JPH06173571A - Method for freezing ground using thermocouple and freezing cylinder - Google Patents

Method for freezing ground using thermocouple and freezing cylinder

Info

Publication number
JPH06173571A
JPH06173571A JP33137292A JP33137292A JPH06173571A JP H06173571 A JPH06173571 A JP H06173571A JP 33137292 A JP33137292 A JP 33137292A JP 33137292 A JP33137292 A JP 33137292A JP H06173571 A JPH06173571 A JP H06173571A
Authority
JP
Japan
Prior art keywords
thermocouple
freezing
module
ground
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33137292A
Other languages
Japanese (ja)
Other versions
JP2564744B2 (en
Inventor
Kenji Takagi
賢二 高木
Hiroshi Midorikawa
浩史 緑川
Tetsuki Kikuchi
哲樹 菊地
Katsuya Oota
勝矢 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP4331372A priority Critical patent/JP2564744B2/en
Publication of JPH06173571A publication Critical patent/JPH06173571A/en
Application granted granted Critical
Publication of JP2564744B2 publication Critical patent/JP2564744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To facilitate control without a need to provide a large scale refrigerator. CONSTITUTION:A module 20 is formed by combining a plurality of thermocouples, each of which comprises two kinds of thermionic elements 11, 12 and has characteristics such that a coupling electrode 14 at the joint of both elements absorbs heat in response to electric current from one of the elements 11, and the electrode 14 of the module 20 is connected to a heat- transfer heat-absorbing board 9 provided in the ground E in electrically insulated relationship. Each thermocouple of the module 20 is connected by means of a connecting electrode 15 and the electrode 15 is attached to the surface of a heat-transfer radiating board 18 in electrically insulated relationship. Electricity is fed to the electrode 14 of the module 20 from one of the elements 11 through the electrode 15 and refrigerant R is caused to flow along the rear side of the board 18 to keep the electrode 15 at a predetermined temperature, so that heat is absorbed from the electrode 14, thereby freezing the ground E.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電対による地盤凍結
方法及び凍結筒に関し、特にトンネル工事等のシールド
工法における地山安定処理の一種である凍結工法に熱電
素子からなる熱電対を利用する地盤凍結方法及び凍結筒
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground freezing method and a freezing cylinder using a thermocouple, and particularly to a freezing method, which is a kind of natural ground stabilization treatment in a shield construction method such as tunnel construction, using a thermocouple consisting of a thermoelectric element. The present invention relates to a ground freezing method and a freezing cylinder.

【0002】[0002]

【従来の技術】従来の凍結工法においては次の2種類の
地盤冷却方法が使われている。 (1) 直接方式:図7に示すように、液化ガスタンク30に
蓄えた低温の液化ガスを、予め地盤中に打込んだ直接凍
結管31へ送り、液化ガスで地盤Eを冷却して凍結地盤F
とするものである。液化ガスの補給は、例えばタンクロ
ーリー車32等により液化ガスタンク30へ供給して行う。 (2) 間接方式:図8に示すように、冷凍機により作った
例えば-20oCないし-30oCのブラインBを、予め地盤中に
打込んだ直接凍結管31へ送り、低温ブラインBで地盤E
を冷却して凍結地盤Fとするものである。図示例の冷凍
機は、一次冷媒Rに対する圧縮器36、凝縮器37、及び凝
縮器37を冷却する水Wを冷やすための送風機38からな
る。ブラインBは、ブライン冷却器34へブラインポンプ
35によって送られ一次冷媒Rとの熱交換によって冷却さ
れる。
2. Description of the Related Art In the conventional freezing method, the following two types of ground cooling methods are used. (1) Direct method: As shown in FIG. 7, the low temperature liquefied gas stored in the liquefied gas tank 30 is sent directly to the freezing pipe 31 which is previously driven into the ground, and the ground E is cooled by the liquefied gas to freeze the ground. F
It is what The liquefied gas is supplied to the liquefied gas tank 30 by, for example, a tank truck 32 or the like. (2) Indirect method: As shown in FIG. 8, for example, a -20 o C to -30 o C brine B made by a refrigerator is sent to a direct freezing pipe 31 that has been previously driven into the ground, and a low temperature brine B is supplied. At ground E
Is cooled to form a frozen ground F. The refrigerator in the illustrated example includes a compressor 36 for the primary refrigerant R, a condenser 37, and a blower 38 for cooling the water W that cools the condenser 37. The brine B is sent to the brine cooler 34 by the brine pump.
It is sent by 35 and cooled by heat exchange with the primary refrigerant R.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記(1)直接
方式では、液化ガスの価格が高いので工事費の増大を招
くだけでなく、液化ガス運搬時の熱損失が非常に大きい
ため搬送距離が長いシールド工事には適しない。また、
前記(2)間接方式では、一次冷媒Rに対する冷凍機が大
規模となり、機器コストだけでなく設置場所の確保にも
困難を伴う場合がある。一次冷媒RやブラインBの搬送
時の熱損失も、液化ガスの場合と同様に非常に大きいた
め、搬送距離が長い工事に使用すると断熱設備の費用が
嵩む問題点がある。さらに、何れの方式でも地盤凍結の
過程の細かい制御が困難であり、凍結確保のため設備規
模を必要以上に大きくする傾向が生ずる。過剰凍結は、
凍結期間・解凍期間の長期化を招き、時には凍上・沈下
などの地盤変化の原因となるおそれもある。
However, in the above-mentioned (1) direct method, since the price of liquefied gas is high, not only the construction cost is increased, but also the heat loss during transportation of the liquefied gas is very large, so that the transportation distance is long. However, it is not suitable for long shield work. Also,
In the above-mentioned (2) indirect method, the refrigerator for the primary refrigerant R becomes large in scale, and it may be difficult to secure the installation place as well as the equipment cost. Since the heat loss during the transportation of the primary refrigerant R and the brine B is also very large as in the case of the liquefied gas, there is a problem that the cost of the heat insulation equipment increases when it is used for the construction with a long transportation distance. Furthermore, it is difficult to finely control the ground freezing process in any of the methods, and there is a tendency to increase the equipment scale more than necessary to secure the freezing. Overfreezing
This may prolong the freezing and thawing periods, and at times may cause ground changes such as freezing and subsidence.

