JPH06174628A - Method and device for measuring distribution of grain size of flowing solid granular substance - Google Patents
Method and device for measuring distribution of grain size of flowing solid granular substanceInfo
- Publication number
- JPH06174628A JPH06174628A JP4082506A JP8250692A JPH06174628A JP H06174628 A JPH06174628 A JP H06174628A JP 4082506 A JP4082506 A JP 4082506A JP 8250692 A JP8250692 A JP 8250692A JP H06174628 A JPH06174628 A JP H06174628A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- light source
- image
- chamber
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 20
- 239000007787 solid Substances 0.000 title description 2
- 239000000126 substance Substances 0.000 title 1
- 239000002245 particle Substances 0.000 claims abstract description 41
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 238000005259 measurement Methods 0.000 claims description 11
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 238000010191 image analysis Methods 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 abstract description 7
- 230000001360 synchronised effect Effects 0.000 abstract description 4
- 239000007788 liquid Substances 0.000 abstract description 3
- 239000000523 sample Substances 0.000 description 29
- 239000002184 metal Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N15/0227—Investigating particle size or size distribution by optical means using imaging; using holography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0042—Investigating dispersion of solids
- G01N2015/0053—Investigating dispersion of solids in liquids, e.g. trouble
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1765—Method using an image detector and processing of image signal
- G01N2021/177—Detector of the video camera type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/069—Supply of sources
- G01N2201/0696—Pulsed
- G01N2201/0697—Pulsed lasers
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Closed-Circuit Television Systems (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、画像分析によって流れ
る固体粒子状物質の粒子の大きさの分布を測定するため
の方法および装置に関するものである。より具体的に
は、本発明は、測定する試料が、光源と画像を捕捉する
手段であって該捕捉手段に投射された前記試料に含まれ
る粒子の画像を捕捉する手段の間に配置され、また、前
記捕捉手段から得られた信号が処理されて該試料に含ま
れる粒子の大きさの分布を示す方法に関する。FIELD OF THE INVENTION The present invention relates to a method and apparatus for measuring the particle size distribution of flowing solid particulate matter by image analysis. More specifically, the present invention provides that the sample to be measured is arranged between a light source and a means for capturing an image, and a means for capturing an image of particles contained in the sample projected onto the capturing means, It also relates to a method in which the signal obtained from the capture means is processed to show the size distribution of the particles contained in the sample.
【0002】[0002]
【従来の技術】この種の方法は、イタリア特許出願第6
9199A/79号および該特許で開示された方法の改
善に関するイタリア特許出願第5904A/81に記載
されている。これら既知の方法にあっては、試料は、捕
捉手段に対してほぼ静止しており、連続光源によって試
料が照明され、粒子の画像が例えば並べて配置された光
電トランスデューサーの列のようなセンサーの列に投射
される。このようにして得られた信号が処理され、前記
粒子の一連の異なる部分が間接的に測定されることによ
って粒子の大きさが求められる。2. Description of the Related Art A method of this kind is described in Italian Patent Application No. 6
9199A / 79 and Italian Patent Application No. 5904A / 81 relating to improvements of the method disclosed in that patent. In these known methods, the sample is substantially stationary with respect to the capture means, a continuous light source illuminates the sample, and an image of the particles of a sensor, for example an array of photoelectric transducers arranged side by side. Projected in rows. The signal thus obtained is processed and the particle size is determined by indirectly measuring a series of different parts of the particle.
【0003】流れる試料を測定する必要のある場合があ
る。例えば、時間によって異なりうる試料の粒子の大き
さの分布に関するデータをリアルタイムで得る必要があ
る場合などである。このような場合には、従来、回折式
の間接測定システムが用いられている。この種の方法で
は、粒子の大きさの分布の計算に長い測定時間を要す
る。Sometimes it is necessary to measure a flowing sample. For example, it may be necessary to obtain in real time data on the particle size distribution of the sample, which may vary with time. In such a case, a diffractive indirect measurement system has been conventionally used. This type of method requires a long measuring time to calculate the particle size distribution.
