JP2009287120A - Bearing material for porous hydrostatic gas bearing, and porous hydrostatic gas bearing using the same - Google Patents

Bearing material for porous hydrostatic gas bearing, and porous hydrostatic gas bearing using the same Download PDF

Info

Publication number
JP2009287120A
JP2009287120A JP2009187894A JP2009187894A JP2009287120A JP 2009287120 A JP2009287120 A JP 2009287120A JP 2009187894 A JP2009187894 A JP 2009187894A JP 2009187894 A JP2009187894 A JP 2009187894A JP 2009287120 A JP2009287120 A JP 2009287120A
Authority
JP
Japan
Prior art keywords
porous
bearing
layer
sintered metal
bearing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009187894A
Other languages
Japanese (ja)
Other versions
JP5131256B2 (en
JP2009287120A5 (en
Inventor
Hirotsugu Tomita
博嗣 冨田
Masafumi Kumagai
真文 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2009187894A priority Critical patent/JP5131256B2/en
Publication of JP2009287120A publication Critical patent/JP2009287120A/en
Publication of JP2009287120A5 publication Critical patent/JP2009287120A5/ja
Application granted granted Critical
Publication of JP5131256B2 publication Critical patent/JP5131256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing material for a porous hydrostatic gas bearing which makes it possible to effect firm joining and integration without causing exfoliation or the like between the porous sintered metal layer and the supporting metal made of stainless steel, and enhance porosity of the porous sintered metal layer to increase the floating amount by the compressed gas circulating through the porous sintered metal layer, and to provide a porous hydrostatic gas bearing using the same. <P>SOLUTION: Disclosed is a bearing material including supporting metal 2 made of stainless steel, and a porous sintered metal layer 4 integrated with at least one surface of the supporting metal 2 by a bonding layer 3. Particles of an inorganic substrate are dispersed and contained at grain boundaries of the porous sintered metal layer 4. The porous sintered metal layer 4 containing the particles of the inorganic substance are composed of, by weight, 4 to 10% tin, 10 to 40% nickel, not less than 0.1 and less than 0.5% phosphorus, and the balance copper. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、多孔質焼結金属層を具備した静圧気体軸受用の軸受素材及びこの軸受素材を用いた多孔質静圧気体軸受に関する。     The present invention relates to a bearing material for a hydrostatic gas bearing provided with a porous sintered metal layer, and a porous hydrostatic gas bearing using the bearing material.

多孔質静圧気体軸受は、すぐれた高速安定性と高い負荷容量をもつものとして、従来から注目されており、種々研究もされているが実用化に際してはいくつかの克服すべき問題がある。   Porous static pressure gas bearings have been attracting attention as having excellent high-speed stability and high load capacity, and various researches have been conducted, but there are some problems to be overcome in practical use.

多孔質静圧気体軸受には、圧縮気体の供給手段を施した裏金に多孔質焼結金属体を組み付けてなる軸受素材が多く用いられ、この軸受素材における多孔質焼結金属体の形成材料としては、青銅、アルミニウム合金、ステンレス鋼を主体としたもの、特に青銅を主体としたものが多く用いられている。   For porous static pressure gas bearings, many bearing materials are used in which a porous sintered metal body is assembled to a back metal that has been supplied with compressed gas. As a material for forming a porous sintered metal body in this bearing material, Of these, those mainly composed of bronze, aluminum alloy and stainless steel, particularly those mainly composed of bronze are used.

ところで、多孔質静圧気体軸受に用いる軸受素材には充分な通気性と10−3mmオーダーの表面粗さとが要求されるが、上記の軸受素材を静圧気体軸受に用いるには、多孔質焼結金属体それ自体は一応好ましい通気性を有するが、多孔質焼結金属体の寸法精度や表面粗さが充分でないので、多くの場合には、その表面に機械加工が施される。 By the way, the bearing material used for the porous hydrostatic gas bearing is required to have sufficient air permeability and surface roughness of the order of 10 −3 mm. Although the sintered metal body itself has a preferable air permeability, since the dimensional accuracy and surface roughness of the porous sintered metal body are not sufficient, in many cases, the surface is machined.

この機械加工は、主として旋盤及びフライス加工や研削により行われるが、この旋盤及びフライス加工や研削により多孔質焼結金属体の表面に目詰まりを惹起させ、その通気性(絞り特性)に大きく影響を与えることになる。とくに、研削においては、多孔質焼結金属体の表面に塑性流動を惹起させ、カエリやバリを生じさせる。   This machining is mainly performed by lathe, milling and grinding, but this lathe, milling and grinding causes clogging on the surface of the porous sintered metal body, which greatly affects its air permeability (drawing characteristics). Will give. In particular, in grinding, plastic flow is induced on the surface of the porous sintered metal body to cause burrs and burrs.

また、多孔質焼結金属体は、上記のように、圧縮気体の供給手段を施した裏金に組み付けられ、例えば多孔質静圧ラジアル気体軸受の場合では、この組み付けに際しては、円筒状の裏金に円筒状の多孔質焼結金属体を圧入嵌着する手段が採られる。   Further, as described above, the porous sintered metal body is assembled to the back metal to which the compressed gas supply means has been applied. For example, in the case of a porous static pressure radial gas bearing, the cylindrical back metal is used for this assembly. A means for press-fitting a cylindrical porous sintered metal body is employed.

単なる滑り軸受の場合は、このような圧入嵌着手段を採ることでもそれ程問題を生じないが、多孔質静圧気体軸受においては、一見密に圧入嵌着されている両者の接触部に微細な隙間が存在するために、多孔質焼結金属体内の圧縮気体の本来の流通よりも、この隙間からの気体の漏洩が大きくなる場合がある。この隙間からの気体の漏洩は、当然、多孔質静圧気体軸受としての負荷容量の減少など性能の低下を来すことになるので極力これを防止することが好ましい。   In the case of a plain bearing, even if such a press-fitting means is used, there is no problem. However, in a porous hydrostatic gas bearing, there is a minute amount in the contact portion between the two seemingly press-fitted. Due to the presence of the gap, the gas leakage from the gap may be larger than the original flow of the compressed gas in the porous sintered metal body. Naturally, the leakage of the gas from the gap results in a decrease in performance such as a decrease in load capacity as a porous hydrostatic gas bearing. Therefore, it is preferable to prevent this as much as possible.

これに対処するために、締代を大きくして大きな圧入力で嵌着すれば、この部分の隙間はほぼ完全に無くすことができるが、逆に、裏金によって極めて大きな絞りを受ける多孔質焼結金属体の外表面側で焼結金属の塑性流動が生じる虞があり、したがって、裏金に嵌着後、圧縮気体の流通が多孔質焼結金属体の嵌着面側で大きく阻害されるという問題が生じる。   In order to cope with this, if the interference is increased and fitting is performed with a large pressure input, the gap in this part can be almost completely eliminated. There is a risk that the plastic flow of the sintered metal may occur on the outer surface side of the metal body, and therefore, the problem that the flow of the compressed gas is greatly hindered on the fitting surface side of the porous sintered metal body after fitting on the back metal. Occurs.

特開平11−158511号公報JP-A-11-158511

上記問題に鑑み、本出願人は特願平9−342242号(特開平11−158511号)に記載のような技術(以下「先行技術」という)を提案し、上記問題を解決した。すなわち、先行技術は、裏金と、この裏金の少なくとも一方の面に接合された多孔質焼結金属層とを具備しており、多孔質焼結金属層の粒界には無機物質粒子が含有されている多孔質静圧気体軸受用の軸受素材に関するものである。そして、先行技術には、無機物質粒子に加えて、具体例として、重量比で錫4〜10%、ニッケル10〜40%、燐0.5〜4%、黒鉛3〜10%及び残部銅からなる多孔質焼結金属層が開示されている。   In view of the above problems, the present applicant has proposed a technique (hereinafter referred to as “prior art”) described in Japanese Patent Application No. 9-342242 (Japanese Patent Laid-Open No. 11-158511), and has solved the above problem. That is, the prior art includes a backing metal and a porous sintered metal layer bonded to at least one surface of the backing metal, and inorganic substance particles are contained in the grain boundaries of the porous sintered metal layer. The present invention relates to a bearing material for a porous static pressure gas bearing. And in the prior art, in addition to inorganic substance particles, as specific examples, by weight, tin 4-10%, nickel 10-40%, phosphorus 0.5-4%, graphite 3-10% and the balance copper A porous sintered metal layer is disclosed.

この先行技術に開示された軸受素材は、(1)多孔質焼結金属層の粒界には黒鉛等の無機物質粒子が含有されているので、機械加工を施してもその表面の目詰まりが抑制されて理想的な絞り構造となること、(2)多孔質焼結金属層が裏金に接合一体化されているので、この接合部からの圧縮気体の漏洩もなく、給気圧による焼結層の変形を極めて小さくすることができる、という効果を奏するものである。   In the bearing material disclosed in this prior art, (1) since the grain boundary of the porous sintered metal layer contains inorganic substance particles such as graphite, the surface is clogged even if machined. (2) Since the porous sintered metal layer is bonded and integrated with the back metal, there is no leakage of compressed gas from the bonded portion, and the sintered layer is formed by supplying air pressure. There is an effect that the deformation of can be extremely reduced.

この先行技術に開示された軸受素材の多孔質焼結金属層は、成分中のニッケル(Ni)及び燐(P)が焼結過程において液相のNiPを発生し、焼結温度の上昇とともに次第に活発となる固相−液相間での相互拡散でもって焼結層の合金化が行われ、また裏金(鋼材)への液相のNiPの良好なぬれ性でもって多孔質焼結金属層と裏金との接合一体化が行われて作製されるものである。 In the porous sintered metal layer of the bearing material disclosed in this prior art, nickel (Ni) and phosphorus (P) in the components generate liquid phase Ni 3 P in the sintering process, and the sintering temperature is increased. At the same time, the sintered layer is alloyed by mutual diffusion between the solid phase and the liquid phase, which becomes increasingly active, and the porous phase is sintered with good wettability of the liquid phase Ni 3 P on the back metal (steel material). The bonded metal layer and the back metal are joined and integrated.

しかしながら、裏金として耐腐食性、特に耐錆性に優れたステンレス鋼を使用した場合には、該裏金と多孔質焼結金属層との接合一体化にあたり、いくつかの問題点が提起された。すなわち、(1)ステンレス鋼からなる裏金の少なくとも一方の面に多孔質焼結金属層を焼結時に接合する場合には、裏金の表面、換言すれば裏金と多孔質焼結金属層との接合界面に酸化クロム(Cr)等のクロム酸化物が生成され、接合界面にクロム酸化物が介在することにより多孔質焼結金属層の裏金表面への接合一体化が阻害されること、(2)焼結時において液相のNiPの発生量が多いと斯かる液相のNiPが焼結中に流れ出し、多孔質焼結金属層を裏金の表面に接合するに必要なNiPの液相量が減少して該多孔質焼結金属層と裏金との接合力が弱められ、焼結後の冷却(放冷)時の温度の下降に伴う多孔質焼結金属層と裏金との間の接合面での該多孔質焼結金属層の収縮によって当該接合面で剥離を生じること、などの問題である。とくに上記(2)の問題は、多孔質静圧気体軸受においては、当該接合面からの圧縮気体の漏洩等の欠点を惹起することになる。 However, when stainless steel having excellent corrosion resistance, particularly rust resistance, is used as the backing metal, several problems have been raised in joining and integrating the backing metal and the porous sintered metal layer. (1) When a porous sintered metal layer is bonded to at least one surface of a stainless steel back metal during sintering, the surface of the back metal, in other words, the connection between the back metal and the porous sintered metal layer Chromium oxide such as chromium oxide (Cr 2 O 3 ) is generated at the interface, and the integration of the porous sintered metal layer to the back metal surface is hindered by the presence of chromium oxide at the bonding interface, (2) When a large amount of Ni 3 P in the liquid phase is generated during sintering, such Ni 3 P in the liquid phase flows out during the sintering and is necessary for joining the porous sintered metal layer to the surface of the back metal. The amount of liquid phase of Ni 3 P is reduced, the bonding force between the porous sintered metal layer and the back metal is weakened, and the porous sintered metal layer is accompanied by a decrease in temperature during cooling (cooling) after sintering. Due to shrinkage of the porous sintered metal layer at the bonding surface between the metal and the back metal And so on. In particular, the above problem (2) causes a defect such as leakage of compressed gas from the joint surface in the porous hydrostatic gas bearing.

本発明者は上記問題に鑑み鋭意研究を重ねた結果、上記(1)の問題点に対しては、ステンレス鋼からなる裏金の表面にメッキ層を施し、斯かるメッキ層からなる接合層を裏金と多孔質焼結金属層との間に介在させることにより、裏金と多孔質焼結金属層との接合界面にクロム酸化物の生成を防止し、ステンレス鋼からなる裏金の表面に接合層を介して多孔質焼結金属層を接合一体化させることができることを見出し、また上記(2)の問題点に対しては、液相のNiPの発生量を少なくすることにより焼結後の冷却時の多孔質焼結金属層の収縮量を少なくし、多孔質焼結金属層と裏金との間の接合面で剥離を生じることなく接合一体化させ得るとともに多孔質焼結金属層の気孔率を高めることができ、当該多孔質焼結金属層を流通する圧縮気体による浮上量を高めることを見出した。 As a result of intensive studies in view of the above problems, the present inventor has applied a plating layer to the surface of the back metal made of stainless steel, and the bonding layer made of such a plating layer is used as the back metal. And the porous sintered metal layer are interposed between the back metal and the porous sintered metal layer to prevent the formation of chromium oxide at the joining interface between the stainless steel and the back metal surface. And found that the porous sintered metal layer can be joined and integrated, and with respect to the problem (2), cooling after sintering can be achieved by reducing the amount of Ni 3 P generated in the liquid phase. The amount of shrinkage of the porous sintered metal layer at the time is reduced, and the porous sintered metal layer can be integrated and bonded without causing separation at the bonding surface between the porous sintered metal layer and the back metal. Circulate the porous sintered metal layer Found that increasing the flying height due to condensation gas.

本発明は上記知見に基づきなされたものであり、その目的とするところは、多孔質焼結金属層とステンレス鋼からなる裏金との間に剥離等を生じることなく強固な接合一体化を行わしめることができると共に多孔質焼結金属層の気孔率を高めて当該多孔質焼結金属層を流通する圧縮気体による浮上量を高めることができる多孔質静圧気体軸受用の軸受素材及びこれを用いた多孔質静圧気体軸受を提供することにある。   The present invention has been made on the basis of the above-mentioned knowledge, and the object of the present invention is to perform strong joint integration without causing separation between the porous sintered metal layer and the back metal made of stainless steel. And a bearing material for a porous hydrostatic gas bearing capable of increasing the porosity of the porous sintered metal layer and increasing the flying height of the compressed gas flowing through the porous sintered metal layer. Another object of the present invention is to provide a porous hydrostatic gas bearing.

また斯かる多孔質静圧気体軸受用の軸受素材において、その裏金には多孔質焼結金属層に圧縮気体を供給する供給手段が設けられるのであるが、この供給手段は圧縮気体を多孔質焼結金属層の表面から満遍なく均等に噴出させるように構成されているのが好ましく、しかも、特に、多孔質静圧気体ラジアル軸受用の軸受素材に用いられる裏金であって円筒状の内面に斯かる圧縮気体の供給手段を設けるものの場合には、容易にそれを形成できて製造性に優れていることが要求される。   Further, in such a bearing material for a porous hydrostatic gas bearing, a supply means for supplying a compressed gas to the porous sintered metal layer is provided on the back metal. It is preferable that the sprayed metal layer is uniformly and uniformly ejected from the surface of the bonded metal layer, and in particular, it is a back metal used for a bearing material for a porous hydrostatic gas radial bearing and has a cylindrical inner surface. In the case of providing a compressed gas supply means, it is required that it can be easily formed and has excellent manufacturability.

本発明の他の目的とするところは、多孔質焼結金属層の表面からの圧縮気体の噴出の偏倚をできるだけ少なくすることができる上に、製造性にも優れた多孔質静圧気体ラジアル軸受用の軸受素材及びこれを用いた多孔質静圧気体ラジアル軸受を提供することにある。   Another object of the present invention is to provide a porous hydrostatic gas radial bearing that is capable of minimizing the deviation of the jet of compressed gas from the surface of the porous sintered metal layer and is excellent in manufacturability. An object of the present invention is to provide a bearing material and a porous static pressure gas radial bearing using the same.

本発明の第一の態様の多孔質静圧気体軸受用の軸受素材は、ステンレス鋼からなる裏金と、この裏金の少なくとも一方の面に接合層を介して一体にされた多孔質焼結金属層とを具備しており、多孔質焼結金属層の粒界に無機物質粒子が分散含有されており、ここで、無機物質粒子を含有する多孔質焼結金属層は、4重量%以上10重量%以下の錫と、10重量%以上40重量%以下のニッケルと、0.1重量%以上0.5重量%未満の燐と、残部が銅からなる。   A bearing material for a porous hydrostatic gas bearing according to the first aspect of the present invention includes a back metal made of stainless steel, and a porous sintered metal layer integrated with at least one surface of the back metal through a bonding layer. The inorganic sintered particles are dispersed and contained in the grain boundaries of the porous sintered metal layer. Here, the porous sintered metal layer containing the inorganic particles is 4% by weight or more and 10% by weight. % Of tin, 10% to 40% nickel, 0.1% to less than 0.5% phosphorus, and the balance being copper.

第一の態様の多孔質静圧気体軸受用の軸受素材によれば、焼結過程において液相のNiPを発生する燐成分が0.1重量%以上0.5重量%未満の含有量であることから、液相のNiPの発生量が少なくなり、焼結時に液相のNiPが流れ出すことがなく、多孔質焼結金属層を接合層に接合するに必要な量の液相のNiPとなり、接合層を介する該多孔質焼結金属層と裏金との接合力が高められ、しかも、液相のNiPの発生量が少ないことにより焼結後の冷却(放冷)時の多孔質焼結金属層の収縮量が少ないので、該多孔質焼結金属層の収縮に起因する裏金と多孔質焼結金属層との接合層を介する各接合面で該多孔質焼結金属層の剥離を生じることがない。 According to the bearing material for the porous hydrostatic gas bearing of the first aspect, the content of the phosphorus component that generates liquid phase Ni 3 P in the sintering process is 0.1 wt% or more and less than 0.5 wt% Therefore, the amount of generation of liquid phase Ni 3 P is reduced, the amount of liquid phase Ni 3 P does not flow out during sintering, and the amount necessary for bonding the porous sintered metal layer to the bonding layer It becomes liquid phase Ni 3 P, and the bonding force between the porous sintered metal layer and the back metal through the bonding layer is enhanced. Moreover, since the amount of generated liquid phase Ni 3 P is small, cooling after sintering ( Since the amount of shrinkage of the porous sintered metal layer during cooling) is small, the porosity is reduced at each joining surface through the joining layer of the back metal and the porous sintered metal layer due to the shrinkage of the porous sintered metal layer. No peeling of the sintered metal layer occurs.

また、液相のNiPの生成量が少ない上に、接合層が介在しているので、裏金と一体化された多孔質焼結金属層の気孔率が高められる結果、多孔質焼結金属層を流通する圧縮気体の圧力損失が低下し、該多孔質焼結金属層の表面(軸受面)に噴出す給気圧力が相対的に高まることにより浮上量を高めることができる。したがって、多孔質焼結金属層と裏金とが接合層を介して強固に一体化され、多孔質焼結金属層の気孔率が高められることに起因する浮上量を高めることができる多孔質静圧気体軸受用の軸受素材とすることができる。 In addition, since the amount of liquid phase Ni 3 P produced is small and the bonding layer is interposed, the porosity of the porous sintered metal layer integrated with the back metal is increased. The pressure loss of the compressed gas flowing through the layer is reduced, and the air supply pressure ejected to the surface (bearing surface) of the porous sintered metal layer is relatively increased, whereby the flying height can be increased. Accordingly, the porous sintered metal layer and the back metal are firmly integrated through the bonding layer, and the porous static pressure can increase the floating amount due to the increased porosity of the porous sintered metal layer. It can be a bearing material for a gas bearing.

本発明の第二の態様の多孔質静圧気体軸受用の軸受素材では、第一の態様の軸受素材において、無機物質粒子は多孔質焼結金属層に2重量%以上10重量%以下の割合で含有されており、無機物質粒子は、本発明の第三の態様の軸受素材のように、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つからなる。   In the bearing material for the porous hydrostatic gas bearing of the second aspect of the present invention, in the bearing material of the first aspect, the inorganic substance particles are contained in the porous sintered metal layer in a proportion of 2 wt% or more and 10 wt% or less. The inorganic particles are contained in at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide and silicon carbide, as in the bearing material of the third aspect of the present invention. Consist of one.

多孔質焼結金属層の粒界に分散含有された無機物質粒子は、このもの自体が機械加工によって塑性変形することがなく、加えて多孔質焼結金属層の素地の金属部分の塑性変形を分断して軽減する働きにより、機械加工における多孔質焼結金属層の目詰まりを抑えることができる。   The inorganic substance particles dispersed and contained in the grain boundaries of the porous sintered metal layer are not themselves plastically deformed by machining, and in addition, plastic deformation of the metal part of the base of the porous sintered metal layer is prevented. The clogging of the porous sintered metal layer in machining can be suppressed by the action of dividing and reducing.

裏金は、本発明の第四の態様の多孔質静圧気体軸受用の軸受素材のように、円筒状に形成されていても、これに代えて、本発明の第五の態様の多孔質静圧気体軸受用の軸受素材のように、平板状に形成されていてもよく、前者の場合には、無機物質粒子を含有する多孔質焼結金属層は、裏金の円筒状の一方の面に接合層を介して一体にされており、後者の場合には、無機物質粒子を含有する多孔質焼結金属層は、裏金の平板状の一方の面に接合層を介して一体にされている。   Even if the backing metal is formed in a cylindrical shape like the bearing material for the porous static pressure gas bearing of the fourth aspect of the present invention, it is replaced with the porous static pressure of the fifth aspect of the present invention. Like a bearing material for a pressurized gas bearing, it may be formed in a flat plate shape. In the former case, the porous sintered metal layer containing inorganic substance particles is formed on one cylindrical surface of the back metal. In the latter case, the porous sintered metal layer containing inorganic particles is integrated on one surface of the flat plate of the back metal via the bonding layer. .

接合層は、本発明の第六の態様の多孔質静圧気体軸受用の軸受素材のように、少なくともニッケルメッキ層を含んでいても、また本発明の第七の態様の多孔質静圧気体軸受用の軸受素材のように、ニッケルメッキ層と銅メッキ層との二層のメッキ層を含んでいてもよく、ニッケルメッキ層は、いずれの場合にも、裏金の少なくとも一方の面に接合されているとよく、接合層がニッケルメッキ層と銅メッキ層との二層のメッキ層を含んでいる場合には、多孔質焼結金属層は、銅メッキ層に接合されているとよい。このニッケルメッキ層及び銅メッキ層は、それぞれ電気メッキによって形成される。   The bonding layer includes at least a nickel plating layer as in the bearing material for the porous hydrostatic gas bearing of the sixth aspect of the present invention, and the porous hydrostatic gas of the seventh aspect of the present invention. Like a bearing material for a bearing, it may include two plating layers, a nickel plating layer and a copper plating layer. In any case, the nickel plating layer is bonded to at least one surface of the back metal. In the case where the bonding layer includes two plating layers of a nickel plating layer and a copper plating layer, the porous sintered metal layer may be bonded to the copper plating layer. Each of the nickel plating layer and the copper plating layer is formed by electroplating.

本発明の第六の態様の軸受素材のように、ステンレス鋼からなる裏金の表面にニッケルメッキ層を含んだ接合層が形成されていて、当該ニッケルメッキ層が裏金の少なくとも一方の面に接合されていると、両者間に強固な接合一体化が行われる。また、本発明の第七の態様の軸受素材のように、裏金の表面に形成される接合層がニッケルメッキ層と銅メッキ層との二層のメッキ層を含んで、ニッケルメッキ層が裏金の少なくとも一方の面に接合され、多孔質焼結金属層が銅メッキ層に接合されていても、同様に両者間に強固な接合一体化が行われる。したがって、いずれにしてもステンレス鋼からなる裏金、多孔質焼結金属層及び接合層における接合部に剥離等を生じることはない。更に、第七の態様の軸受素材における銅メッキ層が本発明の第八の態様の軸受素材のようにニッケルメッキ層の表面に形成されていると、二層のメッキ層の強固な接合一体化を得ることができる上に、上述の通りの裏金と多孔質焼結金属層との両者間の強固な一体化を確保できる。   As in the bearing material of the sixth aspect of the present invention, a joining layer including a nickel plating layer is formed on the surface of a back metal made of stainless steel, and the nickel plating layer is joined to at least one surface of the back metal. In this case, strong joint integration is performed between the two. Further, like the bearing material of the seventh aspect of the present invention, the bonding layer formed on the surface of the back metal includes two plating layers of a nickel plating layer and a copper plating layer, and the nickel plating layer is made of the back metal. Even if the porous sintered metal layer is bonded to at least one surface and bonded to the copper plating layer, strong bonding and integration are similarly performed between the two. Therefore, in any case, peeling or the like does not occur in the joining portion in the back metal made of stainless steel, the porous sintered metal layer, and the joining layer. Further, when the copper plating layer in the bearing material of the seventh aspect is formed on the surface of the nickel plating layer as in the bearing material of the eighth aspect of the present invention, the two-layer plating layer is firmly joined and integrated. In addition, it is possible to secure strong integration between the back metal and the porous sintered metal layer as described above.

銅メッキ層は、好ましくは本発明の第九の態様の軸受素材のように、10μm以上25μm以下の厚みを有しており、より好ましくは本発明の第十の態様の軸受素材のように、10μm以上20μm以下の厚みを有しており、ニッケルメッキ層は、好ましくは本発明の第十一の態様の軸受素材のように、2μm以上20μm以下の厚みを有しており、より好ましくは本発明の第十二の態様の軸受素材のように、3μm以上15μm以下の厚みを有している。   The copper plating layer preferably has a thickness of 10 μm or more and 25 μm or less, like the bearing material of the ninth aspect of the present invention, and more preferably like the bearing material of the tenth aspect of the present invention, It has a thickness of 10 μm or more and 20 μm or less, and the nickel plating layer preferably has a thickness of 2 μm or more and 20 μm or less like the bearing material of the eleventh aspect of the present invention. Like the bearing material of the twelfth aspect of the invention, it has a thickness of 3 μm or more and 15 μm or less.

本発明の多孔質静圧気体軸受は、第一から第十二のいずれかの態様の多孔質静圧気体軸受用の軸受素材を用いたものであって、裏金に設けられていると共に、無機物質粒子を分散含有する多孔質焼結金属層に圧縮気体を供給する手段を具備している。   The porous static pressure gas bearing of the present invention uses a bearing material for a porous static pressure gas bearing according to any one of the first to twelfth aspects, and is provided on a back metal and is inorganic. Means is provided for supplying a compressed gas to the porous sintered metal layer containing the dispersed material particles.

本発明の多孔質静圧気体軸受によれば、第四の態様のような軸受素材を用いることにより多孔質静圧気体ラジアル軸受として適用でき、または第五の態様のような軸受素材を用いることにより、多孔質静圧気体スラスト軸受として適用できる。   According to the porous static pressure gas bearing of the present invention, it can be applied as a porous static pressure gas radial bearing by using the bearing material as in the fourth aspect, or use the bearing material as in the fifth aspect. Therefore, it can be applied as a porous static pressure gas thrust bearing.

本発明の第一の態様の多孔質静圧気体ラジアル軸受用の軸受素材は、ステンレス鋼からなると共に円筒状の内面を有した裏金と、軸方向に並んで裏金の内面に当該内面側で開口して設けられている複数個の環状溝と、この複数個の環状溝を相互に連通させるべく、裏金の一方の環状の端面から他方の環状の端面に向けて軸方向に延びて裏金の内部に設けられた相互連通用の行き止り孔と、裏金の内面側における各環状溝の開口を覆蓋すると共に裏金の円筒状の内面に接合層を介して一体にされた円筒状の多孔質焼結金属層とを具備している。   The bearing material for the porous hydrostatic gas radial bearing according to the first aspect of the present invention is made of stainless steel and has a cylindrical inner surface, and the inner surface of the back metal is opened on the inner surface side in the axial direction. And a plurality of annular grooves provided in the axial direction from one annular end surface to the other annular end surface of the back metal so as to communicate with each other. Cylindrical porous sintering that covers the dead end hole for mutual communication provided on the inner surface of the back metal and the opening of each annular groove on the inner surface side of the back metal and is integrated with the cylindrical inner surface of the back metal via a bonding layer And a metal layer.

第一の態様の多孔質静圧気体ラジアル軸受用の軸受素材によれば、複数個の環状溝を相互に連通させる相互連通用の行き止り孔が裏金の内面側で開口しないように裏金の内部に設けられているために、行き止り孔から直接的に裏金の内面を介する多孔質焼結金属層への圧縮気体の供給を回避できて、この相互連通用の行き止り孔に供給された圧縮気体を環状溝の夫々を介して多孔質焼結金属層へ供給できる結果、多孔質焼結金属層の表面から圧縮気体を略均等に噴出でき、しかも、相互連通用の行き止り孔が裏金の内部に設けられているために、斯かる行き止り孔を裏金の一方の環状の端面からドリル等を用いて容易に形成できるために、円筒状の内面への相互連通用の溝の形成と比較して極めて製造性に優れたものとなる。   According to the bearing material for the porous hydrostatic gas radial bearing of the first aspect, the interior of the back metal is such that a dead end hole for interconnecting a plurality of annular grooves is not opened on the inner surface side of the back metal. Therefore, it is possible to avoid the supply of compressed gas from the dead end hole directly to the porous sintered metal layer via the inner surface of the back metal, and the compression supplied to the dead end hole for mutual communication can be avoided. As a result of supplying the gas to the porous sintered metal layer through each of the annular grooves, the compressed gas can be ejected from the surface of the porous sintered metal layer substantially evenly, and the dead holes for mutual communication are provided on the back metal. Since it is provided inside, such a dead end hole can be easily formed from one annular end face of the back metal using a drill or the like, so it is compared with the formation of a groove for mutual communication on the cylindrical inner face. Therefore, it becomes extremely excellent in manufacturability.

相互連通用の行き止り孔の両端は、対応の環状の端面で開口していてもよいが、好ましくは、本発明の第二の態様の多孔質静圧気体ラジアル軸受用の軸受素材のように、相互連通用の行き止り孔の一端は裏金の環状の端面で開口しており、相互連通用の行き止り孔の他端は、裏金の他方の環状の端面の手前で裏金自体で閉塞されており、この場合、多孔質静圧気体ラジアル軸受用の軸受素材は、本発明の第三の態様のそれのように、相互連通用の行き止り孔の一端を閉塞する栓を嵌合するための嵌合手段を更に具備しているとよく、嵌合手段は、本発明の第四の態様の多孔質静圧気体ラジアル軸受用の軸受素材のように、ねじ溝を具備していてもよい。相互連通用の行き止り孔の両端が開口されている場合にも、本発明の軸受素材は、これら両端を閉塞する栓を嵌合するためのねじ溝等からなる嵌合手段を具備しているとよい。   Both ends of the dead end holes for mutual communication may be opened by corresponding annular end faces, but preferably, like the bearing material for the porous hydrostatic gas radial bearing of the second aspect of the present invention. One end of the dead end hole for mutual communication is opened at the annular end face of the back metal, and the other end of the dead end hole for mutual communication is closed by the back metal itself before the other annular end face of the back metal. In this case, the bearing material for the porous static pressure gas radial bearing is used for fitting a plug that closes one end of a dead end hole for communication as in the third aspect of the present invention. The fitting means may be further provided, and the fitting means may be provided with a thread groove like the bearing material for the porous hydrostatic gas radial bearing of the fourth aspect of the present invention. Even when both ends of the dead end holes for mutual communication are opened, the bearing material of the present invention includes a fitting means including a screw groove for fitting a plug that closes both ends. Good.

本発明では、相互連通用の行き止り孔を圧縮気体供給用の行き止り孔としても用いてもよいのであるが、本発明の多孔質静圧気体ラジアル軸受用の軸受素材は、好ましくは、その第五の態様のそれのように、裏金の外面で開口していると共に裏金の外面から相互連通用の行き止り孔に向けて径方向に延びて裏金の内部に設けられた圧縮気体供給用の行き止り孔を更に具備している。   In the present invention, a dead end hole for mutual communication may be used as a dead end hole for compressed gas supply, but the bearing material for the porous hydrostatic gas radial bearing of the present invention is preferably Like that of the fifth aspect, it is open for the outer surface of the back metal and extends in the radial direction from the outer surface of the back metal toward the dead end hole for mutual communication. A dead end hole is further provided.

多孔質静圧気体軸受用の軸受素材と同様に、本発明の多孔質静圧気体ラジアル軸受用の軸受素材において、その第六の態様のそれのように、多孔質焼結金属層は、錫、ニッケル、燐及び銅を含んだ焼結金属の粒界と、焼結金属の粒界に分散された無機物質粒子とを含有しており、この場合、その第七の態様の多孔質静圧気体ラジアル軸受用の軸受素材のように、焼結金属の粒界は、4重量%以上10重量%以下の錫と、10重量%以上40重量%以下のニッケルと、0.1重量%以上0.5重量%未満の燐と、残部が銅を含んでおり、その第八の態様の多孔質静圧気体ラジアル軸受用の軸受素材のように、無機物質粒子は、2重量%以上10重量%以下の割合で含有されており、その第九の態様の多孔質静圧気体ラジアル軸受用の軸受素材のように、無機物質粒子は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つからなるとよい。また、多孔質静圧気体軸受用の軸受素材と同様に、接合層は、本発明の第十の多孔質静圧気体ラジアル軸受用の軸受素材のように、少なくともニッケルメッキ層を含んでいてもよく、この場合、ニッケルメッキ層は、裏金の円筒状の内面に接合されている。接合層はまた、本発明の第十一の態様の多孔質静圧気体ラジアル軸受用の軸受素材のように、ニッケルメッキ層と該ニッケルメッキ層の表面に形成された銅メッキ層との二層のメッキ層からなっていてもよく、この場合、ニッケルメッキ層は、裏金の円筒状の内面に接合されており、多孔質焼結金属層は、銅メッキ層に接合されているとよい。   Similar to the bearing material for the porous hydrostatic gas bearing, in the bearing material for the porous hydrostatic gas radial bearing of the present invention, as in the sixth aspect, the porous sintered metal layer is made of tin. A grain boundary of sintered metal containing nickel, phosphorus and copper, and inorganic substance particles dispersed in the grain boundary of sintered metal. In this case, the porous static pressure of the seventh aspect Like the bearing material for gas radial bearings, the grain boundaries of the sintered metal are 4 wt% to 10 wt% tin, 10 wt% to 40 wt% nickel, 0.1 wt% to 0 wt%. Less than 5 wt% phosphorus and the balance contains copper, and the inorganic material particles are contained in an amount of 2 wt% or more and 10 wt% as in the bearing material for the porous hydrostatic gas radial bearing of the eighth aspect. Of the bearing material for the porous hydrostatic gas radial bearing of the ninth aspect. Sea urchin, inorganic material particles, graphite, boron nitride, fluorinated graphite, calcium fluoride, aluminum oxide, may consist of at least one of silicon oxide and silicon carbide. Similarly to the bearing material for the porous static pressure gas bearing, the joining layer may include at least a nickel plating layer as in the bearing material for the tenth porous static pressure gas radial bearing of the present invention. In this case, the nickel plating layer is bonded to the cylindrical inner surface of the back metal. The joining layer is also composed of two layers of a nickel plating layer and a copper plating layer formed on the surface of the nickel plating layer, like the bearing material for the porous hydrostatic gas radial bearing of the eleventh aspect of the present invention. In this case, the nickel plating layer is preferably bonded to the cylindrical inner surface of the back metal, and the porous sintered metal layer is preferably bonded to the copper plating layer.

本発明の多孔質静圧気体ラジアル軸受用の軸受素材では、銅メッキ層は、好ましくは、その第十二の態様のそれのように、10μm以上25μm以下の厚みを有しており、より好ましくは、その第十三の態様のそれのように、10μm以上20μm以下の厚みを有しており、ニッケルメッキ層は、好ましくは、その第十三の態様のそれのように、2μm以上20μm以下の厚みを有しており、より好ましくは、その第十四の態様のそれのように、3μm以上15μm以下の厚みを有している。   In the bearing material for the porous hydrostatic gas radial bearing of the present invention, the copper plating layer preferably has a thickness of 10 μm or more and 25 μm or less, more preferably, like that of the twelfth aspect, more preferably Has a thickness of 10 μm or more and 20 μm or less like that of its thirteenth aspect, and the nickel plating layer is preferably 2 μm or more and 20 μm or less like that of its thirteenth aspect More preferably, like the fourteenth aspect, it has a thickness of 3 μm or more and 15 μm or less.

第六の態様から第十四の態様の多孔質静圧気体ラジアル軸受用の軸受素材の夫々によれば、上述の多孔質静圧気体軸受用の軸受素材の場合と同様の効果を得ることができる。   According to each of the bearing materials for the porous static pressure gas radial bearings of the sixth aspect to the fourteenth aspect, it is possible to obtain the same effect as that of the above-described bearing material for the porous static pressure gas bearing. it can.

本発明によれば、多孔質焼結金属層は焼結後の収縮量が少ないため、ステンレス鋼からなる裏金に接合層を介して強固に一体にすることができるものである。また、多孔質焼結金属層の気孔率が高められているので多孔質焼結金属層を流通する圧縮気体の圧力損失が低下し、結果として該多孔質焼結金属層の表面(軸受面)に噴出す給気圧力が相対的に高まり、浮上量を高めることができる。   According to the present invention, since the porous sintered metal layer has a small amount of shrinkage after sintering, the porous sintered metal layer can be firmly integrated with the backing metal made of stainless steel through the bonding layer. Further, since the porosity of the porous sintered metal layer is increased, the pressure loss of the compressed gas flowing through the porous sintered metal layer is reduced, and as a result, the surface (bearing surface) of the porous sintered metal layer The air supply pressure ejected to the air increases relatively, and the flying height can be increased.

また本発明によれば、多孔質焼結金属層の表面からの圧縮気体の噴出の偏倚をできるだけ少なくすることができる上に、製造性にも優れた多孔質静圧気体ラジアル軸受用の軸受素材及びこれを用いた多孔質静圧気体ラジアル軸受を提供することができる。   Further, according to the present invention, the biasing material for the porous hydrostatic gas radial bearing which can reduce the deviation of the jet of the compressed gas from the surface of the porous sintered metal layer as much as possible and has excellent manufacturability. And a porous hydrostatic gas radial bearing using the same can be provided.

図1は本発明の多孔質静圧気体ラジアル軸受を示す断面図である。FIG. 1 is a sectional view showing a porous hydrostatic gas radial bearing of the present invention. 図2は図1に示すII−II線断面図である。2 is a cross-sectional view taken along line II-II shown in FIG. 図3は本発明の多孔質静圧気体スラスト軸受を示す平面図である。FIG. 3 is a plan view showing a porous hydrostatic gas thrust bearing of the present invention. 図4は図3に示すIV−IV線断面図である。4 is a cross-sectional view taken along line IV-IV shown in FIG. 図5は本発明の多孔質静圧気体軸受の接合層の厚みとせん断強さとの関係のグラフである。FIG. 5 is a graph showing the relationship between the thickness of the bonding layer and the shear strength of the porous hydrostatic gas bearing of the present invention. 図6は多孔質焼結金属層の気孔率を示すグラフである。FIG. 6 is a graph showing the porosity of the porous sintered metal layer. 図7は多孔質静圧気体ラジアル軸受及び軸受素材の開放流量及びその流量比を示したグラフである。FIG. 7 is a graph showing the open flow rate and the flow rate ratio of the porous static pressure gas radial bearing and the bearing material. 図8は多孔質静圧気体ラジアル軸受における負荷荷重(kgf)と浮上量(μm)との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the load load (kgf) and the flying height (μm) in a porous static pressure gas radial bearing. 図9は本発明の多孔質静圧気体ラジアル軸受の他の例を示し、図10のIX−IX線断面図である。FIG. 9 shows another example of the porous hydrostatic gas radial bearing of the present invention, and is a cross-sectional view taken along the line IX-IX of FIG. 図10は図9に示すX−X線断面図である。10 is a cross-sectional view taken along line XX shown in FIG. 図11は図9の例のラジアル軸受素材を示し、図12のXI−XI線断面図である。11 shows the radial bearing material of the example of FIG. 9, and is a cross-sectional view taken along the line XI-XI of FIG. 図12は図11に示すXII−XII線断面図である。12 is a cross-sectional view taken along line XII-XII shown in FIG. 図13は本発明の多孔質静圧気体ラジアル軸受の更に他の例を示し、図14のXIII−XIII線断面図である。13 shows still another example of the porous hydrostatic gas radial bearing of the present invention, and is a cross-sectional view taken along line XIII-XIII in FIG. 図14は図13に示す例の左側面図である。14 is a left side view of the example shown in FIG.

以下、本発明及び本発明の実施の形態を、図面を参照してその好ましい例に基づいて説明する。なお、本発明はこれらの例に限定されないのである。   Hereinafter, the present invention and embodiments of the present invention will be described based on preferred examples with reference to the drawings. Note that the present invention is not limited to these examples.

多孔質静圧気体軸受において図1及び図2に示す本例の多孔質静圧気体ラジアル軸受1は、ステンレス鋼からなって円筒状に形成された裏金2と、裏金2の円筒状の一方の面である内面9に接合層3を介して一体にされた多孔質焼結金属層4と、裏金2に設けられた圧縮気体供給用の孔5と、軸方向に並んで裏金2の内面9に当該内面9側で開口して形成されて設けられていると共に当該内面9側の開口が多孔質焼結金属層4によって覆われて蓋されている、即ち覆蓋されている複数個の環状溝6と、裏金2の内面9に当該内面9側で開口して形成され環状溝6を相互に連通するように軸方向に伸びた相互連通用の溝7とを具備しており、多孔質焼結金属層4の円筒状の内面を軸受面8としており、裏金2に設けられた孔5、環状溝6及び溝7によって多孔質焼結金属層4に圧縮気体を供給する供給手段が構成されている。   In the porous static pressure gas bearing, the porous static pressure gas radial bearing 1 of this example shown in FIGS. 1 and 2 includes a back metal 2 made of stainless steel and formed in a cylindrical shape, and one cylindrical shape of the back metal 2. A porous sintered metal layer 4 integrated with the inner surface 9 via the bonding layer 3, a compressed gas supply hole 5 provided in the back metal 2, and an inner surface 9 of the back metal 2 aligned in the axial direction. A plurality of annular grooves which are formed to be open on the inner surface 9 side and which are covered with the porous sintered metal layer 4 and covered with the porous sintered metal layer 4. 6 and an inner surface 9 of the back metal 2 that is open on the inner surface 9 side and extends in the axial direction so that the annular grooves 6 communicate with each other. A cylindrical inner surface of the binder metal layer 4 is used as a bearing surface 8, and a hole 5, an annular groove 6 and a groove provided in the back metal 2. Supply means is configured to supply compressed gas to the porous sintered metal layer 4 by.

多孔質静圧気体軸受において図3及び図4に示す本例の多孔質静圧気体スラスト軸受11は、ステンレス鋼からなって平板状に形成された裏金2と、裏金2の平板状の一方の面である平坦表面に接合層3を介して一体にされた多孔質焼結金属層4と、裏金2に設けられた圧縮気体供給用の孔5と、裏金2の一方の平坦表面に形成された複数個の環状溝6と、裏金2の一方の平坦表面に形成され環状溝6を相互に連通する相互連通用の溝7とを具備しており、多孔質焼結金属層4の平坦外面を軸受面8としており、裏金2に設けられた孔5、環状溝6及び溝7によって多孔質焼結金属層4に圧縮気体を供給する供給手段が構成されている。   In the porous static pressure gas bearing, the porous static pressure gas thrust bearing 11 of this example shown in FIGS. 3 and 4 includes a back plate 2 made of stainless steel and formed into a flat plate shape, and one of the flat plate shapes of the back plate 2. Formed on one flat surface of the back metal 2, the porous sintered metal layer 4 integrated on the flat surface which is a surface through the bonding layer 3, the compressed gas supply hole 5 provided in the back metal 2, and the back metal 2. A plurality of annular grooves 6 and a groove 7 formed on one flat surface of the back metal 2 and interconnecting the annular grooves 6, and the flat outer surface of the porous sintered metal layer 4. Is a bearing surface 8, and a supply means for supplying compressed gas to the porous sintered metal layer 4 is constituted by the hole 5, the annular groove 6 and the groove 7 provided in the back metal 2.

多孔質静圧気体ラジアル軸受1及び多孔質静圧気体スラスト軸受11において、裏金2を形成するステンレス鋼としては、オーステナイト系ステンレス鋼、マルテンサイト系ステンレス鋼あるいはフェライト系ステンレス鋼が使用される。とくに、クロム(Cr)含有量の少ないマルテンサイト系ステンレス鋼あるいはフェライト系ステンレス鋼は好ましいものである。   In the porous hydrostatic gas radial bearing 1 and the porous hydrostatic gas thrust bearing 11, austenitic stainless steel, martensitic stainless steel, or ferritic stainless steel is used as the stainless steel forming the back metal 2. In particular, martensitic stainless steel or ferritic stainless steel having a low chromium (Cr) content is preferable.

接合層3は、裏金2の一方の面に接合されたニッケルメッキ層と該ニッケルメッキ層の表面に接合されていると共に多孔質焼結金属層4が表面に接合されている銅メッキ層との二層のメッキ層を含んでいる。接合層3を介する裏金2と多孔質焼結金属層4との各接合部に剥離等を生じさせないためには、多孔質焼結金属層4の形成時の加圧の程度にもよるが、ニッケルメッキ層は、2μm以上20μm以下、好ましくは3μm以上15μm以下の厚さを有しており、銅メッキ層は、10μm以上25μm以下、好ましくは10μm以上20μm以下の厚みを有している。   The bonding layer 3 includes a nickel plating layer bonded to one surface of the back metal 2 and a copper plating layer bonded to the surface of the nickel plating layer and the porous sintered metal layer 4 bonded to the surface. Includes two plating layers. Depending on the degree of pressurization during the formation of the porous sintered metal layer 4, in order not to cause peeling or the like at each joint between the backing metal 2 and the porous sintered metal layer 4 via the bonding layer 3, The nickel plating layer has a thickness of 2 μm to 20 μm, preferably 3 μm to 15 μm, and the copper plating layer has a thickness of 10 μm to 25 μm, preferably 10 μm to 20 μm.

多孔質焼結金属層4は、4重量%以上10重量%以下の錫と、10重量%以上40重量%以下のニッケルと、0.1重量%以上0.5重量%未満の燐と、2重量%以上10重量%以下の無機物質と、残部が銅からなる。成分中の燐成分は、焼結過程において液相のNiPを生成し、焼結を進行させるとともに裏金2の一方の面に形成された接合層3へのニッケル成分の拡散を助長し、多孔質焼結金属層4を強固に一体にさせる役割を果たす。 The porous sintered metal layer 4 includes 4% by weight to 10% by weight tin, 10% by weight to 40% by weight nickel, 0.1% by weight to less than 0.5% by weight phosphorus, The inorganic substance is contained in an amount of 10% by weight or more and 10% by weight or less and the balance is made of copper. The phosphorus component in the component produces liquid phase Ni 3 P in the sintering process, promotes the sintering and promotes the diffusion of the nickel component into the bonding layer 3 formed on one surface of the back metal 2, It plays a role of firmly integrating the porous sintered metal layer 4.

また、燐成分の配合量を0.1重量%以上0.5重量%未満とすることにより、多孔質焼結金属層4の焼結後冷却時の収縮量を低く抑えることができ、多孔質焼結金属層4の収縮に起因する多孔質焼結金属層4の裏金2の一方の面からの剥離等を生じることはない。さらに、燐成分の配合量を少なくして液相のNiPの生成量を少なくすることにより、多孔質焼結金属層4の気孔率が高められ、多孔質焼結金属層4を流通する圧縮気体の圧力損失が低下することによって、該多孔質焼結金属層4の軸受面8に噴出す給気圧力が相対的に高まり浮上量を高めることができる。 Further, by making the blending amount of the phosphorus component 0.1% by weight or more and less than 0.5% by weight, the amount of shrinkage at the time of cooling after sintering of the porous sintered metal layer 4 can be kept low. No peeling or the like of the porous sintered metal layer 4 from one surface of the back metal 2 due to the shrinkage of the sintered metal layer 4 occurs. Furthermore, the porosity of the porous sintered metal layer 4 is increased and the porous sintered metal layer 4 is circulated by reducing the amount of phosphorous component and reducing the amount of liquid phase Ni 3 P produced. By reducing the pressure loss of the compressed gas, the air supply pressure ejected to the bearing surface 8 of the porous sintered metal layer 4 is relatively increased, and the flying height can be increased.

多孔質焼結金属層4に分散含有される無機物質粒子は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つからなる。これらは、多くの金属材料のように塑性変形することはなく、無機物質である。このような無機物質が多孔質焼結金属層4の錫、ニッケル、燐及び銅からなる素地(粒界)中に分散含有されていると、このもの自体が機械加工によって塑性変形することがなく、加えて、多孔質焼結金属層4の素地の金属部分の塑性変形を分断し軽減する働きがあるため、機械加工における多孔質焼結金属層の目詰まりを抑えることができる。そして、これら無機物質粒子の配合量は、2重量%以上10重量%以下の割合が適当である。配合量が2重量%未満では多孔質焼結金属層4の素地の金属部分の塑性変形を分断し軽減する働きが充分発揮されず、また配合量が10重量%を超えて配合すると、多孔質焼結金属層4の焼結性を阻害する。   The inorganic substance particles dispersedly contained in the porous sintered metal layer 4 are made of at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. These are inorganic substances that do not undergo plastic deformation like many metal materials. When such an inorganic substance is dispersed and contained in the substrate (grain boundary) made of tin, nickel, phosphorus and copper of the porous sintered metal layer 4, the material itself is not plastically deformed by machining. In addition, clogging of the porous sintered metal layer in machining can be suppressed because the plastic deformation of the metal portion of the base of the porous sintered metal layer 4 is divided and reduced. And, the blending amount of these inorganic substance particles is suitably a ratio of 2% by weight or more and 10% by weight or less. When the blending amount is less than 2% by weight, the function of dividing and reducing the plastic deformation of the metal portion of the base of the porous sintered metal layer 4 is not sufficiently exerted, and when the blending amount exceeds 10% by weight, it becomes porous. The sinterability of the sintered metal layer 4 is hindered.

つぎに、多孔質静圧気体軸受用の軸受素材及びこの軸受素材を使用した多孔質静圧気体軸受の製造方法について説明する。   Next, a bearing material for a porous hydrostatic gas bearing and a method for manufacturing a porous hydrostatic gas bearing using the bearing material will be described.

〔多孔質静圧気体スラスト軸受11の製造方法〕
オーステナイト系ステンレス鋼、マルテンサイト系ステンレス鋼あるいはフェライト系ステンレス鋼からなる円板状の裏金2を用意し、この裏金2の一方の面に同心円状の複数個の環状溝6と該環状溝6を相互に連通する溝7とを夫々形成するとともに、裏金2の他方の面から溝7に開口する圧縮気体供給用の孔5を形成する。
[Method for Manufacturing Porous Static Pressure Gas Thrust Bearing 11]
A disc-shaped backing metal 2 made of austenitic stainless steel, martensitic stainless steel or ferritic stainless steel is prepared, and a plurality of concentric annular grooves 6 and the annular grooves 6 are formed on one surface of the backing metal 2. Grooves 7 that communicate with each other are formed, and compressed gas supply holes 5 that open to the grooves 7 from the other surface of the back metal 2 are formed.

環状溝6、溝7及び孔5が形成された裏金2のこれら溝6、7及び孔5を除く一方の面である平坦表面に厚さ2〜20μm、好ましくは3〜15μmのニッケルメッキ層を形成して、該ニッケルメッキ層の表面に厚さ10〜25μm、好ましくは10〜20μmの銅メッキ層を形成して、裏金2の溝6、7及び孔5を除く一方の平坦表面にニッケルメッキ層と銅メッキ層とからなる二層のメッキ層を形成する。この二層のメッキ層が裏金2と多孔質焼結金属層4との接合層3となる。   A nickel plating layer having a thickness of 2 to 20 μm, preferably 3 to 15 μm, is formed on a flat surface, which is one surface excluding these grooves 6, 7 and holes 5, of the back metal 2 on which the annular grooves 6, the grooves 7 and the holes 5 are formed. Then, a copper plating layer having a thickness of 10 to 25 μm, preferably 10 to 20 μm, is formed on the surface of the nickel plating layer, and nickel plating is applied to one flat surface excluding the grooves 6 and 7 and the holes 5 of the back metal 2. A two-layer plating layer comprising a layer and a copper plating layer is formed. The two plating layers serve as a bonding layer 3 between the back metal 2 and the porous sintered metal layer 4.

250メッシュの篩を通過するアトマイズ錫粉末4重量%以上10重量%以下と、250メッシュの篩を通過する電解ニッケル粉末10重量%以上40重量%以下と、120メッシュの篩を通過する銅燐(燐14.5%)粉末0.7重量%以上3.4重量%未満の燐と、150メッシュの篩を通過する無機物質粒子3重量%以上10重量%以下と、150メッシュの篩を通過する電解銅粉末残部をミキサーにて混合して混合粉末を作製する。   4 to 10% by weight of atomized tin powder passing through a 250-mesh sieve, 10 to 40% by weight of electrolytic nickel powder passing through a 250-mesh sieve, and copper phosphorous ( Phosphorus 14.5%) Powder 0.7 wt% or more and less than 3.4 wt%, inorganic material particles 3 wt% or more and 10 wt% or less passing through 150 mesh sieve, and passing 150 mesh sieve The remainder of the electrolytic copper powder is mixed with a mixer to produce a mixed powder.

ヒドロキシプロピルセルロース(HPC)、ポリビニールアルコール(PVA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、メチルセルロース(MC)、ゼラチン、アラビアゴム及びスターチから選択される粉末結合剤の1〜15重量%水溶液を該混合粉末に対して0.1〜5.0重量%添加し、均一に混合して湿潤性を有する原料粉末を得る。ここで、粉末結合剤水溶液の添加量は金属混合粉末に対して、0.1〜5.0重量%が好ましい。とくに、5.0重量%を超えて添加すると焼結体組織中に制御できないポア(孔)が増加し、多孔質焼結金属層4の強度を低下させる原因となる。また、粉末結合剤の溶媒としては、水以外に、エチルアルコール等の親水性化合物の5〜20重量%の水溶液を使用することができる。   1-15% by weight of a powder binder selected from hydroxypropylcellulose (HPC), polyvinyl alcohol (PVA), carboxymethylcellulose (CMC), hydroxyethylcellulose (HEC), methylcellulose (MC), gelatin, gum arabic and starch An aqueous solution is added in an amount of 0.1 to 5.0% by weight with respect to the mixed powder and uniformly mixed to obtain a raw material powder having wettability. Here, the addition amount of the powder binder aqueous solution is preferably 0.1 to 5.0% by weight with respect to the metal mixed powder. In particular, if it exceeds 5.0% by weight, pores (pores) that cannot be controlled increase in the sintered body structure, which causes the strength of the porous sintered metal layer 4 to decrease. Moreover, as a solvent of a powder binder, 5-20 weight% aqueous solution of hydrophilic compounds, such as ethyl alcohol, can be used besides water.

湿潤性を有する原料粉末は、コンベア及びホッパーによって圧延ロールに供給される。原料粉末の圧延は、双ロールを有する通常の横型圧延機を使用することができる。この横型圧延機を使用しておおよそ厚さ2〜2.5mmの圧粉体シートを作製する。   The raw material powder having wettability is supplied to a rolling roll by a conveyor and a hopper. For rolling raw material powder, a normal horizontal rolling mill having twin rolls can be used. A green compact sheet having a thickness of approximately 2 to 2.5 mm is produced using this horizontal rolling mill.

この圧粉体シートを、環状溝6、溝7及び孔5を除く一方の面にメッキ層を有する裏金2上に重ね合わせ、これを還元性雰囲気もしくは真空中で800〜1150℃、好ましくは850〜1000℃の温度で0.1〜5.0kgf/cm、好ましくは0.5〜3.0kgf/cmの圧力をかけて20〜120分間、好ましくは30〜90分間焼結する。 This green compact sheet is superposed on a back metal 2 having a plating layer on one surface except for the annular groove 6, groove 7 and hole 5, and this is placed in a reducing atmosphere or vacuum at 800 to 1150 ° C., preferably 850. Sintering is performed at a temperature of ˜1000 ° C. under a pressure of 0.1 to 5.0 kgf / cm 2 , preferably 0.5 to 3.0 kgf / cm 2 for 20 to 120 minutes, preferably 30 to 90 minutes.

この焼結過程において、成分中のニッケル(Ni)及び燐(P)が液相のNiPを発生するが、液相のNiPを発生する燐成分が0.1重量%以上0.5重量%未満の含有量であることから、液相のNiPの発生量が少なくなり、焼結時に流れ出すことがなく、多孔質焼結金属層4を接合層3に接合するに必要な量の液相のNiPとなり、焼結後の冷却(放冷)時の温度の下降に伴って、裏金2、多孔質焼結金属層4及び接合層3における各接合面で該多孔質焼結金属層4の収縮に起因する当該接合面で剥離を生じることがない。 In this sintering process, although nickel in component (Ni) and phosphorus (P) generates a Ni 3 P in the liquid phase, the phosphorus component generated the Ni 3 P liquid phases 0.1% by weight or more 0. Since the content is less than 5% by weight, the amount of generated Ni 3 P in the liquid phase is reduced and does not flow out during sintering, and is necessary for joining the porous sintered metal layer 4 to the joining layer 3. As the amount of liquid phase Ni 3 P becomes lower and the temperature at the time of cooling after cooling (cooling) decreases, the porous surface of the backing metal 2, the porous sintered metal layer 4, and the bonding layer 3 is porous. Peeling does not occur at the joint surface due to the shrinkage of the sintered metal layer 4.

また、裏金2の一方の面にはニッケルメッキ層と銅メッキ層との二層のメッキ層からなる接合層3が形成されているので、焼結過程において、多孔質焼結金属層4と裏金2との両者間に接合層3を介する強固な一体化が行われる。さらに、液相のNiPの生成量を少なくすることにより、多孔質焼結金属層4の気孔率が高められ、多孔質焼結金属層4を流通する圧縮気体の圧力損失が低下することによって、該多孔質焼結金属層4の軸受面8に噴出す給気圧力が相対的に高まり、浮上量を高めることができる。したがって、多孔質焼結金属層4と裏金2とが接合層3を介して強固に一体化された多孔質静圧気体スラスト軸受11用の軸受素材とすることができる。 In addition, since a joining layer 3 composed of two plating layers, a nickel plating layer and a copper plating layer, is formed on one surface of the back metal 2, the porous sintered metal layer 4 and the back metal are used in the sintering process. 2 is firmly integrated via the bonding layer 3. Furthermore, the porosity of the porous sintered metal layer 4 is increased by reducing the amount of Ni 3 P produced in the liquid phase, and the pressure loss of the compressed gas flowing through the porous sintered metal layer 4 is reduced. As a result, the air supply pressure ejected to the bearing surface 8 of the porous sintered metal layer 4 is relatively increased, and the flying height can be increased. Accordingly, a bearing material for the porous hydrostatic gas thrust bearing 11 in which the porous sintered metal layer 4 and the back metal 2 are firmly integrated via the bonding layer 3 can be obtained.

図5は、上記成分組成からなる圧粉体シートを、表面に(1)厚さ3μmのニッケルメッキ層と厚さ10μmの銅メッキ層、(2)厚さ3μmのニッケルメッキ層と厚さ15μmの銅メッキ層、(3)厚さ3μmのニッケルメッキ層と厚さ20μmの銅メッキ層の三種類の接合層3を形成した裏金2上に重ね合わせ、これを還元性雰囲気中で930℃の温度で、1.0kgf/cmの圧力をかけて85分間焼結して得た軸受素材について、裏金2と多孔質焼結金属層4との接合強さ(せん断強さ:N/mm)を示すグラフである。 FIG. 5 shows a green compact sheet composed of the above components on the surface (1) a nickel plating layer having a thickness of 3 μm and a copper plating layer having a thickness of 10 μm, and (2) a nickel plating layer having a thickness of 3 μm and a thickness of 15 μm. (3) Overlaid on a back metal 2 on which three types of bonding layers 3 of a nickel plating layer having a thickness of 3 μm and a copper plating layer having a thickness of 20 μm are formed, and this is superposed in a reducing atmosphere at 930 ° C. About the bearing material obtained by sintering for 85 minutes at a temperature of 1.0 kgf / cm 2 , the bonding strength between the back metal 2 and the porous sintered metal layer 4 (shear strength: N / mm 2). ).

図5からわかるように、(1)のメッキ層においては、裏金2と多孔質焼結金属層4との接合強さ(せん断強さ)が6.5〜7.2N/mmを示し、(2)のメッキ層においては、裏金2と多孔質焼結金属層4との接合強さ(せん断強さ)が7.1〜7.7N/mmを示し、(3)のメッキ層においては、裏金2と多孔質焼結金属層4との接合強さ(せん断強さ)が6.8〜7.4N/mmを示している。このように(1)〜(3)のメッキ層においては、いずれも裏金2と多孔質焼結金属層4との接合強さは、6.5N/mm以上を示しており、最終の多孔質焼結金属層4の平坦面に研削やラッピング等の機械加工を施しても、裏金2と多孔質焼結金属層4との間に剥離等を生じることがない。 As can be seen from FIG. 5, in the plated layer of (1), the bonding strength (shear strength) between the back metal 2 and the porous sintered metal layer 4 is 6.5 to 7.2 N / mm 2 , In the plated layer of (2), the bonding strength (shear strength) between the back metal 2 and the porous sintered metal layer 4 is 7.1 to 7.7 N / mm 2, and in the plated layer of (3) Indicates a bond strength (shear strength) between the back metal 2 and the porous sintered metal layer 4 of 6.8 to 7.4 N / mm 2 . Thus, in the plating layers (1) to (3), the bonding strength between the back metal 2 and the porous sintered metal layer 4 is 6.5 N / mm 2 or more, and the final porosity Even if the flat surface of the sintered metal layer 4 is subjected to machining such as grinding or lapping, no peeling or the like occurs between the back metal 2 and the porous sintered metal layer 4.

このようにして円板状の裏金2の一方の面に接合層3を介して焼結された多孔質焼結金属層4を具備したスラスト軸受素材を得る。得られた軸受素材の多孔質焼結金属層4の平坦表面をその粗さが10−3mm以下となるように研削やラッピングにより機械加工を施して、軸受面8を有した所望の多孔質静圧気体スラスト軸受11を得る。 In this way, a thrust bearing material having the porous sintered metal layer 4 sintered on the one surface of the disc-shaped back metal 2 via the bonding layer 3 is obtained. The desired porous material having the bearing surface 8 is obtained by machining the flat surface of the porous sintered metal layer 4 of the obtained bearing material by grinding or lapping so that the roughness is 10 −3 mm or less. A static pressure gas thrust bearing 11 is obtained.

〔多孔質静圧気体ラジアル軸受1の製造方法〕
オーステナイト系ステンレス鋼、マルテンサイト系ステンレス鋼あるいはフェライト系ステンレス鋼からなる円筒状の裏金2を用意し、この裏金2の内面9にその軸方向に沿って等間隔に複数個の環状溝6と、該環状溝6を相互に連通する軸方向に沿う溝7とを夫々形成するとともに、裏金2の外面25から溝7に開口する圧縮気体供給用の孔5を形成する。
[Method for Manufacturing Porous Hydrostatic Gas Radial Bearing 1]
A cylindrical back metal 2 made of austenitic stainless steel, martensitic stainless steel or ferritic stainless steel is prepared, and a plurality of annular grooves 6 are formed on the inner surface 9 of the back metal 2 at equal intervals along the axial direction thereof. The annular groove 6 is formed with an axial groove 7 that communicates with each other, and a compressed gas supply hole 5 that opens from the outer surface 25 of the back metal 2 to the groove 7 is formed.

環状溝6、溝7及び孔5が形成された裏金2のこれら溝6、7及び孔5を除く内面9に厚さ2〜20μm、好ましくは3〜15μmのニッケルメッキ層を形成して、該ニッケルメッキ層の表面に厚さ10〜25μm、好ましくは10〜20μmの銅メッキ層を形成して、裏金2の溝6、7及び孔5を除く内面9にニッケルメッキ層と銅メッキ層とからなる二層のメッキ層を形成する。この二層のメッキ層が裏金2と多孔質焼結金属層4との接合層3となる。   A nickel plating layer having a thickness of 2 to 20 μm, preferably 3 to 15 μm, is formed on the inner surface 9 excluding the grooves 6, 7 and the holes 5 of the back metal 2 on which the annular grooves 6, the grooves 7 and the holes 5 are formed. A copper plating layer having a thickness of 10 to 25 μm, preferably 10 to 20 μm, is formed on the surface of the nickel plating layer, and the nickel plating layer and the copper plating layer are formed on the inner surface 9 excluding the grooves 6 and 7 and the holes 5 of the back metal 2. A two-layered plating layer is formed. The two plating layers serve as a bonding layer 3 between the back metal 2 and the porous sintered metal layer 4.

250メッシュの篩を通過するアトマイズ錫粉末4重量%以上10重量%以下と、250メッシュの篩を通過する電解ニッケル粉末10重量%以上40重量%以下と、120メッシュの篩を通過する銅燐(燐14.5%)粉末0.7重量%以上3.4重量%未満と、150メッシュの篩を通過する無機物質粒子2重量%以上10重量%以下と、150メッシュの篩を通過する電解銅粉末残部をミキサーにて混合して混合粉末を作製する。   4 to 10% by weight of atomized tin powder passing through a 250-mesh sieve, 10 to 40% by weight of electrolytic nickel powder passing through a 250-mesh sieve, and copper phosphorous ( Phosphorus 14.5%) Powder 0.7 wt% or more and less than 3.4 wt%, inorganic substance particles 2 wt% or more and 10 wt% or less passing through 150 mesh screen, electrolytic copper passing through 150 mesh screen The powder remainder is mixed with a mixer to prepare a mixed powder.

この混合粉末を金型中に装填し、成形圧力3トン/cm〜7トン/cmの範囲で圧縮成形し、円筒状の圧粉体を作製する。 This mixed powder is loaded into a mold and compression molded at a molding pressure of 3 ton / cm 2 to 7 ton / cm 2 to produce a cylindrical green compact.

この円筒状の圧粉体を、内面9に環状溝6、溝7及び孔5が形成され、かつこれら溝6、7及び孔5を除く内面9にニッケルメッキ層と銅メッキ層とからなる二層のメッキ層が形成された円筒状の裏金2の内面9に圧入嵌合する。内面9に円筒状の圧粉体を圧入嵌合した円筒状の裏金2の該圧粉体の内面に金属製中子を挿入するとともに該圧粉体の内面と該金属製中子の外面との隙間にセラミック粉末を充填する。   An annular groove 6, a groove 7 and a hole 5 are formed on the inner surface 9 of this cylindrical green compact, and a nickel plating layer and a copper plating layer are formed on the inner surface 9 excluding these grooves 6, 7 and the hole 5. It press-fits into the inner surface 9 of the cylindrical back metal 2 on which the plated layer of the layer is formed. A metal core is inserted into the inner surface of the green compact of the cylindrical backing metal 2 in which a cylindrical green compact is press-fitted into the inner surface 9, and the inner surface of the green compact and the outer surface of the metal core Fill the gap with ceramic powder.

セラミック粉末は、焼結温度範囲内で溶融しないものであり、圧粉体の配合組成各成分に対して中性または還元性雰囲気中で非反応のものであれば任意のものでよい。例えば、黒鉛、炭素、アルミナ(Al)、酸化ケイ素(SiO)、酸化ジルコニウム(ZrO)及び酸化マグネシウム(MgO)並びにこれらの複合酸化物が挙げられる。これらセラミック粉末はその粒度があまり細かいものであると、取扱い上難点が生じ、充填性にも劣るので、35〜200メッシュの範囲のものが好ましい。 The ceramic powder does not melt within the sintering temperature range, and any ceramic powder may be used as long as it does not react in the neutral or reducing atmosphere with respect to the components of the green compact. Examples thereof include graphite, carbon, alumina (Al 2 O 3 ), silicon oxide (SiO 2 ), zirconium oxide (ZrO 2 ), magnesium oxide (MgO), and composite oxides thereof. If these ceramic powders are too fine, they will be difficult to handle and inferior in filling properties, and those in the range of 35 to 200 mesh are preferred.

金属製中子としては、熱膨張係数が大きく、耐用性のあるもの、例えば、オーステナイト系ステンレス鋼(熱膨張係数約1.5×10−5/℃)が好適なものとして例示される。この中子は丸棒または中空の形態を取り得る。なお、金属製中子の外径は圧粉体の内径よりも10〜30mm程度小さいものが好ましい。 As the metal core, a material having a large thermal expansion coefficient and durability, for example, austenitic stainless steel (thermal expansion coefficient of about 1.5 × 10 −5 / ° C.) is exemplified as a suitable one. The core can take the form of a round bar or a hollow. The outer diameter of the metal core is preferably smaller by about 10 to 30 mm than the inner diameter of the green compact.

ついで、還元性雰囲気もしくは真空中で800〜1150℃、好ましくは850〜1000℃の温度で20〜120分間、好ましくは30〜90分間焼結する。この焼結過程において、該セラミック粉末により該圧粉体の焼結時における内径側への膨張量及び焼結後の冷却時における内径側への収縮量を拘束し、さらに該中子の焼結時の膨張を利用することにより、接合層3への圧粉体の高い接触圧力を生じせしめる。   Subsequently, sintering is performed at a temperature of 800 to 1150 ° C., preferably 850 to 1000 ° C. for 20 to 120 minutes, preferably 30 to 90 minutes in a reducing atmosphere or vacuum. In this sintering process, the ceramic powder restrains the amount of expansion toward the inner diameter side during sintering of the green compact and the amount of contraction toward the inner diameter side during cooling after sintering, and further sintering the core. By utilizing the expansion of time, a high contact pressure of the green compact to the bonding layer 3 is generated.

この焼結過程において、成分中のニッケル(Ni)及び燐(P)が液相のNiPを発生するが、液相のNiPを発生する燐成分が0.1重量%以上0.5重量%未満の含有量であることから、液相のNiPの発生量が少なくなり、焼結時に流れ出すことがなく、多孔質焼結金属層4を接合層3に接合するに必要な量の液相のNiPとなり、焼結後の冷却(放冷)時の温度の下降に伴って、裏金2、多孔質焼結金属層4及び接合層3における各接合面で該多孔質焼結金属層4の収縮に起因する剥離を生じることがない。 In this sintering process, although nickel in component (Ni) and phosphorus (P) generates a Ni 3 P in the liquid phase, the phosphorus component generated the Ni 3 P liquid phases 0.1% by weight or more 0. Since the content is less than 5% by weight, the amount of generated Ni 3 P in the liquid phase is reduced and does not flow out during sintering, and is necessary for joining the porous sintered metal layer 4 to the joining layer 3. As the amount of liquid phase Ni 3 P becomes lower and the temperature at the time of cooling after cooling (cooling) decreases, the porous surface of the backing metal 2, the porous sintered metal layer 4, and the bonding layer 3 is porous. No peeling due to shrinkage of the sintered metal layer 4 occurs.

また、裏金2の円筒状の内面9にはニッケルメッキ層と銅メッキ層との二層のメッキ層からなる接合層3が形成されているので、焼結過程において、裏金2と多孔質焼結金属層4との両者間に接合層3を介する強固な一体化がなされる。さらに、燐成分の配合量を少なくして液相のNiPの生成量を少なくすることにより、多孔質焼結金属層4の気孔率が高められ、多孔質焼結金属層4を流通する圧縮気体の圧力損失が低下することによって、該多孔質焼結金属層4の軸受面8に噴出す給気圧力が相対的に高まり、浮上量を高めることができる。したがって、多孔質焼結金属層4と裏金2とが接合層3を介して強固に一体化された多孔質静圧気体ラジアル軸受1用の軸受素材とすることができる。 In addition, since a joining layer 3 composed of two plating layers, a nickel plating layer and a copper plating layer, is formed on the cylindrical inner surface 9 of the back metal 2, the back metal 2 and the porous sintered body are sintered in the sintering process. Strong integration is performed between the metal layer 4 and the metal layer 4 via the bonding layer 3. Furthermore, the porosity of the porous sintered metal layer 4 is increased and the porous sintered metal layer 4 is circulated by reducing the amount of phosphorous component and reducing the amount of liquid phase Ni 3 P produced. By reducing the pressure loss of the compressed gas, the pressure of air supplied to the bearing surface 8 of the porous sintered metal layer 4 is relatively increased, and the flying height can be increased. Therefore, it can be set as the bearing material for the porous static pressure gas radial bearing 1 in which the porous sintered metal layer 4 and the back metal 2 are firmly integrated via the bonding layer 3.

このようにして円筒状の裏金2の内面9に接合層3を介して焼結された多孔質焼結金属層4を具備したラジアル軸受素材を得る。このラジアル軸受素材において、円筒状の裏金2と裏金2の内面9に接合層3を介して焼結された多孔質焼結金属層4との接合強さ(せん断強さ)は、6.5N/mm以上を示し、最終の多孔質焼結金属層4の円筒状の内面に研削やラッピング等の機械加工を施しても、裏金2と多孔質焼結金属層4との間に剥離等を生じることがない。得られた軸受素材の多孔質焼結金属層4の円筒状の内面をその粗さが10−3mm以下となるように研削やラッピングにより機械加工を施して、軸受面8を有した所望の多孔質静圧気体ラジアル軸受1を得る。 In this way, a radial bearing material including the porous sintered metal layer 4 sintered on the inner surface 9 of the cylindrical back metal 2 via the bonding layer 3 is obtained. In this radial bearing material, the joining strength (shear strength) between the cylindrical backing metal 2 and the porous sintered metal layer 4 sintered on the inner surface 9 of the backing metal 2 via the joining layer 3 is 6.5 N. / Mm 2 or more, even if the cylindrical inner surface of the final porous sintered metal layer 4 is subjected to machining such as grinding or lapping, peeling between the back metal 2 and the porous sintered metal layer 4 Will not occur. The cylindrical inner surface of the porous sintered metal layer 4 of the obtained bearing material is machined by grinding or lapping so that the roughness is 10 −3 mm or less, and a desired bearing surface 8 is provided. A porous static pressure gas radial bearing 1 is obtained.

以下、本発明の実施例について詳細に説明する。なお、以下の実施例及び比較例において、比較例の多孔質焼結金属層4はステンレス鋼からなる裏金2に接合できないため、比較例においては裏金2に機械構造用炭素鋼(S45C)を使用した。   Examples of the present invention will be described in detail below. In the following examples and comparative examples, since the porous sintered metal layer 4 of the comparative example cannot be bonded to the back metal 2 made of stainless steel, carbon steel for machine structure (S45C) is used for the back metal 2 in the comparative example. did.

実施例1
内径30mm、外径45mm、長さ30mmのマルテンサイト系ステンレス鋼〔SUS420J2(B)〕からなる円筒状の裏金2を準備し、この円筒状の裏金2の内面9に、該裏金2の軸方向に沿って等間隔に幅2mm、深さ2mmの3個の環状溝6と、該環状溝6を相互に連通する該裏金2の軸方向に沿う1個の溝7とを夫々形成するとともに、該裏金2の外面25から該溝7に開口する1個の孔5を形成した。
Example 1
A cylindrical backing metal 2 made of martensitic stainless steel [SUS420J2 (B)] having an inner diameter of 30 mm, an outer diameter of 45 mm, and a length of 30 mm is prepared, and the axial direction of the backing metal 2 is formed on the inner surface 9 of the cylindrical backing metal 2. Are formed with three annular grooves 6 having a width of 2 mm and a depth of 2 mm at equal intervals, and one groove 7 along the axial direction of the back metal 2 that communicates with the annular grooves 6, respectively. One hole 5 opened from the outer surface 25 of the backing metal 2 to the groove 7 was formed.

環状溝6、溝7及び孔5が形成された円筒状の裏金2のこれら溝6、7及び孔5を除く内面9に厚さ3μmのニッケルメッキ層と該ニッケルメッキ層の表面に厚さ10μmの銅メッキ層との二層のメッキ層を形成した。   A nickel plating layer having a thickness of 3 μm is formed on the inner surface 9 excluding these grooves 6, 7 and holes 5 of the cylindrical back metal 2 in which the annular grooves 6, the grooves 7 and the holes 5 are formed, and a thickness of 10 μm is formed on the surface of the nickel plating layer. A two-layer plating layer was formed with the copper plating layer.

250メッシュの篩を通過するアトマイズ錫粉末8重量%と、250メッシュの篩を通過する電解ニッケル粉末28重量%と、120メッシュの篩を通過する銅燐(燐14.5%)粉末1.0重量%と、150メッシュの篩を通過する黒鉛粉末(無機物質粒子)5重量%と、150メッシュの篩を通過する電解銅粉末残部をV型ミキサーにて5分間混合して混合粉末(銅:58.85重量%、錫:8重量%、ニッケル:28重量%、燐:0.15重量%、黒鉛:5重量%)を作製した。   8% by weight of atomized tin powder passing through a 250 mesh screen, 28% by weight of electrolytic nickel powder passing through a 250 mesh screen, and 1.0% of copper phosphorous (phosphorus 14.5%) powder passing through a 120 mesh screen 5% by weight of graphite powder (inorganic substance particles) passing through a 150 mesh sieve and the remainder of the electrolytic copper powder passing through a 150 mesh sieve are mixed for 5 minutes with a V-type mixer to obtain a mixed powder (copper: 58.85 wt%, tin: 8 wt%, nickel: 28 wt%, phosphorus: 0.15 wt%, graphite: 5 wt%).

この混合粉末を金型内に装填し、成形圧力3トン/cmで内径26mm、外径30mm、長さ30mmの円筒状の圧粉体を作製した。 This mixed powder was loaded into a mold, and a cylindrical green compact having an inner diameter of 26 mm, an outer diameter of 30 mm, and a length of 30 mm at a molding pressure of 3 ton / cm 2 was produced.

円筒状の圧粉体を前記円筒状の裏金2の内面9に圧入嵌合した。裏金2の内面9に圧入嵌合された圧粉体の内面に、外径16mm、長さ30mmのオーステナイト系ステンレス鋼からなる丸棒(中子)を挿入するとともに該円筒状の圧粉体の内面と該丸棒の外面との隙間にセラミック粉末(Al:83重量%とSiO:17重量%の混合物、35〜150メッシュ)を充填したのち、アンモニア分解ガス雰囲気中で930℃の温度で60分間焼結し、円筒状の裏金2の内面9に接合層3を介して多孔質焼結金属層4を一体に接合した多孔質静圧気体ラジアル軸受1用の軸受素材を得た。この軸受素材における裏金2と裏金2の内面9に一体に接合された多孔質焼結金属層4との接合強さ(せん断強さ)は、6.7N/mmであった。この軸受素材の多孔質焼結金属層4の気孔率を図6に示す。 A cylindrical green compact was press-fitted into the inner surface 9 of the cylindrical back metal 2. A round bar (core) made of austenitic stainless steel having an outer diameter of 16 mm and a length of 30 mm is inserted into the inner surface of the green compact press-fitted to the inner surface 9 of the back metal 2 and the cylindrical green compact is formed. After filling the gap between the inner surface and the outer surface of the round bar with ceramic powder (a mixture of Al 2 O 3 : 83 wt% and SiO 2 : 17 wt%, 35 to 150 mesh), it is 930 ° C. in an ammonia decomposition gas atmosphere. The bearing material for the porous hydrostatic gas radial bearing 1 in which the porous sintered metal layer 4 is integrally bonded to the inner surface 9 of the cylindrical back metal 2 via the bonding layer 3 is obtained. It was. The joining strength (shear strength) between the backing metal 2 and the porous sintered metal layer 4 integrally joined to the inner surface 9 of the backing metal 2 in this bearing material was 6.7 N / mm 2 . The porosity of the porous sintered metal layer 4 of this bearing material is shown in FIG.

ついで、多孔質焼結金属層4の内面に研削加工を施し、軸受面8を有した厚さ1.7mmの多孔質焼結金属層4を円筒状の裏金2の内面9に備えた多孔質静圧気体ラジアル軸受1を得た。   Next, the inner surface of the porous sintered metal layer 4 is ground, and the porous sintered metal layer 4 having a bearing surface 8 and having a thickness of 1.7 mm is provided on the inner surface 9 of the cylindrical backing metal 2. A static pressure gas radial bearing 1 was obtained.

実施例2
前記実施例1と同様、環状溝6、溝7及び孔5を具備し、これら溝6、7及び孔5を除く内面9に厚さ3μmのニッケルメッキ層と該ニッケルメッキ層の表面に厚さ15μmの銅メッキ層との二層のメッキ層を具備した円筒状の裏金2を準備した。
Example 2
Similar to the first embodiment, the annular groove 6, the groove 7, and the hole 5 are provided, and the nickel plating layer having a thickness of 3 μm is formed on the inner surface 9 excluding the grooves 6, 7 and the hole 5, and the surface of the nickel plating layer is thick. A cylindrical back metal 2 having two plating layers of a 15 μm copper plating layer was prepared.

250メッシュの篩を通過するアトマイズ錫粉末8重量%と、250メッシュの篩を通過する電解ニッケル粉末28重量%と、120メッシュの篩を通過する銅燐(燐14.5%)粉末2.0重量%と、150メッシュの篩を通過する黒鉛粉末(無機物質粒子)5重量%と、150メッシュの篩を通過する電解銅粉末残部をV型ミキサーにて5分間混合して混合粉末(銅:58.71重量%、錫:8重量%、ニッケル:28重量%、燐:0.29重量%、黒鉛:5重量%)を作製した。   8% by weight of atomized tin powder passing through a 250 mesh screen, 28% by weight of electrolytic nickel powder passing through a 250 mesh screen, and 2.0% copper phosphorus (phosphorus 14.5%) powder passing through a 120 mesh screen 5% by weight of graphite powder (inorganic substance particles) passing through a 150 mesh sieve and the remainder of the electrolytic copper powder passing through a 150 mesh sieve are mixed for 5 minutes with a V-type mixer to obtain a mixed powder (copper: 58.71 wt%, tin: 8 wt%, nickel: 28 wt%, phosphorus: 0.29 wt%, graphite: 5 wt%).

以下、前記実施例1と同様の方法で、円筒状の裏金2の内面9に接合層3を介して多孔質焼結金属層4を一体に接合した多孔質静圧気体ラジアル軸受1用の軸受素材を得た。この軸受素材における裏金2と裏金2の内面9に一体に接合された多孔質焼結金属層4との接合強さ(せん断強さ)は、7.2N/mmであった。この軸受素材の多孔質焼結金属層4の気孔率を図6に示す。ついで、多孔質焼結金属層4の内面に研削加工を施し、軸受面8を有した厚さ1.7mmの多孔質焼結金属層4を円筒状の裏金2の内面9に備えた多孔質静圧気体ラジアル軸受1を得た。 Hereinafter, the bearing for the porous static pressure gas radial bearing 1 in which the porous sintered metal layer 4 is integrally joined to the inner surface 9 of the cylindrical back metal 2 via the joining layer 3 in the same manner as in the first embodiment. I got the material. The joining strength (shear strength) between the backing metal 2 and the porous sintered metal layer 4 integrally joined to the inner surface 9 of the backing metal 2 in this bearing material was 7.2 N / mm 2 . The porosity of the porous sintered metal layer 4 of this bearing material is shown in FIG. Next, the inner surface of the porous sintered metal layer 4 is ground, and the porous sintered metal layer 4 having a bearing surface 8 and having a thickness of 1.7 mm is provided on the inner surface 9 of the cylindrical backing metal 2. A static pressure gas radial bearing 1 was obtained.

実施例3
前記実施例1と同様、環状溝6、溝7及び孔5を具備し、これら溝6、7及び孔5を除く内面9に厚さ10μmのニッケルメッキ層と該ニッケルメッキ層の表面に厚さ20μmの銅メッキ層との二層のメッキ層を具備した円筒状の裏金2を準備した。
Example 3
Similar to the first embodiment, the annular groove 6, the groove 7 and the hole 5 are provided, and the nickel plating layer having a thickness of 10 μm is formed on the inner surface 9 excluding the grooves 6, 7 and the hole 5, and the thickness is formed on the surface of the nickel plating layer. A cylindrical backing metal 2 having two plating layers with a 20 μm copper plating layer was prepared.

250メッシュの篩を通過するアトマイズ錫粉末8重量%と、250メッシュの篩を通過する電解ニッケル粉末28重量%と、120メッシュの篩を通過する銅燐(燐14.5%)粉末3.0重量%と、150メッシュの篩を通過する黒鉛粉末(無機物質粒子)5重量%と、150メッシュの篩を通過する電解銅粉末残部をV型ミキサーにて5分間混合して混合粉末(銅:58.58重量%、錫:8重量%、ニッケル:28重量%、燐:0.42重量%、黒鉛:5重量%)を作製した。   8% by weight of atomized tin powder passing through a 250 mesh screen, 28% by weight of electrolytic nickel powder passing through a 250 mesh screen, and 3.0% of copper phosphorus (phosphorus 14.5%) powder passing through a 120 mesh screen 5% by weight of graphite powder (inorganic substance particles) passing through a 150 mesh sieve and the remainder of the electrolytic copper powder passing through a 150 mesh sieve are mixed for 5 minutes with a V-type mixer to obtain a mixed powder (copper: 58.58 wt%, tin: 8 wt%, nickel: 28 wt%, phosphorus: 0.42 wt%, graphite: 5 wt%).

以下、前記実施例1と同様の方法で、円筒状の裏金2の内面9に接合層3を介して多孔質焼結金属層4を一体に接合した多孔質静圧気体ラジアル軸受1用の軸受素材を得た。この軸受素材における裏金2と裏金2の内面9に一体に接合された多孔質焼結金属層4との接合強さ(せん断強さ)は、7.0N/mmであった。この軸受素材の多孔質焼結金属層4の気孔率を図6に示す。ついで、多孔質焼結金属層4の内面に研削加工を施し、軸受面8を有した厚さ1.7mmの多孔質焼結金属層4を円筒状の裏金2の内面9に備えた多孔質静圧気体ラジアル軸受1を得た。 Hereinafter, the bearing for the porous static pressure gas radial bearing 1 in which the porous sintered metal layer 4 is integrally joined to the inner surface 9 of the cylindrical back metal 2 via the joining layer 3 in the same manner as in the first embodiment. I got the material. The joining strength (shear strength) between the backing metal 2 and the porous sintered metal layer 4 integrally joined to the inner surface 9 of the backing metal 2 in this bearing material was 7.0 N / mm 2 . The porosity of the porous sintered metal layer 4 of this bearing material is shown in FIG. Next, the inner surface of the porous sintered metal layer 4 is ground, and the porous sintered metal layer 4 having a bearing surface 8 and having a thickness of 1.7 mm is provided on the inner surface 9 of the cylindrical backing metal 2. A static pressure gas radial bearing 1 was obtained.

比較例1
内径30mm、外径45mm、長さ30mmの機械構造用炭素鋼(S45C)からなる円筒状の裏金を準備し、この円筒状の裏金の内面に、該裏金の軸方向に沿って等間隔に幅2mm、深さ2mmの3個の環状溝と、該環状溝を相互に連通する該裏金の軸方向に沿う1個の連通溝とを夫々形成するとともに、該裏金の外面から該連通溝に開口する1個の供給孔を形成した。
Comparative Example 1
A cylindrical backing metal made of carbon steel for machine structure (S45C) having an inner diameter of 30 mm, an outer diameter of 45 mm, and a length of 30 mm is prepared, and the inner surface of the cylindrical backing metal is equidistantly spaced along the axial direction of the backing metal. Three annular grooves each having a diameter of 2 mm and a depth of 2 mm are formed, and one communicating groove along the axial direction of the back metal that connects the annular grooves to each other, and is opened from the outer surface of the back metal to the communicating groove. One supply hole was formed.

250メッシュの篩を通過するアトマイズ錫粉末8重量%と、250メッシュの篩を通過する電解ニッケル粉末28重量%と、120メッシュの篩を通過する銅燐(燐14.5%)粉末4.0重量%と、150メッシュの篩を通過する黒鉛粉末(無機物質粒子)5重量%と、150メッシュの篩を通過する電解銅粉末残部をV型ミキサーにて5分間混合して混合粉末(銅:58.42重量%、錫:8重量%、ニッケル:28重量%、燐:0.58重量%、黒鉛:5重量%)を作製した。   8% by weight of atomized tin powder that passes through a 250 mesh screen, 28% by weight of electrolytic nickel powder that passes through a 250 mesh screen, and 4.0% of copper phosphorus (phosphorus 14.5%) powder that passes through a 120 mesh screen 5% by weight of graphite powder (inorganic substance particles) passing through a 150 mesh sieve and the remainder of the electrolytic copper powder passing through a 150 mesh sieve are mixed for 5 minutes with a V-type mixer to obtain a mixed powder (copper: 58.42 wt%, tin: 8 wt%, nickel: 28 wt%, phosphorus: 0.58 wt%, graphite: 5 wt%).

以下、前記実施例1と同様の方法で、円筒状の裏金の内面に多孔質焼結金属層を一体に接合した多孔質静圧気体ラジアル軸受用の軸受素材を得た。この軸受素材の多孔質焼結金属層の気孔率を図6に示す。ついで、多孔質焼結金属層の内面に研削加工を施し、軸受面を有した厚さ1.7mmの多孔質焼結金属層を円筒状の裏金の内面に備えた多孔質静圧気体ラジアル軸受を得た。   Thereafter, in the same manner as in Example 1, a bearing material for a porous static pressure gas radial bearing in which a porous sintered metal layer was integrally bonded to the inner surface of a cylindrical back metal was obtained. The porosity of the porous sintered metal layer of this bearing material is shown in FIG. Next, a porous static pressure gas radial bearing in which the inner surface of the porous sintered metal layer is ground and a 1.7 mm thick porous sintered metal layer having a bearing surface is provided on the inner surface of the cylindrical backing metal. Got.

比較例2
前記比較例1と同様の円筒状の裏金を準備した。
Comparative Example 2
A cylindrical backing metal similar to that of Comparative Example 1 was prepared.

250メッシュの篩を通過するアトマイズ錫粉末8重量%と、250メッシュの篩を通過する電解ニッケル粉末28重量%と、120メッシュの篩を通過する銅燐(燐14.5%)粉末7.0重量%と、150メッシュの篩を通過する黒鉛粉末(無機物質粒子)5重量%と、150メッシュの篩を通過する電解銅粉末残部をV型ミキサーにて5分間混合して混合粉末(銅:57.98重量%、錫:8重量%、ニッケル:28重量%、燐:1.02重量%、黒鉛:5重量%)を作製した。   8% by weight of atomized tin powder passing through a 250 mesh screen, 28% by weight of electrolytic nickel powder passing through a 250 mesh screen, and 7.0% copper phosphorus (phosphorus 14.5%) powder passing through a 120 mesh screen 5% by weight of graphite powder (inorganic substance particles) passing through a 150 mesh sieve and the remainder of the electrolytic copper powder passing through a 150 mesh sieve are mixed for 5 minutes with a V-type mixer to obtain a mixed powder (copper: 57.98 wt%, tin: 8 wt%, nickel: 28 wt%, phosphorus: 1.02 wt%, graphite: 5 wt%).

以下、前記実施例1と同様の方法で、円筒状の裏金の内面に多孔質焼結金属層を一体に接合した多孔質静圧気体ラジアル軸受用の軸受素材を得た。この軸受素材の多孔質焼結金属層の気孔率を図6に示す。ついで、多孔質焼結金属層の内面に研削加工を施し、軸受面を有した厚さ1.7mmの多孔質焼結金属層を円筒状の裏金の内面に備えた多孔質静圧気体ラジアル軸受を得た。   Thereafter, in the same manner as in Example 1, a bearing material for a porous static pressure gas radial bearing in which a porous sintered metal layer was integrally bonded to the inner surface of a cylindrical back metal was obtained. The porosity of the porous sintered metal layer of this bearing material is shown in FIG. Next, a porous static pressure gas radial bearing in which the inner surface of the porous sintered metal layer is ground and a 1.7 mm thick porous sintered metal layer having a bearing surface is provided on the inner surface of the cylindrical backing metal. Got.

上記実施例1ないし実施例3及び比較例1及び比較例2で得た軸受素材の開放流量(Nl/hr)と多孔質静圧気体ラジアル軸受の開放流量をそれぞれ測定して流量比(多孔質静圧気体ラジアル軸受の開放流量/軸受素材の開放流量)について調べた。開放流量の測定方法は、各軸受素材及び多孔質静圧気体ラジアル軸受の供給孔から給気圧力5kg/cmの圧縮空気を導入し、多孔質焼結金属層を流通する圧縮空気の1時間当たりの流量(Nl/hr)を測定した。 By measuring the open flow rate (Nl / hr) of the bearing material obtained in Examples 1 to 3 and Comparative Examples 1 and 2 above and the open flow rate of the porous hydrostatic gas radial bearing, respectively, the flow rate ratio (porous The open flow rate of the hydrostatic gas radial bearing / the open flow rate of the bearing material was investigated. The open flow rate is measured by introducing compressed air with a supply pressure of 5 kg / cm 2 from each bearing material and the supply hole of the porous static pressure gas radial bearing, and 1 hour of compressed air flowing through the porous sintered metal layer. The per unit flow rate (Nl / hr) was measured.

図7は、実施例1ないし実施例3並びに比較例1及び比較例2で得た多孔質静圧気体ラジアル軸受と軸受素材との開放流量及びこれらの比(多孔質静圧気体ラジアル軸受の開放流量/軸受素材の開放流量)を示したグラフである。この図から多孔質焼結金属層を形成する成分中の燐成分の配合量が0.5重量%を境に流量比が増加していることが判る。   FIG. 7 shows the open flow rate of the porous hydrostatic gas radial bearing and the bearing material obtained in Examples 1 to 3 and Comparative Examples 1 and 2, and the ratio thereof (opening of the porous hydrostatic gas radial bearing). It is a graph showing the flow rate / opening flow rate of the bearing material. From this figure, it can be seen that the flow rate ratio increases with the amount of the phosphorus component in the component forming the porous sintered metal layer being 0.5 wt%.

つぎに、上記流量比を示した実施例1ないし実施例3並びに比較例1及び比較例2の多孔質静圧気体ラジアル軸受について、供給孔から給気圧力5kg/cmの圧縮空気を導入し、多孔質焼結金属層を流通する圧縮空気によって該ラジアル軸受の軸受面に挿入された軸の浮上量(μm)について調べた。 Next, with respect to the porous static pressure gas radial bearings of Examples 1 to 3 and Comparative Examples 1 and 2 showing the above flow ratio, compressed air having a supply pressure of 5 kg / cm 2 was introduced from the supply hole. The flying height (μm) of the shaft inserted into the bearing surface of the radial bearing by the compressed air flowing through the porous sintered metal layer was examined.

図8は、実施例1ないし実施例3並びに比較例1及び比較例2の多孔質静圧気体ラジアル軸受における負荷荷重(kgf)と浮上量との関係を示すグラフである。このグラフから実施例1ないし実施例3の多孔質静圧気体ラジアル軸受1は、いずれの負荷荷重においても比較例1及び比較例2の多孔質静圧気体ラジアル軸受よりも浮上量が大きいことが判る。   FIG. 8 is a graph showing the relationship between the load load (kgf) and the flying height in the porous hydrostatic gas radial bearings of Examples 1 to 3 and Comparative Examples 1 and 2. From this graph, the porous hydrostatic gas radial bearing 1 of Examples 1 to 3 has a higher flying height than the porous hydrostatic gas radial bearings of Comparative Example 1 and Comparative Example 2 at any load. I understand.

図8の結果から、実施例1ないし実施例3の多孔質静圧気体ラジアル軸受1と比較例1及び比較例2の多孔質静圧気体ラジアル軸受の開放流量はほぼ同じ(図7参照)であるにも拘わらず、各実施例の多孔質静圧気体ラジアル軸受1が各比較例の多孔質静圧気体ラジアル軸受よりも浮上量が大きいのは、各実施例及び比較例の軸受素材の気孔率の多寡(図6参照)に起因するものと推察される。すなわち、各実施例の軸受素材における多孔質焼結金属層4の気孔率は30%を超えており、孔5から導入された圧縮気体は多孔質焼結金属層4の内部を流通する際の圧力損失が小さいので、軸受面8に噴出した給気の圧力が相対的に高まり、軸受面8への給気の噴出しが多孔質焼結金属層4の全面にわたっており、それによって浮上量を大きくするものと推察される。これに対し、各比較例の軸受素材における多孔質焼結金属層の多孔率は21ないし22%であり、軸受面への給気の噴出しが連通溝部分に多く発生し、その他の多孔質焼結金属層からの給気の噴出しが極めて少ないため、軸受面への給気がアンバランスとなるためであると推察される。   From the results of FIG. 8, the open flow rates of the porous hydrostatic gas radial bearing 1 of Examples 1 to 3 and the porous hydrostatic gas radial bearings of Comparative Examples 1 and 2 are almost the same (see FIG. 7). In spite of the fact that the porous hydrostatic gas radial bearing 1 of each example has a larger flying height than the porous hydrostatic gas radial bearing of each comparative example, the pores of the bearing material of each example and comparative example This is presumably due to the large number of rates (see FIG. 6). That is, the porosity of the porous sintered metal layer 4 in the bearing material of each example exceeds 30%, and the compressed gas introduced from the holes 5 is distributed through the inside of the porous sintered metal layer 4. Since the pressure loss is small, the pressure of the supply air ejected to the bearing surface 8 is relatively increased, and the ejection of the supply air to the bearing surface 8 extends over the entire surface of the porous sintered metal layer 4, thereby increasing the flying height. Inferred to increase. On the other hand, the porosity of the porous sintered metal layer in the bearing material of each comparative example is 21 to 22%, and a large amount of air supply to the bearing surface is generated in the communication groove portion. It is presumed that the supply of air to the bearing surface is unbalanced because the supply of air from the sintered metal layer is extremely small.

図1及び図2に示す多孔質静圧気体ラジアル軸受1では、相互連通用の溝7を内面9側で開口して裏金2に設けたが、これに代えて、図9から図12に示すように、行き止り孔21を裏金2の軸方向の一方の環状の端面22から他方の環状の端面23に向けて軸方向に延びて裏金2の内部に設けて環状溝6を相互に連通させてもよく、斯かる相互連通用の行き止り孔21を具備した多孔質静圧気体ラジアル軸受1でも、多孔質焼結金属層4は、裏金2の内面9側における各環状溝6の開口を覆蓋すると共に裏金2の円筒状の内面9に接合層3を介して一体にされており、多孔質焼結金属層4の円筒状の内面が軸受面8となっている。   In the porous hydrostatic gas radial bearing 1 shown in FIG. 1 and FIG. 2, the grooves 7 for mutual communication are opened on the inner surface 9 side and provided in the back metal 2, but instead, it is shown in FIG. 9 to FIG. Thus, the dead end hole 21 extends in the axial direction from one annular end face 22 in the axial direction of the back metal 2 toward the other annular end face 23 and is provided in the inside of the back metal 2 so that the annular grooves 6 communicate with each other. Even in the porous static pressure gas radial bearing 1 having such a dead end hole 21 for communication, the porous sintered metal layer 4 has openings of the annular grooves 6 on the inner surface 9 side of the back metal 2. The cover is covered and integrated with the cylindrical inner surface 9 of the back metal 2 via the bonding layer 3, and the cylindrical inner surface of the porous sintered metal layer 4 is a bearing surface 8.

図9から図12に示す多孔質静圧気体ラジアル軸受1はまた、行き止り孔21及び環状溝6と共に圧縮気体の供給手段を構成するように、裏金2の径方向の円筒状の外面25で開口していると共に裏金2の外面25から相互連通用の行き止り孔21に向けて径方向に延びて裏金2の内部に設けられた圧縮気体供給用の行き止り孔26を更に具備している。   The porous hydrostatic gas radial bearing 1 shown in FIGS. 9 to 12 also has a cylindrical outer surface 25 in the radial direction of the back metal 2 so as to constitute a compressed gas supply means together with the dead end hole 21 and the annular groove 6. It further has a dead hole 26 for supplying a compressed gas provided in the inside of the back metal 2 that extends in the radial direction from the outer surface 25 of the back metal 2 toward the dead hole 21 for mutual communication. .

裏金2の端面22で開口した行き止り孔21の軸方向の一端27は、栓28を嵌合するための嵌合手段としてのねじ溝29を具備しており、行き止り孔21の軸方向の他端30は、裏金2の端面23の手前で裏金2自体で閉塞されている一方、行き止り孔26に連通されており、ねじ溝29に螺着して一端27に嵌合した栓28は一端27を閉塞しており、行き止り孔26は、行き止り孔21及び環状溝6に連通している。   One end 27 in the axial direction of the dead end hole 21 opened at the end face 22 of the back metal 2 is provided with a thread groove 29 as a fitting means for fitting the stopper 28, and the axial end of the dead end hole 21 in the axial direction is provided. The other end 30 is closed by the back metal 2 itself before the end face 23 of the back metal 2, and is communicated with the dead end hole 26, and the plug 28 screwed into the screw groove 29 and fitted to the one end 27 is One end 27 is closed, and the dead end hole 26 communicates with the dead end hole 21 and the annular groove 6.

図9から図12に示す多孔質静圧気体ラジアル軸受1用のラジアル軸受素材によれば、上記のラジアル軸受素材と同等の効果を得ることができる上に、裏金2の内面9側で開口しないように、環状溝6を相互に連通させる相互連通用の行き止り孔21が裏金2の内部に設けられているために、行き止り孔21から直接的に裏金2の内面9を介する多孔質焼結金属層4への圧縮気体の供給を回避できて、行き止り孔21に供給された圧縮気体を環状溝6の夫々を介して多孔質焼結金属層4へ圧縮気体を供給できる結果、多孔質焼結金属層4の表面、即ち軸受面8から圧縮気体を略均等に噴出でき、しかも、相互連通用の行き止り孔21が裏金2の内部に設けられているために、斯かる行き止り孔21を裏金2の端面22からドリル等を用いて容易に形成できるために、内面9への相互連通用の溝7の形成と比較して極めて製造性に優れている。   According to the radial bearing material for the porous hydrostatic gas radial bearing 1 shown in FIGS. 9 to 12, the same effect as the above radial bearing material can be obtained, and the inner surface 9 side of the back metal 2 does not open. Thus, since the dead end holes 21 for communicating the annular grooves 6 with each other are provided inside the back metal 2, the porous firing through the inner surface 9 of the back metal 2 directly from the dead hole 21. As a result of being able to avoid the supply of the compressed gas to the bonded metal layer 4 and supplying the compressed gas supplied to the dead end hole 21 to the porous sintered metal layer 4 through each of the annular grooves 6, the porous Since the compressed gas can be ejected substantially uniformly from the surface of the sintered metal layer 4, that is, the bearing surface 8, and the dead hole 21 for mutual communication is provided inside the back metal 2, such a dead end is provided. Hole 21 is drilled from the end face 22 of the back metal 2 using a drill or the like. To be formed, it is very excellent in manufacturability as compared with the formation of intercommunicating Spoken groove 7 of the inner surface 9.

また、図9から図12に示す多孔質静圧気体ラジアル軸受1用のラジアル軸受素材において、裏金2を図13及び図14に示すように円筒部31と円筒部31に一体に形成された鍔部32とでもって構成し、鍔部32に圧縮気体供給用の行き止り孔26を設けて鍔付ラジアル軸受素材を構成してもよい。図13及び図14に示す多孔質静圧気体ラジアル軸受1用のラジアル軸受素材もまた、図9から図12に示すそれと同様に、多孔質焼結金属層4の表面、即ち軸受面8から圧縮気体を略均等に噴出でき、しかも、行き止り孔21を裏金2の円筒部31の端面22からドリル等を用いて容易に形成できて極めて製造性に優れている上に、多孔質焼結金属層4とステンレス鋼からなる裏金2との間に剥離等を生じることなく強固な接合一体化を行わしめることができると共に多孔質焼結金属層4の気孔率を高めて当該多孔質焼結金属層4を流通する圧縮気体による浮上量を高めることができる。   Further, in the radial bearing material for the porous hydrostatic gas radial bearing 1 shown in FIGS. 9 to 12, the back metal 2 is formed integrally with the cylindrical portion 31 and the cylindrical portion 31 as shown in FIGS. It may be configured with the portion 32, and a flanged radial bearing material may be configured by providing a dead end hole 26 for supplying compressed gas in the flange portion 32. The radial bearing material for the porous hydrostatic gas radial bearing 1 shown in FIGS. 13 and 14 is also compressed from the surface of the porous sintered metal layer 4, that is, the bearing surface 8, similarly to those shown in FIGS. 9 to 12. Gas can be ejected substantially evenly, and the dead end hole 21 can be easily formed from the end face 22 of the cylindrical portion 31 of the back metal 2 using a drill or the like, and is extremely excellent in manufacturability. The porous sintered metal can be firmly joined and integrated without peeling or the like between the layer 4 and the stainless steel back metal 2 and the porosity of the porous sintered metal layer 4 can be increased. The flying height by the compressed gas flowing through the layer 4 can be increased.

1 多孔質静圧気体ラジアル軸受
2 裏金
3 接合層
4 多孔質焼結金属層
DESCRIPTION OF SYMBOLS 1 Porous static pressure gas radial bearing 2 Back metal 3 Joining layer 4 Porous sintered metal layer

Claims (30)

ステンレス鋼からなる裏金と、この裏金の少なくとも一方の面に接合層を介して一体にされた多孔質焼結金属層とを具備しており、多孔質焼結金属層の粒界に無機物質粒子が分散含有されている多孔質静圧気体軸受用の軸受素材であって、無機物質粒子を含有する多孔質焼結金属層は、4重量%以上10重量%以下の錫と、10重量%以上40重量%以下のニッケルと、0.1重量%以上0.5重量%未満の燐と、残部が銅からなることを特徴とする多孔質静圧気体軸受用の軸受素材。   A back metal made of stainless steel and a porous sintered metal layer integrated on at least one surface of the back metal through a bonding layer, and inorganic substance particles at grain boundaries of the porous sintered metal layer Is a porous material for a porous hydrostatic gas bearing, in which a porous sintered metal layer containing inorganic particles is composed of 4 wt% or more and 10 wt% or less of tin and 10 wt% or more A bearing material for a porous hydrostatic gas bearing, characterized by comprising 40% by weight or less of nickel, 0.1% by weight or more and less than 0.5% by weight of phosphorus, and the balance being copper. 無機物質粒子は、2重量%以上10重量%以下の割合で多孔質焼結金属層に含有されている請求項1に記載の多孔質静圧気体軸受用の軸受素材。   The bearing material for a porous hydrostatic gas bearing according to claim 1, wherein the inorganic substance particles are contained in the porous sintered metal layer in a proportion of 2 wt% to 10 wt%. 無機物質粒子は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つからなる請求項1又は2に記載の多孔質静圧気体軸受用の軸受素材。   The inorganic substance particle is composed of at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. Bearing material. 裏金は、円筒状に形成されており、無機物質粒子を分散含有する多孔質焼結金属層は、裏金の円筒状の一方の面に接合層を介して一体にされている請求項1から3のいずれか一項に記載の多孔質静圧気体軸受用の軸受素材。   The back metal is formed in a cylindrical shape, and the porous sintered metal layer containing inorganic substance particles in a dispersed manner is integrated on one cylindrical surface of the back metal via a bonding layer. A bearing material for a porous hydrostatic gas bearing according to any one of the above. 裏金は、平板状に形成されており、無機物質粒子を分散含有する多孔質焼結金属層は、裏金の平板状の一方の面に接合層を介して一体にされている請求項1から3のいずれか一項に記載の多孔質静圧気体軸受用の軸受素材。   The backing metal is formed in a flat plate shape, and the porous sintered metal layer containing dispersed inorganic substance particles is integrated with one flat plate surface of the backing metal via a bonding layer. A bearing material for a porous hydrostatic gas bearing according to any one of the above. 接合層は、少なくともニッケルメッキ層を含んでおり、ニッケルメッキ層は、裏金の少なくとも一方の面に接合されている請求項1から5のいずれか一項に記載の多孔質静圧気体軸受用の軸受素材。   The bonding layer includes at least a nickel plating layer, and the nickel plating layer is bonded to at least one surface of the back metal, for a porous hydrostatic gas bearing according to any one of claims 1 to 5. Bearing material. 接合層は、ニッケルメッキ層と銅メッキ層との二層のメッキ層を含んでおり、ニッケルメッキ層は、裏金の少なくとも一方の面に接合されており、多孔質焼結金属層は、銅メッキ層に接合されている請求項1から5のいずれか一項に記載の多孔質静圧気体軸受用の軸受素材。   The bonding layer includes two plating layers, a nickel plating layer and a copper plating layer. The nickel plating layer is bonded to at least one surface of the back metal, and the porous sintered metal layer is a copper plating. The bearing material for a porous hydrostatic gas bearing according to any one of claims 1 to 5, wherein the bearing material is bonded to the layer. 銅メッキ層は、ニッケルメッキ層の表面に接合されている請求項7に記載の多孔質静圧気体軸受用の軸受素材。   The bearing material for a porous hydrostatic gas bearing according to claim 7, wherein the copper plating layer is bonded to the surface of the nickel plating layer. 銅メッキ層は、10μm以上25μm以下の厚みを有している請求項7又は8に記載の多孔質静圧気体軸受用の軸受素材。   The bearing material for a porous hydrostatic gas bearing according to claim 7 or 8, wherein the copper plating layer has a thickness of 10 µm to 25 µm. 銅メッキ層は、10μm以上20μm以下の厚みを有している請求項7又は8に記載の多孔質静圧気体軸受用の軸受素材。   The bearing material for a porous hydrostatic gas bearing according to claim 7 or 8, wherein the copper plating layer has a thickness of 10 µm or more and 20 µm or less. ニッケルメッキ層は、2μm以上20μm以下の厚みを有している請求項6から10のいずれか一項に記載の多孔質静圧気体軸受用の軸受素材。   The bearing material for a porous hydrostatic gas bearing according to any one of claims 6 to 10, wherein the nickel plating layer has a thickness of 2 µm to 20 µm. ニッケルメッキ層は、3μm以上15μm以下の厚みを有している請求項6から10のいずれか一項に記載の多孔質静圧気体軸受用の軸受素材。   The bearing material for a porous hydrostatic gas bearing according to any one of claims 6 to 10, wherein the nickel plating layer has a thickness of 3 µm or more and 15 µm or less. 請求項1から12のいずれか一項に記載の軸受素材を用いた多孔質静圧気体軸受であって、裏金には、無機物質粒子を分散含有する多孔質焼結金属層に圧縮気体を供給する手段が設けられている多孔質静圧気体軸受。   A porous hydrostatic gas bearing using the bearing material according to any one of claims 1 to 12, wherein a compressed gas is supplied to a porous sintered metal layer containing dispersed inorganic substance particles on a back metal. A porous hydrostatic gas bearing provided with means for performing. ステンレス鋼からなると共に円筒状の内面を有した裏金と、軸方向に並んで裏金の内面に当該内面側で開口して設けられている複数個の環状溝と、この複数個の環状溝を相互に連通させるべく、裏金の一方の環状の端面から他方の環状の端面に向けて軸方向に延びて裏金の内部に設けられた相互連通用の行き止り孔と、裏金の内面側における各環状溝の開口を覆蓋すると共に裏金の円筒状の内面に接合層を介して一体にされた円筒状の多孔質焼結金属層とを具備している多孔質静圧気体ラジアル軸受用の軸受素材。   A back plate made of stainless steel and having a cylindrical inner surface, a plurality of annular grooves provided on the inner surface side of the back metal side by side in the axial direction, and the plurality of annular grooves. In order to communicate with each other, a dead end hole extending in the axial direction from one annular end surface of the back metal toward the other annular end surface and provided inside the back metal, and each annular groove on the inner surface side of the back metal And a cylindrical porous sintered metal layer integrated with a cylindrical inner surface of a back metal via a bonding layer, and a bearing material for a porous hydrostatic gas radial bearing. 相互連通用の行き止り孔の一端は裏金の環状の端面で開口しており、相互連通用の行き止り孔の他端は、裏金の他方の環状の端面の手前で裏金自体で閉塞されている請求項14に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   One end of the dead end hole for mutual communication is opened at the annular end face of the back metal, and the other end of the dead end hole for mutual communication is closed by the back metal itself before the other annular end face of the back metal. The bearing material for the porous static pressure gas radial bearing according to claim 14. 相互連通用の行き止り孔の一端を閉塞する栓を嵌合するための嵌合手段を更に具備している請求項15に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   The bearing material for a porous hydrostatic gas radial bearing according to claim 15, further comprising fitting means for fitting a plug that closes one end of a dead end hole for mutual communication. 嵌合手段はねじ溝を具備している請求項16に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   The bearing material for a porous hydrostatic gas radial bearing according to claim 16, wherein the fitting means includes a thread groove. 裏金の外面で開口していると共に裏金の外面から相互連通用の行き止り孔に向けて径方向に延びて裏金の内部に設けられた圧縮気体供給用の行き止り孔を更に具備している請求項14から17のいずれか一項に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   And further comprising a dead hole for supplying a compressed gas provided in the inside of the back metal that extends in the radial direction from the outer surface of the back metal toward the dead hole for mutual communication. Item 18. A bearing material for a porous hydrostatic gas radial bearing according to any one of Items 14 to 17. 多孔質焼結金属層は、錫、ニッケル、燐及び銅を含んだ焼結金属の粒界と、焼結金属の粒界に分散された無機物質粒子とを含有している請求項14から18のいずれか一項に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   The porous sintered metal layer contains grain boundaries of sintered metal containing tin, nickel, phosphorus and copper, and inorganic substance particles dispersed in the grain boundaries of the sintered metal. A bearing material for a porous hydrostatic gas radial bearing according to any one of the above. 焼結金属の粒界は、4重量%以上10重量%以下の錫と、10重量%以上40重量%以下のニッケルと、0.1重量%以上0.5重量%未満の燐と、残部が銅を含んでいる請求項19に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   The grain boundaries of the sintered metal are 4 wt% to 10 wt% tin, 10 wt% to 40 wt% nickel, 0.1 wt% to less than 0.5 wt% phosphorus, and the balance 20. The bearing material for a porous static pressure gas radial bearing according to claim 19, which contains copper. 無機物質粒子は、2重量%以上10重量%以下の割合で含有されている請求項19又は20に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   The bearing material for a porous hydrostatic gas radial bearing according to claim 19 or 20, wherein the inorganic substance particles are contained in a ratio of 2 wt% to 10 wt%. 無機物質粒子は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つからなる請求項19から21のいずれか一項に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   The porous material according to any one of claims 19 to 21, wherein the inorganic substance particles comprise at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. Bearing material for pressurized gas radial bearings. 接合層は、少なくともニッケルメッキ層を含んでおり、ニッケルメッキ層は、裏金の円筒状の内面に接合されている請求項14から22のいずれか一項に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   The porous static pressure gas radial bearing according to any one of claims 14 to 22, wherein the bonding layer includes at least a nickel plating layer, and the nickel plating layer is bonded to the cylindrical inner surface of the back metal. Bearing material. 接合層は、ニッケルメッキ層とニッケルメッキ層の表面に形成された銅メッキ層との二層のメッキ層を含んでおり、ニッケルメッキ層は、裏金の円筒状の内面に接合されており、多孔質焼結金属層は、銅メッキ層に接合されている請求項14から23のいずれか一項に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   The bonding layer includes two plating layers, a nickel plating layer and a copper plating layer formed on the surface of the nickel plating layer. The nickel plating layer is bonded to the cylindrical inner surface of the back metal and is porous. 24. The bearing material for a porous hydrostatic gas radial bearing according to claim 14, wherein the sintered metal layer is joined to the copper plating layer. 銅メッキ層は、10μm以上25μm以下の厚みを有している請求項24に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   The bearing material for a porous hydrostatic gas radial bearing according to claim 24, wherein the copper plating layer has a thickness of 10 µm or more and 25 µm or less. 銅メッキ層は、10μm以上20μm以下の厚みを有している請求項24に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   The bearing material for a porous hydrostatic gas radial bearing according to claim 24, wherein the copper plating layer has a thickness of 10 µm or more and 20 µm or less. ニッケルメッキ層は、2μm以上20μm以下の厚みを有している請求項23から26のいずれか一項に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   The bearing material for a porous static pressure gas radial bearing according to any one of claims 23 to 26, wherein the nickel plating layer has a thickness of 2 µm or more and 20 µm or less. ニッケルメッキ層は、3μm以上15μm以下の厚みを有している請求項23から26のいずれか一項に記載の多孔質静圧気体ラジアル軸受用の軸受素材。   27. The bearing material for a porous hydrostatic gas radial bearing according to claim 23, wherein the nickel plating layer has a thickness of 3 μm or more and 15 μm or less. 請求項14から28のいずれか一項に記載の軸受素材を用いた多孔質静圧気体ラジアル軸受。   A porous static pressure gas radial bearing using the bearing material according to any one of claims 14 to 28. 相互連通用の行き止り孔の一端には当該一端を閉塞する栓が嵌合されている請求項29に記載の多孔質静圧気体ラジアル軸受。   30. The porous hydrostatic gas radial bearing according to claim 29, wherein a plug for closing the one end is fitted to one end of the dead end hole for mutual communication.
JP2009187894A 2002-08-28 2009-08-13 Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same Expired - Lifetime JP5131256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009187894A JP5131256B2 (en) 2002-08-28 2009-08-13 Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002248477 2002-08-28
JP2002248477 2002-08-28
JP2009187894A JP5131256B2 (en) 2002-08-28 2009-08-13 Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003041558A Division JP4385618B2 (en) 2002-08-28 2003-02-19 Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same

Publications (3)

Publication Number Publication Date
JP2009287120A true JP2009287120A (en) 2009-12-10
JP2009287120A5 JP2009287120A5 (en) 2010-01-28
JP5131256B2 JP5131256B2 (en) 2013-01-30

Family

ID=41456612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187894A Expired - Lifetime JP5131256B2 (en) 2002-08-28 2009-08-13 Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same

Country Status (1)

Country Link
JP (1) JP5131256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111894982A (en) * 2020-07-27 2020-11-06 珠海格力电器股份有限公司 High-reliability static pressure gas bearing and compressor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108304A (en) * 1987-10-19 1989-04-25 Oiles Ind Co Ltd Production of sintered sliding member consisting of double layers
JPH05186785A (en) * 1992-01-14 1993-07-27 Daido Metal Co Ltd Composite sliding member
JPH0625870A (en) * 1992-07-10 1994-02-01 Nisshin Steel Co Ltd Corrosion resistant steel plate for dry bearing
JPH06173952A (en) * 1992-12-08 1994-06-21 Canon Inc Static pressure fluid bearing
JPH07127641A (en) * 1993-10-28 1995-05-16 Nippon Seiko Kk Static pressure gas bearing
JPH07179963A (en) * 1993-12-22 1995-07-18 Daido Metal Co Ltd Copper-lead alloy bearing
JPH11117940A (en) * 1997-04-19 1999-04-27 Woo Chun Lee Sliding bearing and its manufacture
JPH11158511A (en) * 1997-11-26 1999-06-15 Oiles Ind Co Ltd Bearing stock for porous static pressure gas bearing and porous static pressure gas bearing using the stock
JPH11303870A (en) * 1998-04-17 1999-11-02 Ntn Corp Porous gas bearing and spindle device using the same
JP2001107162A (en) * 1999-10-12 2001-04-17 Sumitomo Electric Ind Ltd Bronze series sintered alloy, bearing using the same and their producing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108304A (en) * 1987-10-19 1989-04-25 Oiles Ind Co Ltd Production of sintered sliding member consisting of double layers
JPH05186785A (en) * 1992-01-14 1993-07-27 Daido Metal Co Ltd Composite sliding member
JPH0625870A (en) * 1992-07-10 1994-02-01 Nisshin Steel Co Ltd Corrosion resistant steel plate for dry bearing
JPH06173952A (en) * 1992-12-08 1994-06-21 Canon Inc Static pressure fluid bearing
JPH07127641A (en) * 1993-10-28 1995-05-16 Nippon Seiko Kk Static pressure gas bearing
JPH07179963A (en) * 1993-12-22 1995-07-18 Daido Metal Co Ltd Copper-lead alloy bearing
JPH11117940A (en) * 1997-04-19 1999-04-27 Woo Chun Lee Sliding bearing and its manufacture
JPH11158511A (en) * 1997-11-26 1999-06-15 Oiles Ind Co Ltd Bearing stock for porous static pressure gas bearing and porous static pressure gas bearing using the stock
JPH11303870A (en) * 1998-04-17 1999-11-02 Ntn Corp Porous gas bearing and spindle device using the same
JP2001107162A (en) * 1999-10-12 2001-04-17 Sumitomo Electric Ind Ltd Bronze series sintered alloy, bearing using the same and their producing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111894982A (en) * 2020-07-27 2020-11-06 珠海格力电器股份有限公司 High-reliability static pressure gas bearing and compressor

Also Published As

Publication number Publication date
JP5131256B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP4385618B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
US6436470B1 (en) Method of applying a hard-facing material to a substrate
CN102933337A (en) A method and arrangement for manufacturing a component with hot isostatic pressing, a core, a preform for a cladding, and use of the core
CN106141180A (en) By increasing cutting element prepared by material manufacture
SE503343C2 (en) Mechanical sealing utilizing pore-containing material and pore-containing cemented carbide and method of making thereof
JP4450114B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
JP5131256B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
JPWO2006004011A1 (en) Filter and manufacturing method thereof
JP2002225164A (en) Slide material and method for manufacturing the same
JPWO2004087351A1 (en) Insulated plunger sleeve for die casting machine
JP2001515961A (en) Corrosion resistant cemented carbide
JP4379951B2 (en) Porous static pressure gas screw
JP2006090482A (en) Porous hydrostatic gas bearing and its manufacturing method
JP4798161B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
JP2000009142A (en) Manufacture of bearing device and bearing device
JP3162984B2 (en) Porous metal composite tube
JP2006097797A (en) Porous static pressure gas bearing and its manufacturing method
JP2002106564A (en) Porous static pressure gas bearing and its manufacturing method
JP2017009033A (en) Cylindrical composite member for hydrostatic gas bearing, process of manufacture of cylindrical composite member and hydrostatic gas bearing with cylindrical composite member
JP3107723B2 (en) Plunger sleeve for die casting machine
KR20150051993A (en) Aerostatic radial bearing
JP2000346071A (en) Porous, static pressure gas bearing
JPH05156389A (en) Double-layered sliding member and its manufacture
JPH08199282A (en) Ceramic-metal composite material and sliding member
JP3332393B2 (en) Sintered sliding member and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5131256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term