【0004】従って、本発明の目的は大規模冷凍機を要
さずしかも制御が容易な地盤凍結方法及び凍結筒の提供
にある。
Therefore, an object of the present invention is to provide a ground freezing method and a freezing cylinder which do not require a large-scale refrigerator and can be easily controlled.

【0005】[0005]

【課題を解決するための手段】本発明者は、前記目的実
現のため、熱電素子のペルチエ効果の利用及び最近の熱
電素子材料の進歩に注目した。図4に例示する熱電対10
は、例えばn形熱電素子11とp形熱電素子12との2種の
熱電素子からなり、各熱電素子11、12の一端を結合して
結合部13とし、各熱電素子11、12の他端19を接続導体17
を介して外部へ接続すると共に各熱電素子11、12の他端
19を同一温度に保ったものである。図中、点線枠は二つ
の他端19が同一温度に保たれることを示す。例えばn形
熱電素子11である一方の熱電素子から結合部13へ電流I
を流すと、ペルチエ効果により結合部13の温度が両形熱
電素子11、12の他端19の温度よりも降下し、結合部13は
吸熱する。二つの他端19を一定の低温に保つならば、結
合部13をその低温よりさらに低い温度に降下させ、結合
部13に接触するものから一層多くの熱量を奪い強く冷却
することができる。図6は、最近開発されたビスマス−
テルル系熱電材料について、二つの他端19即ち高温接合
部の温度を0oC、27oC、60oCに保った場合、前記結合部1
3即ち低温接合部の温度を高温接合部の温度に比しそれ
ぞれ少なくとも約40oC、約47oC、約57oC低くできること
の報告例を示す。熱電素子のこの原理を利用すれば、地
盤凍結に必要な冷媒の冷凍設備規模の縮小と地盤凍結過
程の制御の容易化を期待することができる。
In order to achieve the above object, the present inventor has paid attention to the utilization of the Peltier effect of thermoelectric elements and the recent progress of thermoelectric element materials. Thermocouple 10 illustrated in FIG.
Is composed of two types of thermoelectric elements, for example, an n-type thermoelectric element 11 and a p-type thermoelectric element 12, one end of each thermoelectric element 11, 12 is connected to form a joint portion 13, and the other end of each thermoelectric element 11, 12 is connected. 19 connecting conductor 17
And the other end of each thermoelectric element 11, 12
19 is kept at the same temperature. In the figure, the dotted frame indicates that the two other ends 19 are kept at the same temperature. For example, the current I from one thermoelectric element, which is the n-type thermoelectric element 11, to the coupling portion 13.
When flowing, the temperature of the joint 13 falls below the temperature of the other end 19 of the thermoelectric elements 11, 12 due to the Peltier effect, and the joint 13 absorbs heat. If the two other ends 19 are kept at a constant low temperature, it is possible to lower the joint portion 13 to a temperature lower than the lower temperature and remove more heat from the portion contacting the joint portion 13 to cool it strongly. Figure 6 shows the recently developed bismuth-
For tellurium-based thermoelectric materials, if the two other ends 19, that is, the temperature of the high temperature junction is kept at 0 ° C, 27 ° C, 60 ° C,
3 The report shows that the temperature of the low temperature joint can be lower than that of the high temperature joint by at least about 40 ° C, about 47 ° C and about 57 ° C, respectively. If this principle of the thermoelectric element is used, it can be expected to reduce the scale of the refrigerating equipment for the refrigerant required for ground freezing and facilitate control of the ground freezing process.