【0004】[0004]
【発明が解決しようとする課題】本発明は、流れている
試料でも画像分析(すなわち直接法)によって粒子の大
きさの分布を測定することができる方法および装置に関
する。SUMMARY OF THE INVENTION The present invention is directed to a method and apparatus capable of measuring particle size distribution by image analysis (ie, the direct method) even on a flowing sample.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、画面解析によって行なう粒子の
大きさの分布の測定方法において、測定される試料が光
源と画像捕捉手段であってそこに投射される前記試料に
含まれる粒子の像を捕捉する手段の間に配置され、前記
捕捉手段から得られた信号が処理されて該試料に含まれ
る粒子の大きさの分布を示し、 − 検査される試料が移動しており、また、 − 試料の照明がパルスで不連続に行われることを特徴
としている。In order to achieve the above-mentioned object, according to the present invention, in a method of measuring the distribution of particle size by screen analysis, the sample to be measured is a light source and an image capturing means. Is arranged between the means for capturing the image of the particles contained in the sample, which is projected there, and the signal obtained from the capturing means is processed to show the size distribution of the particles contained in the sample. , The sample to be examined is moving, and-the sample is illuminated by pulses in a discontinuous manner.
【0006】本発明に基づく方法は、大略、検査する試
料が移動していること、および試料の照明がパルスの形
で不連続に行われることを特徴とする。光のパルスは、
捕捉手段がほぼ固定画像を観察できるように試料の流速
に比して持続時間が十分に短くされる。一連の画像を捕
捉することによって、試料が測定装置を通って流れてい
る間に試料の粒子の大きさの時間適分布を見出すことが
できる。請求の範囲には、本発明に基づく方法の最良の
実施形態が示されている。The method according to the invention is generally characterized in that the sample to be examined is moving and that the illumination of the sample is discontinuous in the form of pulses. The pulse of light is
The duration is sufficiently short compared to the flow rate of the sample so that the capture means can observe a substantially fixed image. By capturing a series of images, it is possible to find a time-proportional distribution of the sample particle size while the sample is flowing through the measuring device. The claims show the best embodiments of the method according to the invention.
【0007】本発明に基づく装置は、試料に含まれる粒
子の画像を捕捉する手段および前記捕捉手段によって捕
捉された信号を処理する手段からなる。本発明に基づけ
ば、該装置は、パルス光源および前記光源と捕捉手段の
間に配置されて試料が連続して流れることができるよう
にする測定チャンバーを有することを特徴とする。The device according to the invention comprises means for capturing an image of the particles contained in the sample and means for processing the signal captured by said capturing means. According to the invention, the device is characterized in that it comprises a pulsed light source and a measuring chamber arranged between said light source and the capturing means, which allows a continuous flow of sample.
【0008】[0008]
【実施例】本発明に基づく方法の最良の実施形態は、付
属の特許請求の範囲に示されており、また、本発明の実
施例を示した添付の図面を参照して以下に説明する。The best mode for carrying out the method according to the invention is set forth in the appended claims and will be described below with reference to the accompanying drawings, which show examples of the invention.
【0009】図1は、本発明に基づく装置のブロック線
図である。図2は、装置の縦断面図である。図3は、図
2のIII-III に添った装置の横断面図である。図4は、
本発明に基づく装置によって行われる作業のきわめて簡
単なフローチャートである。図5および図6は測定チャ
ンバーを示す図であり、図5は、図6のV−V線に添っ
た部分断面図、図6は、図5のVI-VI 線に添った部分断
面図である。FIG. 1 is a block diagram of an apparatus according to the present invention. FIG. 2 is a vertical sectional view of the device. FIG. 3 is a cross-sectional view of the device taken along line III-III of FIG. Figure 4
3 is a very simple flow chart of the work performed by the device according to the invention. 5 and 6 are views showing the measurement chamber, FIG. 5 is a partial sectional view taken along line VV of FIG. 6, and FIG. 6 is a partial sectional view taken along line VI-VI of FIG. is there.
【0010】まず図1を参照して簡潔に説明すると、装
置は、画像捕捉手段3に面して配置された光源1を有
し、該光源は、とくにパルス・レーザー光源とする。該
捕捉手段は、以下に説明する方法でパルス・レーザーに
同期させたテレビカメラとしてもよい。光源1と捕捉手
段の間には、全体を5で示す測定チャンバーが配設され
ており、その中を懸濁状の粒子を含む液体の試料が流れ
る。光源1からでる光線は、この(透明の壁をもつ)チ
ャンバー5に当たる。該チャンバー5とテレビカメラ3
の間におかれた光学システムが、チャンバー5内の粒子
の像をテレビカメラ3に投射する。これによって得られ
た画像は、全体を7で示す既知の種類の画像舗装システ
ムを通してコンピュータ9へ送られ、そこで画像の回折
と捕捉された粒子の大きさの計算が行われ、それに基づ
いて粒子の大きさの分布が計算され、また、必要ならば
度数分布図あるいは線図が生成される。Briefly first with reference to FIG. 1, the device comprises a light source 1 arranged facing an image capturing means 3, said light source being in particular a pulsed laser light source. The capture means may be a television camera synchronized with a pulsed laser in the manner described below. A measurement chamber, generally designated by 5, is provided between the light source 1 and the capturing means, through which a liquid sample containing suspended particles flows. The light rays emitted from the light source 1 impinge on this chamber 5 (with transparent walls). The chamber 5 and the TV camera 3
An optical system placed between projects an image of the particles in the chamber 5 onto the television camera 3. The resulting image is sent through a known type of image paving system, generally designated 7, to a computer 9 where diffraction of the image and calculation of the size of the trapped particles are performed, based on which the particle The size distribution is calculated and, if necessary, a frequency distribution diagram or diagram is generated.
【0011】コンピュータ9は、また、電子制御システ
ム11を制御するが、この電子制御システム11は、光源1
とテレビカメラ3に同期した信号を送るもので、この同
期下信号によってテレビカメラ3が光源1からくる光の
パルスに同期し、テレビカメラ3が(光源1からくる光
のパルスが短くまたこのパルスとテレビカメラの走査信
号が同期しているために)実際はチャンバー5内を定め
られた速度で動いている‥郡の粒子の像を捕捉できるよ
うになる。The computer 9 also controls an electronic control system 11, which controls the light source 1.
And a signal synchronized with the TV camera 3 is sent to the TV camera 3, and the TV camera 3 synchronizes with the pulse of the light coming from the light source 1 by this synchronizing signal. And (because the scanning signals of the television camera are synchronized), it becomes possible to capture an image of particles in the chamber 5 that are actually moving at a fixed speed in the chamber 5.
【0012】図2と図3は、図1に線図で概略的に示し
た装置の構造状の細部を示した図である。より具体的に
は、光源1、測定チャンバー5、および光源1に面して
測定チャンバー5の反対側に置かれたテレビカメラ3が
示されている。測定チャンバー5とテレビカメラ3の間
には、顕微鏡13が配設されてテレビカメラ3用の拡大光
学素子を形成し、きわめて小さい粒子の像を捕捉できる
ようにしている。光学素子13は、測定チャンバー5の壁
との干渉を避けるために十分に長い正面図すなわち試料
と対物レンズの間の距離をもっている。さらに、前記光
学素子は、チャンバー5の幅に比して十分なまたこの場
合には前記幅とほぼ等しい被写界深度をもっている。2 and 3 show the structural details of the device shown diagrammatically in FIG. More specifically, a light source 1, a measuring chamber 5 and a television camera 3 facing the light source 1 and on the opposite side of the measuring chamber 5 are shown. A microscope 13 is arranged between the measuring chamber 5 and the television camera 3 to form a magnifying optical element for the television camera 3 so that an image of very small particles can be captured. The optical element 13 has a front view, ie the distance between the sample and the objective lens, which is long enough to avoid interference with the wall of the measuring chamber 5. Furthermore, the optical element has a depth of field which is sufficient compared to the width of the chamber 5 and in this case approximately equal to the width.
【0013】懸濁状の粒子を含む液体の試料は、必要な
場合には試料を希釈するために貯蔵器15内に入れられ
る。該貯蔵器は、磁気撹拌装置17を備え、再循環、その
後の処理のための試料の装置、および測定チャンバー5
の洗浄のため三方弁に接続されている。試料は、例えば
ポンプ駆動のようなポンプを用いて貯蔵器15から取り出
される。貯蔵器15からポンプで汲み出された試料は、測
定チャンバー5の上方に配設されて管25で該チャンバー
に接続された膨張タンク23へ送られる。測定チャンバー
5には、また、排出管27が配設されている。A liquid sample containing suspended particles is placed in a reservoir 15 to dilute the sample if necessary. The reservoir is equipped with a magnetic stirrer 17, a device for the sample for recirculation and subsequent processing, and a measuring chamber 5.
It is connected to a three-way valve for cleaning. The sample is removed from the reservoir 15 using a pump, such as a pump drive. The sample pumped from the reservoir 15 is sent to the expansion tank 23, which is arranged above the measuring chamber 5 and connected to the chamber by a pipe 25. A discharge pipe 27 is also arranged in the measurement chamber 5.
【0014】該装置にはスライド29からなる焦点合わせ
手段が配設されており、該スライド上には支持棒31に支
えられたテレビカメラ3と顕微鏡13が取り付けられ、こ
れらは全体を33で示す既知の種類の焦点合わせシステム
に連結されている。焦点合わせシステムの詳細な説明は
省略する。該焦点合わせシステムは、また、チャンバー
5の交換作業が行われるときの焦点合わせを容易にする
ために用いられる比較器34を含んでいる。最後に、該装
置は、電気部品が収納された隔室35を有する。The device is provided with a focusing means consisting of a slide 29, on which a television camera 3 and a microscope 13 supported by a support rod 31 are mounted, which are generally designated by 33. It is connected to a focusing system of known type. A detailed description of the focusing system will be omitted. The focusing system also includes a comparator 34 which is used to facilitate focusing when a chamber 5 replacement operation is performed. Finally, the device has a compartment 35 in which the electrical components are housed.
【0015】以下、図4の概略線図を参照して、画像の
捕捉および解析ならびに粒子の大きさの分布の測定を説
明する。細くする画像の数Kが、コンピュータ9に設定
される。次に、レーザー光源1とテレビカメラ3を同期
させるための初期パルスが生成され、対応する画像がシ
ステム7によって捕捉され、コンピュータ9へ送られて
粒子の大きさが計算される。この計算は、それ自身は既
知の画像解析ソフトウエアを用いて行われる(例えば、
デンマークのゲート・データ社がGIPSの商品名で販
売しているソフトウエア・パッケイジを用いてもよいで
あろいう)。この計算で得られたデータは記憶され、カ
ウンターNが進められ、このカウンターの値が設定され
た値Kと比較され、さらに、カウンターNが設定値Kを
越えるようになるまで、パルス生成、画像捕捉、大きさ
の計算、記憶のプロセスが繰り返される。この時点で、
コンピュータ9は、捕捉されたKの画像の処理によって
求められた粒子の大きさの分布を要約した度数分布図そ
の他の線図の計算に進む。このコンピュータ9を用い
て、計算された度数分布図をプリントアウトさせるかあ
るいは表示画面に表示させることもできる。Image capture and analysis and measurement of particle size distribution will now be described with reference to the schematic diagram of FIG. The number K of images to be thinned is set in the computer 9. An initial pulse is then generated to synchronize the laser light source 1 and the television camera 3 and the corresponding image is captured by the system 7 and sent to the computer 9 to calculate the particle size. This calculation is performed using image analysis software known per se (eg,
You may use the software package sold by the Danish company Gate Data under the GIPS trade name). The data obtained by this calculation is stored, the counter N is advanced, the value of this counter is compared with the set value K, and further pulse generation, image generation are performed until the counter N exceeds the set value K. The process of acquisition, size calculation and storage is repeated. at this point,
The computer 9 proceeds to calculate a frequency distribution chart and other diagrams summarizing the particle size distribution determined by processing the captured K image. Using this computer 9, the calculated frequency distribution chart can be printed out or displayed on the display screen.
【0016】この測定のプロセスを通じて、駆動ポンプ
21と磁気撹拌装置17は作動を続けており懸濁状の粒子を
含む試料が貯蔵器15から取り出され、膨張ポンプ23を通
って測定チャンバー5内に循環するようにされる。測定
チャンバー5は、好ましくは、試料採取量の幅を容易に
変更できるようにモジュラー構造に形成される。このよ
うにすれば、(試料採取できる量が十分にあり、光学素
子の被写界深度が十分に大きいとして)高度に希釈され
た試料すなわち粒子の密度が低い試料を測定することが
可能となる。これによって、テレビカメラ3への入射光
の量が増大しコントラストの大きい画像従って画質のよ
い画像を得ることができる。Through this measurement process, the drive pump
21 and the magnetic stirrer 17 continue to operate so that a sample containing suspended particles is taken from the reservoir 15 and circulated through the expansion pump 23 into the measuring chamber 5. The measurement chamber 5 is preferably formed in a modular structure so that the range of sampling amount can be easily changed. In this way, it is possible to measure a highly diluted sample, i.e. a sample with a low particle density (assuming there is a sufficient sampling volume and the optical element has a sufficiently large depth of field). . As a result, the amount of light incident on the television camera 3 is increased, and an image with high contrast, that is, an image with high image quality can be obtained.
【0017】5図および6図は、測定チャンバー5の具
体的な実施例を示す図である。チャンバーは、固定用ノ
ブ53を用いて支持部51に取り付けられる。チャンバー本
体は、2個の中央光学ガラス口59,61を有する2個のフ
ランジ55,57で構成される。これら2個のフランジは、
ねじ63と例えば焼き付け鋼でつくられた金属65で継ぎ合
わされており、該金属板は、スペーサとして機能し、2
個のフランジの間に配置される。金属板65は、2個の口
59,61と同心の中央の楕円状開口67を有する。該開口の
楕円状の縁および口59,61の内面によって範囲が定めら
れる開口67内の空間は、流れが生じるように第1の入口
管69および第2の出口管71によって貯蔵器15に接続され
たチャンバーの容量を確定する。2本ほ管69,71は、チ
ャンバー5内での粒子の沈澱をさけるために水平に対し
て適当な角度で傾斜している。5 and 6 are views showing a concrete example of the measuring chamber 5. The chamber is attached to the support portion 51 using the fixing knob 53. The chamber body consists of two flanges 55,57 with two central optical glass openings 59,61. These two flanges
It is seamed with screws 63 and a metal 65, for example made of baked steel, which serves as a spacer
It is arranged between the flanges. The metal plate 65 has two openings
It has a central elliptical opening 67 concentric with 59, 61. The space within the opening 67 bounded by the elliptical edges of the opening and the inner surface of the mouths 59, 61 is connected to the reservoir 15 by a first inlet pipe 69 and a second outlet pipe 71 for flow. Determine the volume of the chamber that was set. The two tubes 69 and 71 are inclined at an appropriate angle with respect to the horizontal in order to prevent the precipitation of particles in the chamber 5.
【0018】測定チャンバーの深さは、板65を置換する
ことで、チャンバーの他の構成部品を交換することな
く、また、管69,71の接続を元に戻す必要なく、容易に
変更することができる。The depth of the measuring chamber can easily be changed by replacing the plate 65, without exchanging the other components of the chamber and without having to reconnect the tubes 69, 71. You can
【0019】図面は、本発明の実施例を示すためのもの
であり、本発明は、その範囲および概念から逸脱するこ
となく形態および配置を変えることができることは容易
に理解されよう。It will be readily understood that the drawings are intended to illustrate embodiments of the invention and that the invention may vary in form and arrangement without departing from the scope and concept thereof.
【図1】 本発明に基づく装置のブロック線図。1 is a block diagram of an apparatus according to the present invention.
【図2】 装置の縦断面図。FIG. 2 is a vertical cross-sectional view of the device.
【図3】 図2のIII-III に添った装置の横断面図。FIG. 3 is a cross-sectional view of the device taken along line III-III in FIG.
【図4】 本発明に基づく装置によって行われる作業の
極めて簡単なフローチャート。FIG. 4 is a very simple flow chart of the work performed by the device according to the invention.
【図5】 図6のV−V線に添った部分断面図。5 is a partial cross-sectional view taken along the line VV of FIG.
【図6】 図5のVI-VI 線に添った部分断面図。6 is a partial cross-sectional view taken along line VI-VI of FIG.
1‥‥レーザー 3‥‥テレビカメ
ラ 5‥‥チャンバー 7‥‥画像捕捉シ
ステム 9‥‥コンピュータ 11‥‥電子制御シ
ステム1 Laser 3 TV camera 5 Chamber 7 Image capture system 9 Computer 11 Electronic control system
───────────────────────────────────────────────────── フロントページの続き (72)発明者 カルロ・カステリーニ イタリア国.50144・フイレンツエ.ヴイ ア・ジ.ビ.ウリ・ニユメロ.50 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Carlo Castellini Italy. 50144, Firenze. Via J. B. Uri Niumero. 50
Claims (18)
布の測定方法において、測定される試料が光源と画像捕
捉手段であってそこに投射される前記試料に含まれる粒
子の像を捕捉する手段の間に配置され、前記捕捉手段か
ら得られた信号が処理されて該試料に含まれる粒子の大
きさの分布を示し、 − 検査される試料が移動しており、また、 − 試料の照明がパルスで不連続に行われる方法。1. A method of measuring a particle size distribution performed by screen analysis, wherein a sample to be measured is a light source and an image capturing means, and means for capturing an image of particles contained in the sample projected onto the sample. Disposed between the two, the signal obtained from the capture means is processed to show the size distribution of the particles contained in the sample, the sample to be examined is moving, and the illumination of the sample is A method that is performed discontinuously in pulses.
ルスが生成され、 b) 画像が捕捉され、 c) 画像データがコンピュータへ伝送されて粒子の大き
さが計算されまたデータが記憶され、 d) (a),(b),(c) の段階があらかじめ定められた回数だ
け繰り返され、 e) 記憶されたデータに基づいて試料巾の粒子の大きさ
の分布が計算される請求項1に記載の方法。2. A) pulses are generated to synchronize the light source and the capture means; b) an image is captured; c) image data is transmitted to a computer to calculate particle size and store the data. , D) The steps of (a), (b), and (c) are repeated a predetermined number of times, and e) the particle size distribution of the sample width is calculated based on the stored data. The method according to 1.
される請求項1または請求項2に記載の方法。3. The method according to claim 1, wherein the sample is irradiated with a pulsed laser light source.
体の媒質からなる請求項1、請求項2〜3のいずかに記
載の方法。4. The method according to claim 1, wherein the sample comprises a moving fluid medium containing suspended particles.
布の測定装置において、光源、画像捕捉手段であって前
記光源によってそこに投射される前記試料に含まれる粒
子の像を捕捉する手段、および前記捕捉手段によって捕
捉された信号を処理する手段からない、 − 前記光源がパルス光源である、 − 試料が連続して流れることができるようにする測定
チャンバーが光源と捕捉手段の間に配置されている装
置。5. An apparatus for measuring particle size distribution performed by image analysis, comprising a light source, image capturing means for capturing an image of particles contained in the sample projected by the light source, and No means for processing the signal captured by the capture means, the light source is a pulsed light source, a measurement chamber allowing continuous flow of sample is arranged between the light source and the capture means Equipment.
記載の装置。6. The apparatus according to claim 5, wherein the light source is a pulsed laser.
5または請求項6に記載の装置。7. The apparatus according to claim 5, wherein the image capturing means is a television camera.
生成手段を有する請求項5〜7のいずれかに記載の装
置。8. An apparatus according to any one of claims 5 to 7, comprising pulse generating means for synchronizing the light source and the capturing means.
同期信号を前記光源と前記捕捉手段へ送るコンピュータ
を有する請求項5〜8のいずれかに記載の装置。9. Processing the image signal coming from said capture means,
9. An apparatus according to any one of claims 5 to 8 having a computer for sending a synchronization signal to the light source and the capture means.
て処理する作業をあらかじめ定められた関数だけ行な
い、前記捕捉された信号を処理して得られたデータから
検査される試料の粒子の大きさの分布を求めるようにプ
ログラムされている請求項9に記載の装置。10. The particle size of a sample to be inspected from the data obtained by processing the captured signal, wherein the computer performs a task of capturing and processing the image signal by a predetermined function. 10. The apparatus of claim 9 programmed to determine a distribution of.
学素子および、必要な場合には、拡大用光学素子に連結
されている請求項5〜10のいずれかに記載の装置。11. An apparatus according to any one of claims 5 to 10 wherein the capture means is connected to focusing optics and, if required, magnifying optics.
の方向に添って測定チャンバーの深さに近い被写界深度
を有する請求項11に記載の装置。12. The apparatus according to claim 11, wherein said optical element has a depth of field close to the depth of the measurement chamber along the direction of the light rays coming from said light source.
えた2個のフランジ、および、前記2個のフランジの間
に配設されて該チャンバーの試料保持容器を確定する開
口を備えた板状のスペーサを有する請求項5〜12のい
ずれかに記載の装置。13. A plate shape having two flanges each having a transparent wall portion in the measurement chamber, and an opening arranged between the two flanges to define a sample holding container of the chamber. 13. A device according to any one of claims 5 to 12 having a spacer according to claim 5.
求項13に記載の装置。14. The apparatus according to claim 13, wherein the plate-shaped spacer is replaceable.
2個のフランジの一方に接続されている請求項12また
は請求項13に記載の装置。15. The device according to claim 12, wherein a tube for introducing and discharging a sample is connected to one of the two flanges.
る平面に対して傾斜している請求項14に記載の装置。16. A device according to claim 14, wherein the tube is inclined with respect to a plane defined by plate spacers.
配設されている請求項5〜15のいずれかに記載の装
置。17. The apparatus according to claim 5, wherein an expansion tank is arranged in front of the measurement chamber.
貯蔵器を有する請求項5〜16のいずれかに記載の装
置。18. The apparatus according to claim 5, further comprising a reservoir in which the sample is diluted and constantly stirred.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITFI910076A IT1247004B (en) | 1991-04-03 | 1991-04-03 | METHOD AND MEASURING DEVICE FOR THE GRANULOMETRIC DISTRIBUTION OF SOLID PARTICULATE IN FLOW |
IT91A000076 | 1991-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06174628A true JPH06174628A (en) | 1994-06-24 |
Family
ID=11349557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4082506A Pending JPH06174628A (en) | 1991-04-03 | 1992-04-03 | Method and device for measuring distribution of grain size of flowing solid granular substance |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0507746A3 (en) |
JP (1) | JPH06174628A (en) |
IT (1) | IT1247004B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4215908A1 (en) * | 1992-05-14 | 1993-11-18 | Ubbo Prof Dr Ricklefs | Optical particle size measurement appts. e.g. for clean room - periodically modulates light incident on measuring vol. e.g by varying light source power or using grating, acoustic=optic modulator or hologram, and detects scattered light. |
US6049381A (en) * | 1993-10-29 | 2000-04-11 | The United States Of America As Represented By The Secretary Of The Navy | Real time suspended particle monitor |
US5572320A (en) * | 1994-11-17 | 1996-11-05 | The United States Of America As Represented By The Secretary Of The Navy | Fluid sampler utilizing optical near-field imaging |
AU1288497A (en) * | 1995-12-18 | 1997-07-14 | Center For Laboratory Technology, Inc. | Multi-parameter hematology apparatus and method |
GB2396023A (en) * | 2002-10-05 | 2004-06-09 | Oxford Lasers Ltd | Imaging system with purging device to prevent adhesion of particles |
US7307717B2 (en) | 2005-09-16 | 2007-12-11 | Lockheed Martin Corporation | Optical flow cell capable of use in high temperature and high pressure environment |
US7518720B2 (en) | 2007-08-01 | 2009-04-14 | Lockheed Martin Corporation | Optical flow cell for use in high temperature and/or high pressure environments |
AT515577B1 (en) * | 2014-03-12 | 2018-06-15 | Anton Paar Gmbh | Common radiation path for determining particle information through direct image analysis and differential image analysis |
DK3348993T3 (en) | 2017-01-11 | 2020-03-30 | Atten2 Advanced Monitoring Tech S L | Monitoring system and method for detecting flowing microscopic objects |
CN108152175A (en) * | 2017-12-26 | 2018-06-12 | 中国人民解放军第四军医大学 | Imaging method heavy metal detection method based on suspension time difference |
CN108593504A (en) * | 2017-12-26 | 2018-09-28 | 中国人民解放军第四军医大学 | A kind of device design method of detectable PM2.5 size and shapes |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4136950A (en) * | 1976-11-08 | 1979-01-30 | Labrum Engineering, Inc. | Microscope system for observing moving particles |
DE2855583C2 (en) * | 1977-12-29 | 1984-07-12 | Sumitomo Metal Industries, Ltd., Osaka | Method for determining the grain size distribution of grain mixtures |
DE2853703A1 (en) * | 1978-12-13 | 1980-07-03 | Leitz Ernst Gmbh | Microscopic observation and measurement cuvette for suspended particle - has height adjustable curved base, with flow guide slots and made of reflective transparent material |
US4283128A (en) * | 1980-06-23 | 1981-08-11 | The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency | Photomicrographic system for flowing fluids |
GB2095827B (en) * | 1981-03-31 | 1985-07-03 | Wool Dev Int | Measurement of diameters of small objects |
JPH073419B2 (en) * | 1986-10-07 | 1995-01-18 | 東亜医用電子株式会社 | Method and device for analyzing cells in fluid |
FR2632729B1 (en) * | 1988-06-14 | 1990-08-31 | Ysebaert Sa | DEVICE FOR TAKING, TRANSPORTING AND ANALYZING LIQUID SAMPLES CONTAINING SUSPENDED PARTICLES, AND ITS OBSERVING CELL |
-
1991
- 1991-04-03 IT ITFI910076A patent/IT1247004B/en active IP Right Grant
-
1992
- 1992-03-25 EP EP19920830145 patent/EP0507746A3/en not_active Withdrawn
- 1992-04-03 JP JP4082506A patent/JPH06174628A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
ITFI910076A0 (en) | 1991-04-03 |
ITFI910076A1 (en) | 1992-10-03 |
IT1247004B (en) | 1994-12-12 |
EP0507746A3 (en) | 1993-05-26 |
EP0507746A2 (en) | 1992-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106404623B (en) | Suspended Sedimentation Concentration monitors system and monitoring method | |
JPH06174628A (en) | Method and device for measuring distribution of grain size of flowing solid granular substance | |
CN105928847B (en) | A kind of On-line Measuring Method of heterogeneous system middle particle concentration and grain size | |
US7430047B2 (en) | Small container fluid dynamics to produce optimized inspection conditions | |
JP3834611B2 (en) | Cavitation bubble observation device | |
EP1554685B1 (en) | Optical tomography of small moving objects using time delay and integration imaging | |
CN106645197B (en) | Online detection system for detecting particles on surface of precision optical element and application method | |
CN107783242B (en) | Automatic focusing device and block LIBS online detection device adopting same | |
CN105928841B (en) | A kind of online heterogeneous measuring instrument of immersion and measuring method | |
US7908903B2 (en) | Oscillatory measurement device with visual recorder | |
CN102652257A (en) | Means for detecting luminescent and/or light-scattering particles in flowing liquids | |
FI127992B (en) | Method and system for determining dissolution properties of matter | |
US3609043A (en) | Spray droplet analyzer | |
JPS63127148A (en) | Surface inspection apparatus | |
WO2012131935A1 (en) | Mist testing device | |
Smith et al. | A vision-based seam tracker for butt-plate TIG welding | |
JPH0929474A (en) | Laser beam machine | |
JPH07218417A (en) | Particle analyzing method | |
US20120057019A1 (en) | Dynamic In-Situ Feature Imager Apparatus and Method | |
CN111289408A (en) | Device and method for identifying particle distribution in Hell-Shore sheet by aid of laser | |
WO2004065544A2 (en) | Cell suspension rotating fluidic pump | |
CN106918446B (en) | Apparatus for measuring quality of laser beam and method based on the sampling of rotating cylinder spiral string holes | |
EP4040138A1 (en) | Particle measuring device | |
US4177482A (en) | Population and profile data of bodies in a transparent mass | |
Engle et al. | Double‐beam vibrating mirror flying spot scanning‐integrating microspectrophotometer |