JPH06173952A - Static pressure fluid bearing - Google Patents

Static pressure fluid bearing

Info

Publication number
JPH06173952A
JPH06173952A JP32807092A JP32807092A JPH06173952A JP H06173952 A JPH06173952 A JP H06173952A JP 32807092 A JP32807092 A JP 32807092A JP 32807092 A JP32807092 A JP 32807092A JP H06173952 A JPH06173952 A JP H06173952A
Authority
JP
Japan
Prior art keywords
bearing
radial
thrust
porous member
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32807092A
Other languages
Japanese (ja)
Other versions
JP3039738B2 (en
Inventor
Masayoshi Asami
政義 浅見
Takao Yokomatsu
孝夫 横松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4328070A priority Critical patent/JP3039738B2/en
Publication of JPH06173952A publication Critical patent/JPH06173952A/en
Application granted granted Critical
Publication of JP3039738B2 publication Critical patent/JP3039738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To improve the bearing rigidity and adapt to high-speed rotation by setting both ends of a radial bearing to the opened state to the outside air, and setting only one side of a thrust bearing to the opened state to the outside air. CONSTITUTION:When the pressure gas is guided to an intake hole 5, the pressure gas is squeezed by a cylindrical porous member 2 and a circular porous member 3, flows into a bearing gap Cr between a rotary shaft 1 and a bearing, and rotatably supports the rotary shaft 1 in no contact. The pressure gas of a radial bearing is discharged to the outside from a center discharge hole 6 and a radial bearing end section discharge hole 7, the pressure gas of a thrust bearing on the opposite side to a gas sump 8 is discharged to the outside as it is, the pressure gas on the gas sump 8 side is partially discharged from the radial bearing end section discharge hole 7 because the seal section 2a of the cylindrical porous member 2 has the same gap as the bearing gap Cr and serves as discharge resistance, and the gas sump 8 is kept at the pressure Pm higher than the external pressure Pa. The thrust rigidity can be improved without reducing the radial rigidity, and high bearing rigidity is obtained. This device can be miniaturized, and it can be used at a high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、精密工作機械や計測機
等に用いられる静圧流体軸受に関し、特に高い軸受剛性
を備えた高速回転に好適な小型の静圧流体軸受に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic bearing used for precision machine tools and measuring machines, and more particularly to a small hydrostatic bearing having high bearing rigidity and suitable for high speed rotation.

【0002】[0002]

【従来の技術】静圧流体軸受は摩擦がほとんどないた
め、回転摩擦によるトルクが極めて小さく、また流体の
平均化効果により静圧流体軸受を構成する部品の精度よ
り1桁高い運動精度を実現することができるため、特に
高精度な運動を要求される精密工作機械や計測機等に広
く使用されてきた。従来、静圧流体軸受の剛性を向上さ
せるには、以下に述べる方法が採用されていた。
2. Description of the Related Art Since a hydrostatic bearing has almost no friction, the torque due to rotational friction is extremely small, and due to the fluid averaging effect, a motion accuracy higher by one digit than that of the parts constituting the hydrostatic bearing is realized. Therefore, it has been widely used for precision machine tools, measuring machines and the like, which require particularly high precision movement. Conventionally, in order to improve the rigidity of the hydrostatic bearing, the method described below has been adopted.

【0003】(イ)軸受部面積を大きくするため、軸受
の軸径を大きくする (ロ)軸受と回転軸の隙間を小さくする (ハ)供給する加圧流体の圧力を大きくする
(A) To increase the bearing area, the shaft diameter of the bearing is increased. (B) The clearance between the bearing and the rotating shaft is reduced. (C) The pressure of the pressurized fluid supplied is increased.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来技術には以下に述べる問題点があった。
However, the above-mentioned prior art has the following problems.