【0006】図1及び図2の実施例を参照するに、本発
明の熱電対による地盤凍結方法は、2種の熱電素子11、
12からなり各熱電素子11、12の一端を結合した結合部13
(図4、図1の場合は結合電極14)が一方の熱電素子例
えば熱電素子11からの電流に応じて吸熱する特性を有す
る熱電対10(図4)の複数個を所定の面状に配列してモ
ジュール20(図5)を形成し、地盤E中に設けた伝熱性
吸熱板9に前記モジュール20の熱電対10の結合部13を電
気的に絶縁して取付け、前記モジュール20の各熱電対10
の一方の熱電素子例えば熱電素子11の他端19を隣接熱電
対の他方の熱電素子例えば熱電素子12の他端19へ接続電
極15によって接続し、前記接続電極15を電気的に絶縁し
て伝熱性放熱板18の表面に取付け、前記接続電極15を介
して前記モジュール20の熱電対10の結合部13へ前記一方
の熱電素子から電流を供給すると共に前記放熱板18の裏
面に沿って冷媒Rを流し前記接続電極15を所定温度に保
ちつつ前記結合部13から吸熱することにより地盤Eを凍
結する。好ましくは、熱電対10の材料として、ビスマス
−テルル系熱電材料又は鉛−テルル系熱電材料を用い
る。
Referring to the embodiments shown in FIGS. 1 and 2, the ground freezing method using a thermocouple according to the present invention includes two types of thermoelectric elements 11,
Combining part 13 consisting of 12 and connecting one end of each thermoelectric element 11, 12.
A plurality of thermocouples 10 (FIG. 4) having a characteristic that (the coupling electrode 14 in FIG. 4 and FIG. 1) absorbs heat according to the current from one thermoelectric element, for example, the thermoelectric element 11 are arranged in a predetermined plane shape. To form a module 20 (FIG. 5), and electrically connect the coupling portion 13 of the thermocouple 10 of the module 20 to the heat-conducting heat-absorbing plate 9 provided in the ground E. Vs 10
One thermoelectric element, for example, the other end 19 of the thermoelectric element 11 is connected to the other thermoelectric element of the adjacent thermocouple, for example, the other end 19 of the thermoelectric element 12 by a connection electrode 15, and the connection electrode 15 is electrically insulated and transferred. It is attached to the surface of the heat dissipation plate 18, and current is supplied from the one thermoelectric element to the coupling portion 13 of the thermocouple 10 of the module 20 through the connection electrode 15 and the refrigerant R is provided along the back surface of the heat dissipation plate 18. And the connection electrode 15 is kept at a predetermined temperature to absorb heat from the joint portion 13 to freeze the ground E. Preferably, a bismuth-tellurium-based thermoelectric material or a lead-tellurium-based thermoelectric material is used as the material of the thermocouple 10.

【0007】本発明の熱電対による凍結管1は、地盤E
中に設置し得る伝熱性外側筒体22と、前記外側筒体22の
内部に設けられた伝熱性内側筒体23と、前記内側筒体23
の外側表面に電気的に絶縁して取付けられた前記接続電
極15を有する前記モジュール20と、前記内側筒体23の内
側表面に接する冷媒流路25を備え、前記モジュール20の
熱電対の結合部13を前記外側筒体22に対向させ、前記冷
媒流路25に冷媒Rを流しつつ前記接続電極15を介し前記
モジュール20の結合部13へ前記一方の熱電素子から電流
I(図4)を供給し前記結合部13により前記外側筒体22
から吸熱する。好ましくは、モジュール20の熱電対の結
合部13を外側筒体22の内側表面に電気的に絶縁して接触
させる。また、モジュール20における熱電対10の好まし
い材料は、ビスマス−テルル系熱電材料又は鉛−テルル
系熱電材料である。
The freezing pipe 1 formed by the thermocouple of the present invention is the ground E
A heat-conductive outer cylinder 22 that can be installed therein, a heat-conductive inner cylinder 23 provided inside the outer cylinder 22, and the inner cylinder 23
The module 20 having the connection electrode 15 electrically insulated and attached to the outer surface of the module 20, and the coolant channel 25 in contact with the inner surface of the inner cylindrical body 23, the thermocouple coupling portion of the module 20. 13 is opposed to the outer cylindrical body 22, and a current I (FIG. 4) is supplied from the one thermoelectric element to the coupling portion 13 of the module 20 through the connection electrode 15 while flowing the refrigerant R in the refrigerant flow path 25. The outer cylinder 22 is formed by the connecting portion 13.
Absorbs heat from. Preferably, the thermocouple coupling portion 13 of the module 20 is brought into electrical contact with the inner surface of the outer tubular body 22. The preferred material for the thermocouple 10 in the module 20 is a bismuth-tellurium-based thermoelectric material or a lead-tellurium-based thermoelectric material.

【0008】[0008]

【作用】図6のビスマス−テルル系熱電材料製の熱電対
10と0oCの氷水からなる冷媒Rを用いる例により、作用
を説明する。ただし、本発明はこれらの熱電材料及び冷
媒に限定されない。図1の凍結管1を図2に示すように
冷凍すべき地盤E中に設置した後、0oCの冷媒Rを冷媒
流路25に流しながら、接続電極15を介してモジュール20
の結合部13へ例えば熱電素子11からの電流Iを供給す
る。ただし熱電素子11からの電流Iは結合部13に吸熱を
起こさせるものとする。図6の特性を有する熱電素子1
1、12を使った場合、理論的には、接続電極15即ち熱電
素子11、12の他端19を冷媒Rによって0oCに保てば結合
部13を約−40oC(=0-40)以下に冷却できる。よって地
盤Eを凍結させることができる。
Function: Thermocouple made of bismuth-tellurium thermoelectric material shown in FIG.
The operation will be described with reference to an example using a refrigerant R composed of ice water of 10 and 0 ° C. However, the present invention is not limited to these thermoelectric materials and refrigerants. After installing the freezing tube 1 of FIG. 1 in the ground E to be frozen as shown in FIG. 2, the refrigerant R of 0 ° C. is caused to flow in the refrigerant channel 25, and the module 20 is connected through the connection electrode 15.
A current I from, for example, the thermoelectric element 11 is supplied to the coupling portion 13 of. However, the current I from the thermoelectric element 11 causes the coupling portion 13 to absorb heat. Thermoelectric element 1 having the characteristics shown in FIG.
When 1 and 12 are used, theoretically, if the connection electrode 15, that is, the other end 19 of the thermoelectric elements 11 and 12 is kept at 0 ° C. by the refrigerant R, the joint portion 13 is about −40 ° C. (= 0− 40) Can be cooled below. Therefore, the ground E can be frozen.

【0009】また、結合部13における単位時間内の吸熱
量は熱電対10の電流Iに依存することが知られているの
で、結合部13における電流Iを調節することにより外側
筒体22に接する地盤Eからの吸熱率即ち地盤冷却率を一
定範囲内で極めて容易に制御することが可能になると期
待される。さらに、接続電極15の外側を適当な冷媒Rに
より0oCよりも低い温度に保てば、結合部13の温度を一
層低くすることも可能である。このように低温にできる
結合部13の多数を、外側筒体22に対向して設けてあるの
で、地盤Eを高効率で冷却することができる。しかも冷
媒Rの温度にも液化ガスのような極低温が要求されない
ので、大規模な冷凍機を必要としない。
Further, since it is known that the amount of heat absorbed in the joint portion 13 per unit time depends on the current I of the thermocouple 10, the outer cylinder 22 is contacted by adjusting the current I in the joint portion 13. It is expected that the heat absorption rate from the ground E, that is, the ground cooling rate, can be controlled extremely easily within a certain range. Furthermore, if the temperature outside the connection electrode 15 is kept at a temperature lower than 0 ° C. by a suitable refrigerant R, the temperature of the joint portion 13 can be further lowered. Since a large number of the connecting portions 13 that can be kept at a low temperature are provided so as to face the outer cylindrical body 22, the ground E can be cooled with high efficiency. Moreover, since the temperature of the refrigerant R is not required to be extremely low like liquefied gas, a large-scale refrigerator is not required.

【0010】従って、本発明の目的である「大規模冷凍
機を要さずしかも制御が容易な地盤凍結方法及び凍結
筒」の提供が達成される。
Therefore, the object of the present invention is to provide a "ground freezing method and freezing cylinder which does not require a large-scale refrigerator and is easy to control".

【0011】[0011]

【実施例】図1及び図2の実施例では、比較的小規模な
冷凍装置2からの冷媒Rを供給管3により凍結管1へ送
る。凍結管1の内側筒体23の内部に下降管24を設け、冷
媒Rを矢印Dで示すように先ず下降させた後、接続電極
15が取付けられた壁面に沿い矢印Uで示すように上昇さ
せながら接続電極15から放熱させる。戻り管7により凍
結管1からの冷媒Rを冷凍装置2へ戻し、循環させて使
用する。図示例では複数の接続電極15を共通の放熱板18
に取付けた後内側筒体23に固定しているが、接続電極15
を直接に内側筒体23へ取付けてもよい。また、内側筒体
23に沿う冷媒流路25に接続電極15の側からフィン8を突
出させ、冷媒Rによる接続電極15の冷却効果の向上を図
っている。
In the embodiment shown in FIGS. 1 and 2, the refrigerant R from the refrigerating device 2 of a relatively small scale is sent to the freezing pipe 1 through the supply pipe 3. A downcomer pipe 24 is provided inside the inner tubular body 23 of the freezing pipe 1, and the refrigerant R is first lowered as shown by an arrow D, and then the connection electrode
Heat is radiated from the connection electrode 15 while being raised as indicated by an arrow U along the wall surface to which 15 is attached. The return pipe 7 returns the refrigerant R from the freezing pipe 1 to the refrigeration system 2 and circulates it for use. In the illustrated example, a plurality of connection electrodes 15 are connected to a common heat sink 18
Although it is fixed to the inner cylinder 23 after being attached to the
May be directly attached to the inner cylindrical body 23. Also, the inner cylinder
The fins 8 are projected from the side of the connection electrode 15 in the coolant flow path 25 along 23 to improve the cooling effect of the coolant R on the connection electrode 15.

【0012】電源16から電力線5により凍結管1のモジ
ュール20へ所要の電流を供給する。外側筒体22の地盤E
との接触面に温度センサー28を設け、さらに隣接凍結管
1の間の地盤温度検出のため、地盤E中に温度センサー
28付き測温管27を適宜設置する。それらの温度センサー
28の出力を信号線6により制御装置4へ送る。
A required current is supplied from the power source 16 to the module 20 of the freezing tube 1 through the power line 5. Ground E of the outer cylinder 22
A temperature sensor 28 is provided on the contact surface with the temperature sensor 28 and the temperature sensor 28 is provided in the ground E to detect the ground temperature between the adjacent freezing pipes 1.
Properly install the temperature measuring tube 27 with 28. Those temperature sensors
The output of 28 is sent to the control device 4 through the signal line 6.

【0013】制御装置4の動作を図3の流れ図により説
明する。制御が始まるとステップ51で、地盤Eの温度及
び凍結管1の表面温度を温度センサー28からの情報によ
り計測する。ステップ52で目標凍結分布制御の要否を判
断し、この制御を行う場合には、ステップ53で必要冷熱
量分布を、温度センサー28からの情報に基づく数値シミ
ュレーションにより凍結区間全体の温度・熱流分布とし
て求める。次にステップ54で地盤凍結に必要な冷却熱量
やそのための凍結管1の表面温度を算出する。算出結果
に基づき、ステップ55で凍結管1のモジュール20への電
流を制御して凍結管1の温度制御を行う。目標凍結分布
制御を行わない場合は、ステップ52で制御を終了する。
この目標凍結分布制御は適当なコンピュータにより容易
に行うことができる。
The operation of the controller 4 will be described with reference to the flow chart of FIG. When the control starts, in step 51, the temperature of the ground E and the surface temperature of the freezing pipe 1 are measured by the information from the temperature sensor 28. In step 52, it is judged whether or not the target freezing distribution control is necessary, and when this control is performed, the required cold heat amount distribution is calculated in step 53 by the numerical simulation based on the information from the temperature sensor 28 to determine the temperature / heat flow distribution of the entire freezing section. Ask as. Next, in step 54, the amount of cooling heat required for ground freezing and the surface temperature of the freezing pipe 1 for that purpose are calculated. Based on the calculation result, in step 55, the temperature of the freezing tube 1 is controlled by controlling the current to the module 20 of the freezing tube 1. If the target freezing distribution control is not performed, the control ends in step 52.
This target freezing distribution control can be easily performed by an appropriate computer.

【0014】図9は、モジュール20の熱電対の結合部13
を外側筒体22に直接に接触させた凍結管1の構造の実施
例を示す。
FIG. 9 shows a thermocouple coupling portion 13 of the module 20.
An example of the structure of the freezing tube 1 in which the outer cylinder 22 is brought into direct contact with is shown.

【0015】[0015]

【発明の効果】以上詳細に説明したように、本発明の熱
電対による地盤凍結方法及び凍結筒は、比較的小規模の
冷凍装置からの冷媒と熱電対モジュールへの電流によっ
て地盤を凍結するので、次の顕著な効果を奏する。 (1) 冷凍装置の規模の大幅な縮小 (2) 地盤凍結過程の制御範囲の著しい拡大及び制御精度
の改善 (3) 地盤凍結設備の設備費及び運転費の節減 (4) 地盤凍結設備の設備スペースの縮小 (5) 冷媒搬送量の削減及び搬送設備の縮小 (6) 冷媒搬送時の熱損失の低減 (7) 適切な制御による地盤の過剰凍結の防止 (8) 冷媒搬送量の削減、熱電対による広範囲な温度制御
等による凍結期間及び解凍期間の短縮 (9) 適切な制御による地盤変化(凍上、沈下等)の防止 (10)地盤凍結過程の熱効率の向上
As described in detail above, since the ground freezing method and the freezing cylinder using the thermocouple of the present invention freeze the ground by the refrigerant from the relatively small-scale refrigerating device and the electric current to the thermocouple module. , Has the following remarkable effects. (1) Significant reduction in the scale of refrigeration equipment (2) Significant expansion of the control range of the ground freezing process and improvement of control accuracy (3) Reduction of equipment cost and operation cost of ground freezing equipment (4) Equipment of ground freezing equipment Space reduction (5) Reduction of refrigerant transportation amount and transportation equipment (6) Reduction of heat loss during refrigerant transportation (7) Prevention of excessive freezing of the ground by proper control (8) Reduction of refrigerant transportation amount, thermoelectricity Shortening the freezing and thawing periods by pairwise wide-range temperature control, etc. (9) Preventing ground changes (freezing, subsidence, etc.) by appropriate control (10) Improving the thermal efficiency of the ground freezing process

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明による凍結管の模式的説明図であ
る。
FIG. 1 is a schematic explanatory view of a freezing tube according to the present invention.

【図2】は、地盤凍結設備の図式的説明図である。FIG. 2 is a schematic explanatory view of a ground freezing facility.

【図3】は、制御の流れ図である。FIG. 3 is a control flowchart.

【図4】は、熱電対の模式的説明図である。FIG. 4 is a schematic explanatory view of a thermocouple.

【図5】は、熱電対モジュールの模式的説明図である。FIG. 5 is a schematic explanatory view of a thermocouple module.

【図6】は、熱電対の特性の一例のグラフである。FIG. 6 is a graph showing an example of characteristics of a thermocouple.

【図7】は、直接方式による地盤凍結の説明図である。FIG. 7 is an explanatory diagram of ground freezing by the direct method.

【図8】は、間接方式による地盤凍結の説明図である。FIG. 8 is an explanatory diagram of ground freezing by the indirect method.

【図9】は、凍結管の他の実施例の模式的説明図であ
る。
FIG. 9 is a schematic explanatory view of another embodiment of the freezing tube.

【符号の説明】[Explanation of symbols]

1 凍結管 2 冷凍装置 3
供給管 4 制御装置 5 電力線 6
信号線 7 戻り管 8 フィン 9
吸熱板 10 熱電対 11 n形熱電素子 12
p形熱電素子 13 結合部 14 結合電極 15
接続電極 16 電源 17 接続導体 18
放熱板 19 他端 20 モジュール 22
外側筒体 23 内側筒体 24 下降管 25
冷媒流路 27 測温管 28 温度センサー 30
液化ガスタンク 31 直接凍結管 32 タンクローリー車 34
ブライン冷却器 35 ブラインポンプ 36 一次冷媒圧縮機 37
凝縮器 38 送風機。
1 Freezing tube 2 Freezing device 3
Supply pipe 4 Control device 5 Power line 6
Signal line 7 Return pipe 8 Fin 9
Endothermic plate 10 Thermocouple 11 N-type thermoelectric element 12
p-type thermoelectric element 13 coupling part 14 coupling electrode 15
Connection electrode 16 Power supply 17 Connection conductor 18
Heat sink 19 Other end 20 Module 22
Outer cylinder 23 Inner cylinder 24 Downcomer 25
Refrigerant flow path 27 Temperature tube 28 Temperature sensor 30
Liquefied gas tank 31 Direct freezing pipe 32 Tank truck 34
Brine cooler 35 Brine pump 36 Primary refrigerant compressor 37
Condenser 38 blower.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F25B 25/00 A 8919−3L (72)発明者 太田 勝矢 東京都調布市飛田給2丁目19番1号 鹿島 建設株式会社技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI technical display location F25B 25/00 A 8919-3L (72) Inventor Katsuya Ota Katsuya 2-19-1 Tobita, Chofu-shi, Tokyo Kashima Construction Co., Ltd. Technical Research Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 2種の熱電素子からなり各熱電素子の一
端を結合した結合部が一方の熱電素子からの電流に応じ
て吸熱する特性を有する熱電対の複数個を所定の面状に
配列してモジュールを形成し、地盤中に設けた伝熱性吸
熱板に前記モジュールの熱電対の結合部を電気的に絶縁
して取付け、前記モジュールの各熱電対の一方の熱電素
子の他端を隣接熱電対の他方の熱電素子の他端へ接続電
極によって接続し、前記接続電極を電気的に絶縁して伝
熱性放熱板の表面に取付け、前記接続電極を介して前記
モジュールの熱電対の結合部へ前記一方の熱電素子から
電流を供給すると共に前記放熱板の裏面に沿って冷媒を
流し前記接続電極を所定温度に保ちつつ前記結合部から
吸熱することにより地盤を凍結してなる熱電対による地
盤凍結方法。
1. A plurality of thermocouples, which are composed of two types of thermoelectric elements and have a characteristic that a coupling portion that joins one end of each thermoelectric element absorbs heat according to a current from one thermoelectric element, is arranged in a predetermined plane. To form a module, and electrically couple the thermocouple coupling part of the module to a heat conductive heat absorbing plate provided in the ground, and connect the other end of one thermoelectric element of each thermocouple of the module to the adjacent side. Connected to the other end of the other thermoelectric element of the thermocouple by a connecting electrode, electrically insulating the connecting electrode and attaching it to the surface of the heat conductive heat dissipation plate, and connecting part of the thermocouple of the module via the connecting electrode. The ground by a thermocouple formed by freezing the ground by supplying a current from the one thermoelectric element to the one side and flowing a coolant along the back surface of the heat dissipation plate to absorb heat from the joint while maintaining the connection electrode at a predetermined temperature. Freezing method.
【請求項2】 請求項1の地盤凍結方法において、前記
熱電対をビスマス−テルル系熱電材料製又は鉛−テルル
系熱電材料製としてなる熱電対による地盤凍結方法。
2. The ground freezing method according to claim 1, wherein the thermocouple is made of a bismuth-tellurium thermoelectric material or a lead-tellurium thermoelectric material.
【請求項3】 2種の熱電素子からなり各熱電素子の一
端を結合した結合部が一方の熱電素子からの電流に応じ
て吸熱する特性を有する熱電対の複数個を所定の面状に
配列したモジュール;前記モジュールの各熱電対の一方
の熱電素子の他端を隣接熱電対の他方の熱電素子の他端
へ接続する接続電極;地盤中に設置し得る伝熱性外側筒
体;前記外側筒体の内部に設けられた伝熱性内側筒体で
あって前記モジュールの各接続電極が電気的に絶縁して
取付けられた外側表面を有する内側筒体;及び前記内側
筒体の内側表面に接する冷媒流路を備え、前記モジュー
ルの熱電対の結合部を前記外側筒体に対向させ、前記冷
媒流路に冷媒を流しつつ前記接続電極を介し前記モジュ
ールの結合部へ前記一方の熱電素子からの電流を供給し
前記結合部により前記外側筒体から吸熱してなる熱電対
による凍結筒。
3. A plurality of thermocouples, which are composed of two types of thermoelectric elements and have a characteristic that a coupling portion that joins one end of each thermoelectric element absorbs heat according to a current from one thermoelectric element, is arranged in a predetermined plane shape. Module; a connecting electrode for connecting the other end of one thermoelectric element of each thermocouple of the module to the other end of the other thermoelectric element of an adjacent thermocouple; a heat-conducting outer cylinder that can be installed in the ground; the outer cylinder A heat-conducting inner cylinder provided inside the body, the inner cylinder having an outer surface on which each connection electrode of the module is electrically insulated and attached; and a refrigerant in contact with the inner surface of the inner cylinder. A flow path, the coupling part of the thermocouple of the module is opposed to the outer cylindrical body, the current from the one thermoelectric element to the coupling part of the module through the connection electrode while flowing the refrigerant in the refrigerant flow path. Is supplied by the connecting part A freezing cylinder made of a thermocouple that absorbs heat from the outer cylinder.
【請求項4】 請求項3の凍結筒において、前記モジュ
ールの各熱電対の結合部を電気的に絶縁して前記外側筒
体の内側表面に接触させ、前記外側筒体の外側表面を地
盤に直接接触可能としてなる熱電対による凍結筒。
4. The freezing cylinder according to claim 3, wherein the coupling parts of the thermocouples of the module are electrically insulated and brought into contact with the inner surface of the outer cylinder, and the outer surface of the outer cylinder is grounded. Freezing cylinder with a thermocouple that can be directly contacted.
【請求項5】 請求項3の凍結筒において、前記熱電対
をビスマス−テルル系熱電材料製又は鉛−テルル系熱電
材料製としてなる熱電対による凍結筒。
5. The freezing cylinder according to claim 3, wherein the thermocouple is made of a bismuth-tellurium thermoelectric material or a lead-tellurium thermoelectric material.
JP4331372A 1992-12-11 1992-12-11 Ground freezing method using thermocouple and freezing cylinder Expired - Fee Related JP2564744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4331372A JP2564744B2 (en) 1992-12-11 1992-12-11 Ground freezing method using thermocouple and freezing cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4331372A JP2564744B2 (en) 1992-12-11 1992-12-11 Ground freezing method using thermocouple and freezing cylinder

Publications (2)

Publication Number Publication Date
JPH06173571A true JPH06173571A (en) 1994-06-21
JP2564744B2 JP2564744B2 (en) 1996-12-18

Family

ID=18242952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4331372A Expired - Fee Related JP2564744B2 (en) 1992-12-11 1992-12-11 Ground freezing method using thermocouple and freezing cylinder

Country Status (1)

Country Link
JP (1) JP2564744B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121174A (en) * 2007-11-16 2009-06-04 Kajima Corp Freezing device, frozen ground calculation system, freezing method and program
CN102182463A (en) * 2011-04-12 2011-09-14 中煤邯郸特殊凿井有限公司 Inclined shaft freezing heat insulation method
CN108951620A (en) * 2018-08-07 2018-12-07 兰州理工大学 A kind of active refrigeration suspension roof support structure based on pyroelectric effect

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121174A (en) * 2007-11-16 2009-06-04 Kajima Corp Freezing device, frozen ground calculation system, freezing method and program
CN102182463A (en) * 2011-04-12 2011-09-14 中煤邯郸特殊凿井有限公司 Inclined shaft freezing heat insulation method
CN108951620A (en) * 2018-08-07 2018-12-07 兰州理工大学 A kind of active refrigeration suspension roof support structure based on pyroelectric effect
CN108951620B (en) * 2018-08-07 2024-02-27 兰州理工大学 Active refrigeration anchor bolt supporting structure based on thermoelectric effect

Also Published As

Publication number Publication date
JP2564744B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
CN104329871B (en) Semi-conductor refrigeration refrigerator and cold end heat exchanging device thereof
CN105188317A (en) Active thermoelectric cooling system for electronic device in severe working conditions
JP2564744B2 (en) Ground freezing method using thermocouple and freezing cylinder
JPH07253264A (en) Refrigerator
CN210463644U (en) Refrigerating system and air conditioner
CN104344641B (en) Semiconductor cooling refrigerator and hot-end heat exchange device for same
JPH0791796A (en) Electronic refrigeration type cold storage box
KR19990016782A (en) Refrigeration unit with thermoelectric cooler
KR20020019787A (en) High efficiency thermoelectric cooling and heating box for food and drink storage in a vehicle
JPH0544961A (en) Air-conditioner
CN204944014U (en) A kind of refrigerator
CN113782864A (en) Heating and refrigerating device for battery and battery temperature management system
JP2000286483A (en) Laser light generator
CN212902148U (en) Semiconductor refrigerating sheet for heat-preservation medicine box
JP2004278893A (en) Cooling device and refrigerator-freezer comprising the same
KR200217056Y1 (en) The cooling or heating air supply devices using a thermoelectric module
KR20010047243A (en) Aircon system using a thermoelement
CN217685509U (en) Radiator and air condensing units
CN215896518U (en) Heating and refrigerating device for battery and battery temperature management system
CN216557751U (en) Semiconductor refrigerator
CN207945889U (en) A kind of heat-pipe radiator and refrigerator
KR200263749Y1 (en) Cooling device of radiator type for cooling of thermoelectric element
RU2694815C2 (en) Cabinet with radioelectronic equipment
CN209655672U (en) A kind of heat recovery refrigerator
KR200368907Y1 (en) Heat-Exchanger Using The Thermoelectric Elements And Heating-Cooling Sheet Having Said Heat-Exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees