US2400566A - Alloy - Google Patents

Alloy Download PDF

Info

Publication number
US2400566A
US2400566A US435833A US43583342A US2400566A US 2400566 A US2400566 A US 2400566A US 435833 A US435833 A US 435833A US 43583342 A US43583342 A US 43583342A US 2400566 A US2400566 A US 2400566A
Authority
US
United States
Prior art keywords
alloy
aluminum
mercury
copper
beryllium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US435833A
Inventor
Charles C Misfeldt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US435833A priority Critical patent/US2400566A/en
Application granted granted Critical
Publication of US2400566A publication Critical patent/US2400566A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent

Description

Patent ed May 21, 1946 ALLOY Charles C. Misfeldt, Glendale, Calif.
N Drawings Application March 23 1942,
Serial No. 435,833
3 Claims.
My invention relates to alloys and more particularly to an alloy having a beryllium-copper base which is ideally adapted for casting by sand, die or centrifugal methods.
In my prior Patent No. 2,270,660, issued January 20, 1942, I have described an ordnance alloy utilizing relatively large amounts of berylliumcopper and relatively small amounts of aluminum and mercury. Heat treatment of the material during formation of the alloy was such that sufficient mercury was retained in the metal to cause the metal to resist the corrosive action of mercury fulminate. I have found however, that many uses for which metal having a beryllium-copper base is desirable, do not require any large amount of mercury therein.
My present alloy differs from the alloy described in my above cited patent in that in the present instance I prefer to utilize lesser amounts of inercury, or even no mercury at all, and to incorporate nickel in the alloy for the main purpose of aiding, along with the luminum, in forming a grain structure which i more dense than when either'aluminum or nickel are used separately with beryllium-copper. Furthermore, I have found that the higher melting point of nickel,
combined with the aluminum, increases the temperature range of the beryllium-copper base between the liquid and solid state. I find that the combination of nickel and aluminum with the beryllium-copper in the alloy so increases the range between the liquid and the solid state, that various production methods such as centrifugal casting, extruding and molding and die-casting, or sand-casting, can be more readily accomplished because of the fine grain and advantageous pouring characteristics, resulting in a smoother and more perfect part. This is a distinct advantage in that in many cases, it is possible to use the surface created by the mold as a finished surface.
In the past other alloys of beryllium-copper have been found to be difficult to handle in casting, and foundry trouble has discouraged in many cases the used of beryllium-copper alloy. The range I obtained by the addition of aluminum and nickel to the beryllium-copper base between the work-harden in use. Consequently the material liquid and solid state of the material greatly sim-' plifies its handling characteristics by causing the material to fill the mold to a better advantage and to stay molten and plastic for a longer period. A a result of this in sand and in centrifugal casting, I can maintain a homogeneous condition in the material for a longer period and therefore I have a greater latitude in handling the material.
has ideal characteristics for use as bearings, and will stand greater amounts of wear than berylhum-copper alone. Consequently my berylliumcopper aluminum-nickel alloy is ideally adapted for example, for use as clutch-bearings, facing for fuel pumps, and more important, for use in un-mount tracks where steel rollers are used coming directly in contact with the surface of the material. Wear is eliminated and a minimum of oil or lubricant is required, I have found that,
due to the nickel and aluminum additions the alloy has the property of operating for longer periods even when running dry.
In addition the present alloy has greater resistance to corrosion thanberyllium-copper itself. This is particularly important where parts are to be cast, extruded or molded to size, and are to be heat-treated thereafter. Many beryllium-copper alloys are known to oxidize and scale which destroys the surfaces when parts are heat-treated. The new alloy disclosed herein does not scale and therefore increases the use of beryllium-copper for parts where heat treatment is to be carried out, and particularly when the surfaces are not to be machined after heat treatment. The above advantages of the alloy about to be described herein have enabled me i to substitute beryllium-copper for many parts where steels have been previously utilized. A preferred alloy comprises the following ingredients:
Percent Copper to 93 Beryllium .10 to 11 Nickel .55 to 7 Mercury .0 to .15 Aluminum 1 to 20 Arsenic .10 to 2 Alloys within the above ranges are especially suitable for all casting methods for the reasons given above. They have sufficient strength to be in many cases substituted with equal or even greater tensile strength for parts heretofore made of steel by machining, stamping, or" forming.
The beryllium-copper used as a base alloy is usually purchased as a concentrated product.
I add thereto pure copper to establish the correct percentage for the type of'alloy to be formed. The following procedure is followed in forming final alloy.
an alloy within the range of ingredients given above.
An amount of pure copper is placed onthebottom of a melting pot, on top of which is placed the. arsenic and then copper nickel shot, then more pure copper. Graphite is generally added to assist in cleaning these ingredientsv as they are being alloyed. Heat is then applied to the mix and is'increased slowly at first. The preheated beryllium-copper concentrate is then added very' slowly so that the copper nickel arsenic will remain molten at all times through the process or alloying. When molten, the mixture requires some agitation to accomplish the best interaction of the ingredients. The temperature may then be dropped to retain the molten liquid at about 50 C. over the freezing point of the melt, which changes with the variations in the alloy, in preparation for the addition of the aluminum, and the mercury, if used. If no mercm is utilized the. aluminum is then added to the melt. r
If however, it is desired to utilize mercury in the small quantities disclosed herein, an alumi- "same purpose.
and the aluminum, however, is the most impor- I myself to being required to use mercury in the alloying of the beryllium-copper-aluminumnickel..
When casting by any oi the methods above mentioned, the final alloy produced is readily maintained in a plastic state over a relatively wide range of temperatures and is easily cast or molded at high temperatures and pressures.
The presence of the aluminum assuch in the final alloy aids in making the alloy plastic and somewhat improves the molding properties-oi the,
alloy.
The arsenic sublimes and leaves a dark, solid formation in the pot which serves as a cleaner along with the powdered graphite added for the The combination of the nickel tant addition to the alloy, in that it provides all of the advantages set forth above in discussing the use of the materiaL.
I claim:
l. A fine grain beryllium-copper base alloy capable of being cast and oi. work hardening on num-me'rcury alloy is made by placing mercury in contact with aluminum foil, for example, for atleast twenty-four hours.- Inasmuch as excess mercury over the stable mercury-aluminum alloy will pass out of the melt there is no necessity for a careful proportioning of the mercury. The amount of aluminum foil used, however, in making the mercury alloy will determine the amount of mercury held in the final alloy. The aluminum-mercury alloy may then be added to the melt, together with the proper amount of additional aluminum necessary to makeup the required aluminum percentage. The aluminum or the aluminum and mercury is thoroughly mixed -with the'first alloy at the maintenance temperature to distribute the aluminum or the aluminum-mercury materials throughout the melt.
If mercury is used, before the aluminum-mercury amalgam is entirely melted the heat of the mix is preferably increased and held at a higher value. This temperature will vary with the varimercury, the aluminum foil in this case acting merely as a. carrier to enter the mercury into the melt. Consequently no mercury will be, under these conditions, carried through to the the surface thereof and having a tensile strength comparable to that or steel, essentially consisting of:
I Per cent Copper to 93 Beryllium .10 to 11 Nickel .55 to 7 Aluminum 1 to 20 Arsenic .10 ,to 2
2. A fine grain beryllium-copper base alloycapable of being cast and of work hardening on-the surface thereof and having a tensile strength comparable to that of steel, essentially consisting of Per cent Copper 60 to 93 Beryllium .10 to 11 Nickel .55 to 7 Aluminum l to 20 and to which mercury in amount not exceeding 0.15% is added during the melting operation.
3. A fine grain beryllium-copper base alloy capable of being cast and of work hardeningon the surface thereof and having a tensile strength comparable to that of steel, essentially consisting of:
' Per cent Copper 60 to 93 Beryllium .10 to 11 Nickel .55 to 7 Aluminum 1 to 20 Arsenic .10 to 2 and to which mercury in amount not exceeding 0.15% is added during the melting operation.
CHARLES C. MISFELDT.
do not therefore, with to. limit
US435833A 1942-03-23 1942-03-23 Alloy Expired - Lifetime US2400566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US435833A US2400566A (en) 1942-03-23 1942-03-23 Alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US435833A US2400566A (en) 1942-03-23 1942-03-23 Alloy

Publications (1)

Publication Number Publication Date
US2400566A true US2400566A (en) 1946-05-21

Family

ID=23730005

Family Applications (1)

Application Number Title Priority Date Filing Date
US435833A Expired - Lifetime US2400566A (en) 1942-03-23 1942-03-23 Alloy

Country Status (1)

Country Link
US (1) US2400566A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2887375A (en) * 1956-01-05 1959-05-19 Bridgeport Brass Co Anti-biofouling copper-base alloy
US2923620A (en) * 1956-01-05 1960-02-02 Bridgeport Brass Co Anti-biofouling copper-base alloy
DE1107943B (en) * 1955-08-08 1961-05-31 Ver Deutsche Metallwerke Ag Age-hardening copper alloys
US3830644A (en) * 1969-09-19 1974-08-20 Hitachi Shipbuilding Eng Co Copper alloy for plastic-working molds
EP0707084A4 (en) * 1994-01-06 1996-01-29 Ngk Insulators Ltd Beryllium copper alloy having high strength, machinability and heat resistance and production method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1107943B (en) * 1955-08-08 1961-05-31 Ver Deutsche Metallwerke Ag Age-hardening copper alloys
US2887375A (en) * 1956-01-05 1959-05-19 Bridgeport Brass Co Anti-biofouling copper-base alloy
US2923620A (en) * 1956-01-05 1960-02-02 Bridgeport Brass Co Anti-biofouling copper-base alloy
US3830644A (en) * 1969-09-19 1974-08-20 Hitachi Shipbuilding Eng Co Copper alloy for plastic-working molds
EP0707084A4 (en) * 1994-01-06 1996-01-29 Ngk Insulators Ltd Beryllium copper alloy having high strength, machinability and heat resistance and production method thereof
EP0707084A1 (en) * 1994-01-06 1996-04-17 Ngk Insulators, Ltd. Beryllium copper alloy having high strength, machinability and heat resistance and production method thereof
US5824167A (en) * 1994-01-06 1998-10-20 Ngk Insulators, Ltd. Beryllium-copper alloy excellent in strength, workability and heat resistance and method for producing the same

Similar Documents

Publication Publication Date Title
US2372202A (en) Bearing
US2241815A (en) Method of treating copper alloy castings
US2378548A (en) Ferrous alloys containing bismuth
US2400566A (en) Alloy
US2270660A (en) Method of making ordnance alloys
US2408400A (en) Flint alloy
US2795501A (en) Copper base alloys
US2379435A (en) Bearing and the like
US1390197A (en) Self-lubricating metal bearing and the like
US2164065A (en) Copper chromium magnesium alloy
US1614878A (en) Nickel-copper alloy and process of making same
US3201234A (en) Alloy and method of producing the same
JPH03218937A (en) Press bending of glass pane
US2231940A (en) Alloy
US1540006A (en) Metallic alloy
US2136919A (en) Copper alloys of improved characteristics
US2444271A (en) Composition for use in casting
US2720459A (en) Highly wear-resistant zinc base alloy
US4049474A (en) Aluminum-based alloy
US2259108A (en) Bearing alloy
SU150989A1 (en) Lubricant for molds and parts of the extrusion chamber
US1691931A (en) Bearing-metal alloy
US2752242A (en) Copper-nickel-titanium alloy and process for making same
US2213208A (en) Alloy
US1667641A (en) Bearing alloy