【0005】(イ)の方法においては、静圧流体軸受を
大径化すれば、工作機械等で回転軸を高速回転させたと
き、加圧流体の粘性摩擦による発熱量が増大して、回転
軸及び軸受の熱膨張量が大きくなる。また、回転軸の遠
心力変形による寸法変化も大きくなるため回転軸と軸受
が接触しやすくなり、高速回転を阻害していた。さらに
回転軸の質量も大きくなるため、回転数の制御、特に起
動・停止に長く時間がかかり、また共振周波数の低下に
より高速回転化が困難になっていた。
In the method (a), if the diameter of the hydrostatic bearing is increased, the amount of heat generated by viscous friction of the pressurized fluid increases when the rotating shaft is rotated at a high speed in a machine tool, etc. The amount of thermal expansion of the shaft and bearing increases. Further, since the dimensional change due to the centrifugal force deformation of the rotary shaft becomes large, the rotary shaft and the bearing are likely to come into contact with each other, which impedes high-speed rotation. Further, since the mass of the rotating shaft becomes large, it takes a long time to control the number of rotations, particularly to start and stop the rotating shaft, and it is difficult to achieve high-speed rotation due to the reduction of the resonance frequency.

【0006】(ロ)の方法においては、高速回転させた
ときその発熱量は軸受隙間に反比例するため、熱変形の
問題はさらに深刻になってしまう。また高速回転させな
い計測機等の場合においても軸受隙間を静圧流体軸受を
構成する部品の部品精度程度まで小さくすると十分な流
体の平均効果が得られないため回転精度が劣化するとい
う問題があった。
In the method (b), the amount of heat generated when rotating at high speed is inversely proportional to the bearing clearance, so the problem of thermal deformation becomes more serious. Further, even in the case of a measuring machine that does not rotate at a high speed, if the bearing gap is reduced to about the accuracy of the parts that make up the hydrostatic bearing, there is a problem that the accuracy of rotation is deteriorated because a sufficient fluid averaging effect cannot be obtained. .

【0007】(ハ)の方法においては、一般に工場等で
供給可能な加圧流体には上限があり、また加圧流体を高
圧にすると、作動流体として気体等の圧縮流体を用いて
いる場合には不安定振動が発生しやすくなるという問題
があった。
In the method (c), generally, there is an upper limit to the pressurized fluid that can be supplied in a factory or the like, and when the pressurized fluid has a high pressure, when a compressed fluid such as gas is used as the working fluid. Has a problem that unstable vibration is likely to occur.

【0008】本発明は、上記従来の技術が有する問題点
に鑑みてなされたものであり、特に小型の静圧流体軸受
において、従来に比べ高い軸受剛性を有し、高速回転に
好適な静圧流体軸受を提供することを目的とする。
The present invention has been made in view of the problems of the above-mentioned prior art. Particularly, in a small hydrostatic bearing, the hydrostatic bearing has higher bearing rigidity than that of the prior art and is suitable for high speed rotation. An object is to provide a fluid bearing.

【0009】[0009]

【課題を解決するための手段及び作用】上記目的を達成
するために、本発明の静圧流体軸受は、ラジアル軸受部
およびスラスト軸受部を備える軸受ハウジングと前記ラ
ジアル軸受部および前記スラスト軸受部にて非接触に支
持される回転軸からなり、ラジアル軸受は両端を外気に
対し解放状態とし、スラスト軸受は片側のみを外気に対
し解放状態としていることを特徴とする。このように構
成することにより、特に小型の静圧流体軸受において、
スラスト軸受の幅が小さく加圧流体の供給圧にたいし
て、十分軸受隙間内圧力が上がらないような静圧流体軸
受にたいしても高い軸受剛性を得ることができ、同じ剛
性を有する従来の静圧流体軸受に対して小型化が可能で
あるため、高速化が可能となる。
To achieve the above object, the hydrostatic bearing of the present invention includes a bearing housing including a radial bearing portion and a thrust bearing portion, the radial bearing portion and the thrust bearing portion. The radial bearing is characterized in that both ends are open to the outside air, and only one side of the thrust bearing is open to the outside air. By configuring in this way, especially in a small hydrostatic bearing,
The thrust bearing has a small width and a high bearing rigidity can be obtained even with a hydrostatic bearing in which the pressure in the bearing gap does not rise sufficiently against the supply pressure of the pressurized fluid, and a conventional hydrostatic bearing with the same rigidity can be obtained. On the other hand, since the size can be reduced, the speed can be increased.

【0010】[0010]

【実施例】図1は本発明の第1実施例を示す模式断面図
であり、静圧流体軸受の1つである多孔質静圧気体軸受
の例を示すものである。同図において1は回転軸、2は
ラジアル軸受を形成する円筒状多孔質部材、3はスラス
ト軸受を形成する環状多孔質部材、4は円筒状多孔質部
材2及び環状多孔質部材3を保持する軸受ハウジング、
5は軸受ハウジング4に設けられた円筒状多孔質部材2
及び環状多孔質部材3に連通する給気孔、6は軸受ハウ
ジング2のラジアル軸受の軸方向中央部に設けられた円
筒状多孔質部材に開口する中央排気口、7は軸受ハウジ
ング4のラジアル軸受両端に設けられ円筒状多孔質部材
2に開口するラジアル軸受端部排気孔、8は高圧の気体
が存在する気体溜りである。
1 is a schematic sectional view showing a first embodiment of the present invention, showing an example of a porous hydrostatic gas bearing which is one of hydrostatic fluid bearings. In the figure, 1 is a rotating shaft, 2 is a cylindrical porous member forming a radial bearing, 3 is an annular porous member forming a thrust bearing, 4 is a cylindrical porous member 2 and an annular porous member 3. Bearing housing,
5 is a cylindrical porous member 2 provided in the bearing housing 4.
And an air supply hole communicating with the annular porous member 3, 6 is a central exhaust port opened in a cylindrical porous member provided at the axial center of the radial bearing of the bearing housing 2, and 7 is both ends of the radial bearing of the bearing housing 4. Is a radial bearing end exhaust hole provided in the cylindrical porous member 2, and 8 is a gas pool in which high-pressure gas is present.

【0011】周知の加圧気体供給源より供給される加圧
気体を給気孔5に導くと加圧気体は円筒状多孔質部材2
および環状多孔質部材3にて絞られ、回転軸1との間に
形成される軸受隙間に流入し、ここに発生する圧力によ
り回転軸1を非接触にて回転可能に支持できる。この
後、ラジアル軸受に供給された加圧気体は中央排気孔6
及びラジアル軸受端部排気孔7より外部に排気される。
一方、スラスト軸受に供給された加圧気体は気体溜り8
の反対側についてはそのまま外部に排出されるが、気体
溜り8側は円筒状多孔質部材2のシール部2aが軸受隙
間Crと同等の隙間を有しているため、これが排気抵抗
となりラジアル軸受端部排気孔7より一部は排気される
が、気体溜り8は外部圧力Paよりも大きな圧力Pmに
保たれる。この時の圧力分布を模式的に表したものがラ
ジアル軸受について本図の上部に、スラスト軸受につい
て右部に示してある。
When the pressurized gas supplied from the well-known pressurized gas supply source is introduced into the air supply hole 5, the pressurized gas is supplied to the cylindrical porous member 2
Also, the rotary shaft 1 is squeezed by the annular porous member 3, flows into a bearing gap formed between the rotary shaft 1 and the rotary shaft 1, and the rotary shaft 1 can be rotatably supported in a non-contact manner by the pressure generated there. After that, the pressurized gas supplied to the radial bearing is fed to the central exhaust hole 6
And, it is exhausted to the outside through the radial bearing end exhaust hole 7.
On the other hand, the pressurized gas supplied to the thrust bearing 8
The other side is discharged to the outside as it is, but since the seal portion 2a of the cylindrical porous member 2 has a clearance equal to the bearing clearance Cr on the gas reservoir 8 side, this becomes exhaust resistance and becomes a radial bearing end. Although part of the gas is exhausted from the partial exhaust hole 7, the gas pool 8 is kept at a pressure Pm higher than the external pressure Pa. A schematic representation of the pressure distribution at this time is shown in the upper part of this figure for the radial bearing and in the right part for the thrust bearing.

【0012】一般に軸受部の圧力分布は、図2のαに示
すように給気圧Psに対して圧力分布の最大値がPsに
近くなることが望ましいが、軸受の幅Ltが小さいとき
には同図βのようになり、給気圧Psに対して著しく圧
力分布の最大値が小さくなってしまう。この様なとき、
対策としては多孔質部材の透過率を大きくしたり、軸受
隙間を小さくすることが有効であるが、不安定振動や発
熱の問題から前記のような対策がとれない場合がある。
また図1におけるラジアル軸受端部排気孔7を塞ぐこと
により、スラスト軸受については本発明と同様の圧力分
布を得るが、ラジアル剛性の低下は避けられない。この
様なときに本発明のごとくラジアル軸受は両端を外気に
対し解放状態とし、スラスト軸受の片側のみを外気に対
し解放状態とすることにより同図γに示された圧力分布
を実現することが可能となり、ラジアル剛性を小さくす
ることなしにスラスト剛性を向上させることができる。
Generally, in the pressure distribution of the bearing portion, it is desirable that the maximum value of the pressure distribution be close to Ps with respect to the supply pressure Ps as shown by α in FIG. 2, but when the width Lt of the bearing is small, As a result, the maximum value of the pressure distribution becomes significantly smaller than the supply pressure Ps. At this time,
As a countermeasure, it is effective to increase the transmittance of the porous member or to reduce the bearing gap, but there are cases where the above-mentioned countermeasure cannot be taken due to the problems of unstable vibration and heat generation.
Also, by closing the radial bearing end exhaust hole 7 in FIG. 1, a pressure distribution similar to that of the present invention is obtained for the thrust bearing, but a reduction in radial rigidity cannot be avoided. In such a case, the radial bearing according to the present invention has both ends open to the outside air, and only one side of the thrust bearing is opened to the outside air to realize the pressure distribution shown in γ in the figure. This makes it possible to improve the thrust rigidity without reducing the radial rigidity.

【0013】軸受隙間の流体解析によると例えば、ラジ
アル軸受部直径70mm、軸受幅35mmを2つ、スラ
スト軸受外径98mm、内径72mmでは給気圧0.6
MPaおよび軸受隙間5μmの条件ではラジアル軸受端
部排気孔7を開口しない場合、 ラジアル剛性:200N/μm スラスト剛性:218N/μm が得られる。またラジアル軸受端部排気孔7を開口せ
ず、気体溜り8を外気に連通した場合、 ラジアル剛性:282N/μm スラスト剛性:147N/μm となる。一方、本実施例のように気体溜り8を設け、ラ
ジアル軸受端部排気孔を外気に開口することにより、上
記の2つの条件のうち、ラジアル・スラストとも高い方
の剛性を実現することができる。
According to the fluid analysis of the bearing clearance, for example, the radial bearing portion diameter is 70 mm, the bearing width is 35 mm, the thrust bearing outer diameter is 98 mm, and the inner diameter is 72 mm.
When the radial bearing end exhaust hole 7 is not opened under the conditions of MPa and bearing gap 5 μm, radial rigidity: 200 N / μm and thrust rigidity: 218 N / μm are obtained. When the radial bearing end exhaust hole 7 is not opened and the gas reservoir 8 is communicated with the outside air, the radial rigidity is 282 N / μm and the thrust rigidity is 147 N / μm. On the other hand, by providing the gas reservoir 8 and opening the radial bearing end exhaust hole to the outside as in the present embodiment, it is possible to achieve the higher rigidity in both radial and thrust of the above two conditions. .

【0014】またラジアル軸受端部に排気孔を設ける手
段としては図1に示すように円筒状多孔質部材2に円周
環状溝を構成するほか、図3に示すような回転軸1側に
円周環状溝を形成しても同等の効果が得られる。
As means for providing an exhaust hole at the end of the radial bearing, a circumferential annular groove is formed in the cylindrical porous member 2 as shown in FIG. 1, and a circle is formed on the rotary shaft 1 side as shown in FIG. Even if the circumferential annular groove is formed, the same effect can be obtained.

【0015】図4は本発明の第2の実施例を示すもので
あり、回転軸1のスラストプレート1aが中央に配置さ
れた構成を取った場合の実施例である。静圧流体軸受の
1つである多孔質静圧気体軸受の例を示すものである。
同図において1は回転軸、2はラジアル軸受を形成する
円筒状多孔質部材、3はスラスト軸受を形成する環状多
孔質部材、4は円筒状多孔質部材2及び環状多孔質部材
3を保持する軸受ハウジング、5は軸受ハウジング4に
設けられた円筒状多孔質部材2及び環状多孔質部材3に
連通する給気孔、9は円筒状多孔質部材2および環状多
孔質部材3の間に連通する軸受ハウジング4に設けられ
たラジアル・スラスト間排気孔、10はスラスト軸受排
気連通部である。
FIG. 4 shows a second embodiment of the present invention, which is an embodiment in which the thrust plate 1a of the rotary shaft 1 is arranged in the center. 1 shows an example of a porous hydrostatic gas bearing, which is one of hydrostatic bearings.
In the figure, 1 is a rotating shaft, 2 is a cylindrical porous member forming a radial bearing, 3 is an annular porous member forming a thrust bearing, 4 is a cylindrical porous member 2 and an annular porous member 3. A bearing housing, 5 is an air supply hole communicating with the cylindrical porous member 2 and the annular porous member 3 provided in the bearing housing 4, and 9 is a bearing communicating between the cylindrical porous member 2 and the annular porous member 3. Radial / thrust exhaust holes 10 provided in the housing 4 are thrust bearing exhaust communication portions.

【0016】周知の加圧気体供給源より供給される加圧
気体を給気孔5に導くと加圧気体は円筒状多孔質部材2
および環状多孔質部材3にて絞られ、回転軸1との間に
形成される軸受隙間に流入し、ここに発生する圧力によ
り回転軸1を非接触にて回転可能に支持できる。この
後、ラジアル軸受に供給された加圧気体はラジアル・ス
ラスト間排気孔9及び軸方向より外部に排気される。一
方、スラスト軸受に供給された加圧気体は内周部側につ
いてはラジアル・スラスト間排気孔により外部に排出さ
れるが、外周部については2つのスラスト軸受のスラス
ト軸受排気連通部10は気体が流れないため外気Paよ
りも高圧な圧力Pmに保たれる。この時の圧力分布を模
式的に表したものがスラスト軸受について右部に示して
ある。ラジアル軸受の圧力分布については図1に於ける
本発明の第1の実施例と同じである。このため本実施例
においても第1の実施例と同様の効果が得られ、小型な
がら剛性の高い静圧気体軸受を得ることができる。
When the pressurized gas supplied from the well-known pressurized gas supply source is introduced into the air supply hole 5, the pressurized gas is supplied to the cylindrical porous member 2.
Also, the rotary shaft 1 is squeezed by the annular porous member 3, flows into a bearing gap formed between the rotary shaft 1 and the rotary shaft 1, and the rotary shaft 1 can be rotatably supported in a non-contact manner by the pressure generated there. Thereafter, the pressurized gas supplied to the radial bearing is exhausted to the outside from the radial-thrust exhaust hole 9 and the axial direction. On the other hand, the pressurized gas supplied to the thrust bearing is exhausted to the outside through the radial / thrust exhaust hole on the inner peripheral side, but the outer peripheral portion has no gas in the thrust bearing exhaust communication section 10 of the two thrust bearings. Since it does not flow, it is maintained at a pressure Pm higher than the outside air Pa. A schematic representation of the pressure distribution at this time is shown in the right part of the thrust bearing. The pressure distribution of the radial bearing is the same as that of the first embodiment of the present invention shown in FIG. Therefore, also in this embodiment, the same effect as that of the first embodiment can be obtained, and it is possible to obtain a static pressure gas bearing having a small size and high rigidity.

【0017】[0017]

【発明の効果】本発明によれば、特に小型の静圧流体軸
受においてスラスト軸受の幅が小さく加圧流体の供給圧
にたいして、十分軸受隙間内圧力が上がらないような静
圧流体軸受にたいしても、高い軸受剛性を得ることがで
き、同じ剛性を有する従来の静圧流体軸受に対して小型
化が可能であるため、高速化が可能となる。
According to the present invention, particularly in a small-sized hydrostatic bearing, even if the hydrostatic bearing is such that the thrust bearing has a small width and the pressure in the bearing gap does not rise sufficiently with respect to the supply pressure of the pressurized fluid, High bearing rigidity can be obtained, and downsizing can be achieved as compared with the conventional hydrostatic bearing having the same rigidity, so that high speed can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における静圧流体軸受の
模式図である。
FIG. 1 is a schematic view of a hydrostatic bearing according to a first embodiment of the present invention.

【図2】軸受隙間内の圧力分布の説明図である。FIG. 2 is an explanatory diagram of pressure distribution in a bearing gap.

【図3】本発明におけるラジアル軸受端部排気方法の第
2の例である。
FIG. 3 is a second example of the radial bearing end exhaust method according to the present invention.

【図4】本発明の第2実施例における静圧流体軸受の模
式図である。
FIG. 4 is a schematic diagram of a hydrostatic bearing according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 回転軸 1a スラストプレート 2 円環状多孔質部材 2a シール部 3 環状多孔質部材 4 軸受ハウジング 5 給気孔 6 中央排気孔 7 ラジアル軸受端部排気孔 8 気体溜り 9 ラジアル・スラスト間排気孔 10 スラスト軸受排気連通部 1 Rotating Shaft 1a Thrust Plate 2 Annular Porous Member 2a Seal Part 3 Annular Porous Member 4 Bearing Housing 5 Air Supply Hole 6 Central Exhaust Hole 7 Radial Bearing End Exhaust Hole 8 Gas Reservoir 9 Radial / Thrust Exhaust Hole 10 Thrust Bearing Exhaust communication part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ラジアル軸受部およびスラスト軸受部を
備える軸受ハウジングと、前記ラジアル軸受部および前
記スラスト軸受部にて非接触に支持される回転軸からな
る静圧流体軸受において、前記ラジアル軸受は両端を外
気に対し解放状態とし、前記スラスト軸受は片側のみを
外気に対し解放状態としたことを特徴とする静圧流体軸
受。
1. A hydrostatic bearing comprising a bearing housing including a radial bearing portion and a thrust bearing portion, and a rotary shaft supported in a non-contact manner by the radial bearing portion and the thrust bearing portion, wherein the radial bearings have opposite ends. Is opened to the outside air, and the thrust bearing has only one side opened to the outside air.
【請求項2】 前記ラジアル軸受部と前記スラスト軸受
部の間において、前記ラジアル軸受端部もしくは前記回
転軸に設けられた円周溝と外気を連通させることによ
り、前記スラスト軸受部の片側のみを外気に解放するこ
とを特徴とする請求項1記載の静圧流体軸受。
2. Between the radial bearing portion and the thrust bearing portion, only one side of the thrust bearing portion is provided by communicating the outside air with the radial bearing end portion or the circumferential groove provided in the rotary shaft. The hydrostatic bearing according to claim 1, wherein the hydrostatic bearing is released to the outside air.
【請求項3】 1つのスラストプレートに対向する2つ
のスラスト軸受部の排気連通部を外気に解放しないこと
により、前記スラスト軸受部の片側のみを外気に解放す
ることを特徴とする請求項1記載の静圧流体軸受。
3. The method according to claim 1, wherein only one side of the thrust bearing portion is released to the outside air by not releasing the exhaust communication portions of the two thrust bearing portions facing the one thrust plate to the outside air. Hydrostatic bearing.
JP4328070A 1992-12-08 1992-12-08 Hydrostatic bearing Expired - Fee Related JP3039738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4328070A JP3039738B2 (en) 1992-12-08 1992-12-08 Hydrostatic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4328070A JP3039738B2 (en) 1992-12-08 1992-12-08 Hydrostatic bearing

Publications (2)

Publication Number Publication Date
JPH06173952A true JPH06173952A (en) 1994-06-21
JP3039738B2 JP3039738B2 (en) 2000-05-08

Family

ID=18206182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4328070A Expired - Fee Related JP3039738B2 (en) 1992-12-08 1992-12-08 Hydrostatic bearing

Country Status (1)

Country Link
JP (1) JP3039738B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509633A (en) * 1999-09-14 2003-03-11 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Radial-axial composite sliding bearing
JP2008025607A (en) * 2006-07-18 2008-02-07 Oiles Ind Co Ltd Driving device for air spindle
JP2009287120A (en) * 2002-08-28 2009-12-10 Oiles Ind Co Ltd Bearing material for porous hydrostatic gas bearing, and porous hydrostatic gas bearing using the same
CN103233979A (en) * 2013-05-08 2013-08-07 北京微纳精密机械有限公司 Aerostatic guide way component
CN105179479A (en) * 2015-07-24 2015-12-23 中国科学院等离子体物理研究所 Novel lining type high-speed gas bearing structure
CN115325027A (en) * 2022-08-31 2022-11-11 湖南宇环精密制造有限公司 High-rigidity air-flotation rotary table

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509633A (en) * 1999-09-14 2003-03-11 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Radial-axial composite sliding bearing
JP2009287120A (en) * 2002-08-28 2009-12-10 Oiles Ind Co Ltd Bearing material for porous hydrostatic gas bearing, and porous hydrostatic gas bearing using the same
JP2008025607A (en) * 2006-07-18 2008-02-07 Oiles Ind Co Ltd Driving device for air spindle
CN103233979A (en) * 2013-05-08 2013-08-07 北京微纳精密机械有限公司 Aerostatic guide way component
CN105179479A (en) * 2015-07-24 2015-12-23 中国科学院等离子体物理研究所 Novel lining type high-speed gas bearing structure
CN115325027A (en) * 2022-08-31 2022-11-11 湖南宇环精密制造有限公司 High-rigidity air-flotation rotary table

Also Published As

Publication number Publication date
JP3039738B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
US4710034A (en) Double-conical static pressure-type gas bearing
US7648277B2 (en) Device for supporting and guiding a rotating shaft
ITMI961453A1 (en) AXIAL PISTON MACHINE
US5797684A (en) Vibration damping apparatus having an oil space with an outflow choke
US20040008913A1 (en) Spindle device using dynamic pressure bearing
JPH06173952A (en) Static pressure fluid bearing
JPH02215984A (en) Screw compressor
US6217305B1 (en) Screw pumps
JP3547844B2 (en) Fluid dynamic pressure bearing
JP3569668B2 (en) Pneumatic dynamic spindle device
JPH0571535A (en) Static pressure fluid bearing
JPH085373Y2 (en) Air turbine driven static pressure gas bearing spindle
JPH0582907B2 (en)
JP2000104736A (en) Static pressure air bearing supporting guide roller
JPH0218241Y2 (en)
JP2711584B2 (en) Fluid bearing device
JPH0547542U (en) Hydrostatic bearing device
JPH03163216A (en) Fluid bearing device
JP2872877B2 (en) Hydrostatic bearing
JPS5825882B2 (en) Manufacturing method of rotor in oscillating actuator
JPS6237516A (en) Static pressure gas bearing
JP2000092773A (en) Disk driving device
JPH0251621A (en) Gas bearing spindle equipped with gas supply/exhaust mechanism
JP2005291455A (en) Rotary joint
JPH0198710A (en) Static pressure gas bearing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees