この比率でBi-Sn合
金の融点が最も低くなり、( 139℃)、かつ湯流れ性が
良好となるためである。したがって、上記Biの含有量と
しては52.5〜55.5wt% とするのが望ましい。本発明の合
金が適用される簡易金型の種類は、特に限定するもので
なく、例えばプレス型、射出成形型等に適用し得る。ま
た簡易型の製作法も任意であり前記した重力鋳造法、デ
ュアルフォーム法、直接鋳造法等を選択することができ
る。
In the present invention, the component ratio of Bi and Sn is the eutectic ratio [58: 4
2] is preferable. This is because the Bi—Sn alloy has the lowest melting point at this ratio (139 ° C.) and the molten metal flowability is good. Therefore, the Bi content is preferably 52.5 to 55.5 wt%. The type of simple mold to which the alloy of the present invention is applied is not particularly limited, and it can be applied to, for example, a press mold or an injection mold. Further, a simple type manufacturing method is also arbitrary, and the gravity casting method, the dual foam method, the direct casting method or the like described above can be selected.

(作用) 上記構成の低融点合金において、Bi-Sn合金にSbを所定
量加えることにより、従来のBi系合金に比し、機械的強
度が高まると共に耐摩耗性が向上する。またBi-Sn-Sbの
所定の成分比率により、凝固時における体積変化がほと
んどないか、わずか膨張あるいは収縮するだけとなり、
これに加えて融点も従来のZn系合金に比して比較的低く
抑えることができ製造性が向上する。
(Operation) In the low-melting-point alloy having the above structure, by adding a predetermined amount of Sb to the Bi-Sn alloy, mechanical strength and wear resistance are improved as compared with the conventional Bi-based alloy. Also, due to the predetermined Bi-Sn-Sb component ratio, there is almost no volume change during solidification, or only a slight expansion or contraction,
In addition to this, the melting point can be suppressed to be relatively low as compared with the conventional Zn-based alloy, and the manufacturability is improved.

しかして、Biの含有量が50wt% 未満または60wt% を越す
と、凝固時における収縮および膨張量が大きくなると共
に融点が高くなるので、これを50〜60wt% とした。また
Sbは、その含有量が 4wt% 未満では機械的強度および耐
摩耗性の向上効果が小さく、逆に10t% を越すと機械的
強度および靭性を低下させると共に、融点を上昇させる
ので、これを 4〜10wt% とした。
However, if the Bi content is less than 50 wt% or exceeds 60 wt%, the amount of shrinkage and expansion during solidification increases and the melting point increases, so this was made 50 to 60 wt%. Also
If the content of Sb is less than 4 wt%, the effect of improving the mechanical strength and wear resistance is small, and if it exceeds 10 t%, on the other hand, the mechanical strength and toughness decrease, and the melting point rises. It was set to ~ 10wt%.

(実施例) 以下、本発明の実施例を添付図面にもとづいて説明す
る。
(Example) Hereinafter, an example of the present invention is described based on an accompanying drawing.

実施例1 BiとSnとの成分比率を重量比で共晶比率[58:42 ]に一
定とし、これに種々の比率でSbを添加して所定の大きさ
のブロックを鋳造し、これから硬さ試験片、機械試験
片、衝撃試験片、融点測定用試験片等を切り出し、それ
ぞれの試験に供した。第1図は、これらの試験結果を示
したものである。第1図に示す結果より、引張り強さA
は、Sbの含有量が7wt%程度までは直線的に上昇し、それ
以上Sbの含有量が増すと逆に低下することが明らかにな
った。また圧縮強さBは、Sbの含有量が7wt%程度までは
直線的に上昇し、それ以上Sbの含有量が増してもそれ程
上昇せず、また硬さCと融点Dは、Sbの含有量が増すに
したがってそれぞれ直線的に上昇することが明らかにな
った。一方衝撃値Eは、Sbの含有量が10wt% を越えると
急激に低下している。これら結果を総合的に判断する
と、Sbの添加量としては 4〜10wt% が望ましことが確認
できた。
Example 1 The composition ratio of Bi and Sn was kept constant at a eutectic ratio [58:42] by weight ratio, and Sb was added thereto at various ratios to cast a block of a predetermined size. Test pieces, mechanical test pieces, impact test pieces, melting point measuring test pieces, etc. were cut out and subjected to respective tests. FIG. 1 shows the results of these tests. From the results shown in FIG. 1, the tensile strength A
Was found to increase linearly until the Sb content up to about 7 wt% and conversely decrease as the Sb content further increases. Further, the compressive strength B increases linearly until the content of Sb reaches about 7 wt%, and does not increase so much even if the content of Sb further increases, and the hardness C and the melting point D show that the content of Sb is Sb. It was revealed that the amounts increased linearly as the amount increased. On the other hand, the impact value E sharply decreases when the Sb content exceeds 10 wt%. Comprehensively judging these results, it was confirmed that the addition amount of Sb was desired to be 4 to 10 wt%.

実施例2 55wt% Bi-40wt%Sn-5wt% Sbからなる合金を用いて上記し
た直接鋳込法によりプレス型を鋳造し、高張力鋼板( J
IS SCP45,厚さ1mm)をプレス加工し、プレスショット
数と型摩耗量との関係を調査した。なお、比較のため、
58wt%Bi-42wt%Sn からなる従来の共晶合金を用いて本実
施例と同一の方法により同一のプレス型を製作し、同様
の調査を行なった。本実施例品と比較品の機械的性質は
下表に示すとおりであり、本実施例品の方が比較品に比
して著しく機械的強度が大きくなっている。
Example 2 A press die was cast by the above-mentioned direct casting method using an alloy composed of 55 wt% Bi-40 wt% Sn-5 wt% Sb, and a high-strength steel sheet (J
IS SCP45, thickness 1mm) was pressed, and the relationship between the number of press shots and die wear was investigated. For comparison,
Using a conventional eutectic alloy composed of 58 wt% Bi-42 wt% Sn, the same press die was manufactured by the same method as this example, and the same investigation was conducted. The mechanical properties of the product of this example and the comparative product are as shown in the table below, and the mechanical strength of the product of this example is significantly higher than that of the comparative product.

第2図は、上記調査結果を示したもので、これより、規
定摩耗量 0.3mmに達するプレスショット数は、本実施例
品の場合、線Paで表わすように90枚、比較品の場合、
線Pbで表わすように50枚で、本発明の合金から成るプ
レス型の著しく寿命の長いことが確認できた。これは、
上表に示されるように、本実施例品の硬さおよび機械的
強度の大きいことによる推定される。
FIG. 2 shows the results of the above investigation. From this, the number of press shots that reach the specified wear amount of 0.3 mm is 90 as shown by the line Pa in the case of the product of this example, and the number of press shots of the comparative product is as follows.
As shown by the line Pb, with 50 sheets, it was confirmed that the press die made of the alloy of the present invention had a remarkably long life. this is,
As shown in the above table, it is estimated that the hardness and mechanical strength of the product of this example are large.

実施例3 実施例2と同一のプレス型を用い、種々の引張り強さの
鋼板(被プレス材)のプレス加工を行ない、被プレス品
の成形強度(板厚×引張り強さ)と型摩耗量との関係を
調査した。なお上記比較品についても同様の調査を行な
った。
Example 3 Using the same press die as in Example 2, press working of steel sheets (pressed materials) having various tensile strengths was performed, and the forming strength (sheet thickness × tensile strength) and die wear amount of the pressed articles. I investigated the relationship with. The same investigation was conducted for the above comparative product.

第3図は上記調査結果を示したもので、これより詳容摩
耗量内におさまる被プレス材の成形強度は、比較品のそ
れが約45であるのに対し、本実施例品のそれは約70であ
り、本発明の合金が高調力鋼板の加工にも十分に対応で
きることが確認できた。
FIG. 3 shows the results of the above-mentioned investigation. The molding strength of the material to be pressed which falls within the detailed wear amount is about 45 for the comparative product, while that for the product of this embodiment is about 45. It was 70, and it was confirmed that the alloy of the present invention can sufficiently cope with the processing of high-power steel plates.

なお上記実施例2および実施例3において、本発明の合
金を用いたプレス型を鋳造する際の体積変化量を調査し
た結果、体積変化0からわずかの収縮( 0.2% )が見ら
れただけで、きわめて高精度な型が得られた。また前記
体積変化の小さいことにより、引け巣等の内部欠陥がな
く、鋳肌も良好な型が得られた。さらに実施例2および
実施例3で製作したプレス型について熱収縮量の試験を
行なった結果、その値は1.0/1000であり、直接鋳込法で
用いる木型の熱収縮量1/1000、デュアルフォーム法で用
いる板金モデルの熱収縮量1.2/1000と比較してほゞ同等
であることが確認できた。
In Examples 2 and 3 above, as a result of investigating the amount of volume change at the time of casting a press die using the alloy of the present invention, only a slight shrinkage (0.2%) was observed from 0 volume change. , An extremely accurate mold was obtained. Further, since the volume change was small, there were no internal defects such as shrinkage cavities and a mold having a good casting surface was obtained. Further, the press molds produced in Examples 2 and 3 were tested for heat shrinkage. As a result, the value was 1.0 / 1000, and the heat shrinkage of the wooden mold used in the direct casting method was 1/1000, dual. It was confirmed that the heat shrinkage was 1.2 / 1000 in the sheet metal model used in the foam method, which was almost equivalent.

(発明の効果) 以上、詳細に説明したように、本発明にかゝる低融点合
金は、Bi-Sn合金にSbを所定量加えることにより、凝固
時の体積変化が小さいというBi−Sn共晶合金の特性
を損なうことなく、機械的強度および耐摩耗性を可及的
に向上せしめ、かつ融点を適当な温度とすることがで
き、プレス型または射出成形型への適用性が著しく高め
るものとなった。また、凝固時の体積変化が小さいこと
より良好な製造性を確保できることはもちろん、原料コ
ストの上昇もわるかで済み、コスト的にも有利となる。
(Effects of the Invention) As described in detail above, the low melting point alloy according to the present invention is a Bi-Sn alloy in which the volume change during solidification is small by adding a predetermined amount of Sb to the Bi-Sn alloy. Which can improve the mechanical strength and wear resistance as much as possible without deteriorating the properties of the cubic alloy, and can set the melting point to an appropriate temperature, and remarkably improve the applicability to the press mold or the injection mold. Became. In addition, since the volume change during solidification is small, good manufacturability can be ensured, and the raw material cost can be increased, which is advantageous in cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は、Bi-Sn 低融点合金の機械的性質および物理的
性質におよぼすSbの影響を示すグラフ、第2図と第3図
は、本発明の合金を用いた簡易型の耐摩耗性を示すグラ
フである。
FIG. 1 is a graph showing the effect of Sb on the mechanical and physical properties of a Bi—Sn low melting point alloy, and FIGS. 2 and 3 are simple wear resistances using the alloy of the present invention. It is a graph which shows.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 門田 幸男 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 社本 裕幸 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 伊藤 雅人 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (56)参考文献 特開 昭53−117627(JP,A) 特公 昭43−4105(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Kadota 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd. (72) Inventor Hiroyuki Somoto 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd. (72) Inventor Masato Ito 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (56) Reference JP-A-53-117627 (JP, A) JP-B-43-4105 (JP, B1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】プレス型または射出成形型としての簡易型
に用いる低融点合金において、Bi50〜60wt%,Sb4
〜10wt%,残部Snよりなる簡易型用低融点合金。
1. A low-melting-point alloy used as a simple mold such as a press mold or an injection molding mold, wherein Bi50-60 wt%, Sb4
A low melting point alloy for simple molds consisting of ~ 10wt% and the balance Sn.
JP63176498A 1988-07-15 1988-07-15 Low melting point alloy for simple mold Expired - Lifetime JPH0617523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63176498A JPH0617523B2 (en) 1988-07-15 1988-07-15 Low melting point alloy for simple mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63176498A JPH0617523B2 (en) 1988-07-15 1988-07-15 Low melting point alloy for simple mold

Publications (2)

Publication Number Publication Date
JPH0225533A JPH0225533A (en) 1990-01-29
JPH0617523B2 true JPH0617523B2 (en) 1994-03-09

Family

ID=16014705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63176498A Expired - Lifetime JPH0617523B2 (en) 1988-07-15 1988-07-15 Low melting point alloy for simple mold

Country Status (1)

Country Link
JP (1) JPH0617523B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641454A (en) * 1992-03-13 1997-06-24 Toyota Jidosha Kabushiki Kaisha Composite material having anti-wear property and process for producing the same
JP3761846B2 (en) * 2002-07-11 2006-03-29 内橋エステック株式会社 Alloy type thermal fuse and wire for thermal fuse element
EP2699702B1 (en) 2011-04-20 2018-05-16 Aleris Rolled Products Germany GmbH Fin stock material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2712517C2 (en) * 1977-03-22 1979-05-23 Et. Dentaire Ivoclar, Schaan (Liechtenstein) Use of a bismuth-tin alloy for the production of models in dental technology

Also Published As

Publication number Publication date
JPH0225533A (en) 1990-01-29

Similar Documents

Publication Publication Date Title
KR102597784B1 (en) A aluminum alloy and for die casting and method for manufacturing the same, die casting method
AU753538B2 (en) Die casting magnesium alloy
JPH08134581A (en) Production of magnesium alloy
US2802733A (en) Process for manufacturing brass and bronze alloys containing lead
JPH0617523B2 (en) Low melting point alloy for simple mold
JP2003226929A (en) Cold press forming method for magnesium alloy
US7056395B1 (en) Dies for die casting aluminum and other metals
JP5688744B2 (en) High strength and high toughness copper alloy forging
US2400566A (en) Alloy
JPS6338551A (en) Zinc alloy containing rare earth element
KR19990023170A (en) Zinc-Based Alloy for Molds, Zinc-Based Alloy Blocks for Molds and Manufacturing Method Thereof
US2752242A (en) Copper-nickel-titanium alloy and process for making same
US3471286A (en) Aluminium base alloy
JP3152400B2 (en) Hard zinc alloy for hardfacing welding and a mold having a hardfacing portion made of the alloy
JPH01294837A (en) High strength zinc alloy
JP2971790B2 (en) Casting mold with excellent thermal conductivity-hardness balance
JPS6365043A (en) Zinc-base alloy
US2593571A (en) Method of forming sheet metal with low-melting dies
JPS63290240A (en) High strength aluminum free cutting alloy
US2352990A (en) Method of making and treating magnesium castings
JPS6360249A (en) Zinc-base alloy
JPS6338549A (en) Zinc alloy
JPH05195121A (en) Alloy for pressing die
US2438863A (en) Nonferrous alloy
JPS61243138A (en) Production of structural member made of heat-resistant high-strength al sintered alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 15