JPH06173011A - Vaporization vessel - Google Patents

Vaporization vessel

Info

Publication number
JPH06173011A
JPH06173011A JP32305792A JP32305792A JPH06173011A JP H06173011 A JPH06173011 A JP H06173011A JP 32305792 A JP32305792 A JP 32305792A JP 32305792 A JP32305792 A JP 32305792A JP H06173011 A JPH06173011 A JP H06173011A
Authority
JP
Japan
Prior art keywords
container
organometallic compound
vaporization
carrier gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32305792A
Other languages
Japanese (ja)
Inventor
Kohei Sato
幸平 佐藤
Isao Kaneko
功 金子
Hiromi Osaki
浩美 大崎
Kazuyuki Asakura
和之 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP32305792A priority Critical patent/JPH06173011A/en
Publication of JPH06173011A publication Critical patent/JPH06173011A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the vaporization vessel for org. metal compd. capable of efficiently and stably vaporizing a solid org. metal compd. with a simple structure. CONSTITUTION:In the vaporization vessel of this invention, a carrier gas introducing pipe 2 and a mixed gas discharging pipe 3 are respectively opened in the vessel 1 and a heating pipe 4 pierces through the vessel 1. The number of the heating pipe 4 is 2-5, and they may be disposed parallel to a base wall, and the carrier gas introducing pipe 2 may be opened at the bottom part and the mixed gas discharging pipe 3 may be opened above it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体を製造す
る固体有機金属化合物の気化容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid metalorganic compound vaporization vessel for producing a compound semiconductor.

【0002】[0002]

【従来の技術】近年 III−V族およびII−VI族の化合物
半導体が、半導体発光素子、マイクロ波トランジスタな
ど、広い分野で用いられるようになり、さらにそれらの
優れた特性を利用して、高速コンピュータ用集積回路、
オプトエレクトロニクス集積回路なども開発されてき
た。
2. Description of the Related Art Recently, III-V and II-VI group compound semiconductors have come to be used in a wide range of fields such as semiconductor light emitting devices and microwave transistors. Integrated circuits for computers,
Optoelectronic integrated circuits have also been developed.

【0003】III−V族化合物半導体を製造するような
場合、しばしば金属化学蒸着法(MOCVD Metalorg
anic Chemical Vapor Deposition)が採られる。この方
法の場合、液体あるいは固体有機金属化合物を気化し、
基体上でその結晶をエピタキシャル成長させる。エピタ
キシャル成長させている間、基体に供給されるキャリヤ
ガス中の有機金属化合物の混合比が変動すると、得られ
る半導体の電気的あるいは光学的特性に著しい悪影響が
生じる。高性能素子を得るためには、一定濃度の有機金
属化合物が気化容器から安定的に供給されることが必要
である。
When manufacturing III-V compound semiconductors, metal chemical vapor deposition (MOCVD Metalorg) is often used.
anic Chemical Vapor Deposition) is adopted. In this method, a liquid or solid organometallic compound is vaporized,
The crystal is epitaxially grown on the substrate. A change in the mixing ratio of the organometallic compound in the carrier gas supplied to the substrate during epitaxial growth has a significant adverse effect on the electrical or optical properties of the resulting semiconductor. In order to obtain a high performance device, it is necessary that a constant concentration of the organometallic compound is stably supplied from the vaporization container.

【0004】液体有機金属化合物を気化するには、キャ
リヤガス導入用ディップ管と混合気排出管とを密封容器
にそれぞれ接続した気化容器が用いられる。キャリヤガ
ス導入用ディップ管を通じ、水素ガスなどを液体有機金
属化合物中でバブリングさせると、液体有機金属化合物
が気化して飽和した水素ガスが混合気排出管から排出さ
れてくる。
To vaporize the liquid organometallic compound, a vaporization vessel in which a carrier gas introducing dip tube and a gas mixture exhaust tube are connected to a sealed vessel is used. When hydrogen gas or the like is bubbled through the liquid organometallic compound through the carrier gas introducing dip tube, hydrogen gas saturated by vaporization of the liquid organometallic compound is discharged from the gas mixture discharge pipe.

【0005】このようにキャリヤガスに曝されると気化
するのは、液体有機金属化合物だけでなく、トリメチル
インジウムなどの固体有機金属化合物の場合も同じであ
る。上記のような方法は、固体有機金属化合物にも応用
が可能である。
Thus, not only the liquid organometallic compound but also the solid organometallic compound such as trimethylindium vaporizes when exposed to the carrier gas. The above method can be applied to a solid organometallic compound.

【0006】[0006]

【発明が解決しようとする課題】固体有機金属化合物に
応用する場合、いくつかの問題がある。液体有機金属化
合物用の気化容器に固体有機金属化合物を充填し、キャ
リヤガス導入用ディップ管からキャリヤガスを容器内に
導入すると、中の固体有機金属化合物の残量が減少する
につれて気化量も変動してくる。気化量がほとんど変動
しない範囲でそれを使用しようとすれば、気化容器に充
填した固体有機金属化合物の残量が、ほとんど零になる
まで固体有機金属化合を放出し尽くすことはできない。
すなわち、効率が悪いという問題点がある。
When applied to solid organometallic compounds, there are several problems. When a solid organometallic compound is filled in a vaporization container for a liquid organometallic compound and a carrier gas is introduced into the container through a carrier gas introduction dip tube, the vaporization amount also changes as the remaining amount of the solid organometallic compound in the container decreases. Come on. If it is attempted to use it in a range where the vaporization amount hardly changes, the solid organometallic compound cannot be exhausted until the remaining amount of the solid organometallic compound filled in the vaporization container becomes almost zero.
That is, there is a problem that the efficiency is low.

【0007】このほかにも、固体有機金属化合物の気化
による回収方法としては、気化容器内を加熱して中の固
体有機金属化合物を液化し、バブリングによって気化さ
せるという方法もある。特開平4−74523号公報に
は、固体有機金属化合物を充填した気化容器内を加熱す
る方法として、フィン状の突起物をその内部に設置する
考えが示されている。フィン状の突起物は熱伝導性がよ
い。ところがこのような気化容器で固体有機金属を気化
させようとすれば、まず試料の充填が困難である。いっ
たん特定の固体有機金属の気化に使用した気化容器にそ
の後再度特定の有機金属化合物を充填し、再使用しよう
としても、突起物の数が多いため洗浄が困難で、ほとん
ど使用に堪えないという問題点もあった。同公報には中
空型フィンを持った気化容器も開示されている。その場
合、フィンのない場合に比べ改善の効果は認められるも
のの、気化した有機金属化合物を安定した濃度で得るこ
とはできない。
In addition to the above, as a method of recovering the solid organometallic compound by vaporization, there is also a method of heating the inside of the vaporization container to liquefy the solid organometallic compound and vaporize it by bubbling. Japanese Unexamined Patent Publication (Kokai) No. 4-74523 discloses a method of heating a vaporization container filled with a solid organometallic compound, in which fin-shaped projections are installed therein. The fin-shaped protrusion has good thermal conductivity. However, if it is attempted to vaporize the solid organic metal in such a vaporization container, it is first difficult to fill the sample. Even if the vaporization container that was once used to vaporize a specific solid organometal was filled with a specific organometallic compound again and then tried to be reused, the number of protrusions was too large to clean and it was almost unusable. there were. The publication also discloses a vaporization container having hollow fins. In that case, although the improvement effect is recognized as compared with the case without the fin, the vaporized organometallic compound cannot be obtained at a stable concentration.

【0008】本発明は上記の問題点を解決するため、簡
単な構造で、効率よく安定的に固体有機金属化合物を気
化させることのできる有機金属化合物の気化容器を提供
することを目的とする。
In order to solve the above problems, it is an object of the present invention to provide an organometallic compound vaporization container having a simple structure and capable of efficiently and stably vaporizing a solid organometallic compound.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めになされた本発明の気化容器を、実施例に対応する図
1に従って説明する。
A vaporization container of the present invention made to achieve the above object will be described with reference to FIG. 1 corresponding to an embodiment.

【0010】本発明の気化容器は、キャリヤガス導入管
2と混合気排出管3とがそれぞれ容器1内で開口し、伝
熱管4がその容器1内を貫通している。伝熱管4の本数
は2〜5本、しかもそれらが底壁と平行に設けられてい
るとよく、キャリヤガス導入管2は底部で、混合気排出
管3はその上方で開口しているとよい。
In the vaporization container of the present invention, a carrier gas introduction pipe 2 and a mixture gas discharge pipe 3 are opened in the container 1, and a heat transfer pipe 4 penetrates the container 1. It is preferable that the number of the heat transfer tubes 4 is 2 to 5, and that they are provided in parallel with the bottom wall, the carrier gas introduction tube 2 is opened at the bottom, and the mixture discharge tube 3 is opened above it. .

【0011】[0011]

【作用】気化容器内にトリメチルインジウムなどの固体
有機金属化合物を、伝熱管4の表面を含む容器1の内側
面全体に広く凝固して付着する形で充填する。キャリヤ
ガス導入管2を通じ、容器1内にキャリヤガスを放出す
ると、付着したその固体有機金属化合物6は広い面積で
キャリヤガスと接触し、キャリヤガスの飽和濃度まで直
ちに昇華し、キャリヤガスの流れに乗って混合気排出管
3から排出される。
In the vaporization container, a solid organometallic compound such as trimethylindium is filled in a form in which it is widely solidified and adhered to the entire inner surface of the container 1 including the surface of the heat transfer tube 4. When the carrier gas is discharged into the container 1 through the carrier gas introduction pipe 2, the solid organometallic compound 6 attached thereto comes into contact with the carrier gas over a wide area and immediately sublimes to the saturation concentration of the carrier gas to form a carrier gas flow. The air-fuel mixture is discharged from the air-fuel mixture discharge pipe 3.

【0012】このような気化容器の製作は、従来の液体
有機金属化合物用の気化容器に伝熱管4を貫通させれば
よく、容易に得ることができる。
The vaporization container as described above can be easily manufactured by passing the heat transfer tube 4 through a conventional vaporization container for liquid organic metal compound.

【0013】[0013]

【実施例】以下、本発明の実施例を説明する。図1は本
発明の気化容器の一実施例の部分破断図である。上下密
封の筒容器1の上端壁をキャリヤガス導入管2が貫通
し、筒容器1内の底部で開口している。さらに同じその
上端壁には混合気排出管3が連結されて開口している。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a partial cutaway view of an embodiment of the vaporization container of the present invention. A carrier gas introducing pipe 2 penetrates the upper end wall of the vertically sealed cylindrical container 1 and opens at the bottom of the cylindrical container 1. Further, an air-fuel mixture discharge pipe 3 is connected to the same upper end wall and opened.

【0014】筒容器1の筒壁には熱媒体入出口が2か所
上下に、またその反対側の位置にも同じく2か所上下
に、それぞれ開口している。筒容器1内には内部を貫通
する2本の伝熱管4が、筒体の中心線と直交し、底壁と
平行に上下水平に設けられ、それぞれが上側の各熱媒体
入出口に直結し、下側の各熱媒体入出口に直結してい
る。
The heating medium inlet / outlet is opened at two locations vertically on the tubular wall of the tubular container 1, and two locations at the opposite side are also opened vertically. Two heat transfer tubes 4 penetrating the inside of the cylindrical container 1 are provided vertically and horizontally orthogonal to the center line of the cylindrical body and parallel to the bottom wall, and each is directly connected to each heat medium inlet / outlet on the upper side. , Is directly connected to each heat medium inlet / outlet on the lower side.

【0015】伝熱管4の直径は、筒容器1の内径の2分
の1以下、好ましくは3分の1〜4分の1がよい。伝熱
管4の数は5本以下、特に2〜3本が好ましい。本数を
6本以上にすればそれだけ製作が難しくなるというだけ
でなく、有機金属化合物を気化させていてその残量が少
なくなってきたとき、混合気排出管3から回収される濃
度に変動が生じやすくなってきて好ましくない。本数を
増やすとその分、一本の太さを細くしなければならず、
伝熱管4の壁面に付着する有機金属化合物が剥離しやす
くなるためと考えられる。伝熱管4は容器1の底面と平
行に設ける。平行としなければ管路は斜めになってそれ
だけ貫通距離が長くなり、有機金属化合物の付着面積が
大きくなるという期待があるが、管数を多くした場合と
同様、有機金属の残量が少なくなったときに有機金属化
合物が剥離しやすくなって、回収濃度が変動しやすくな
り、好ましくない。
The diameter of the heat transfer tube 4 is preferably 1/2 or less, preferably 1/3 to 1/4 of the inner diameter of the cylindrical container 1. The number of heat transfer tubes 4 is preferably 5 or less, and particularly preferably 2 to 3. If the number is 6 or more, not only the production becomes difficult, but also when the organometallic compound is vaporized and the remaining amount becomes small, the concentration recovered from the gas mixture discharge pipe 3 fluctuates. It is not preferable because it becomes easier. If you increase the number, you have to reduce the thickness of each one,
It is considered that the organometallic compound attached to the wall surface of the heat transfer tube 4 is easily peeled off. The heat transfer tube 4 is provided parallel to the bottom surface of the container 1. If the pipes are not parallel, it is expected that the pipes will be slanted and the penetration distance will be longer, and the adhesion area of the organometallic compound will increase. When this happens, the organometallic compound easily peels off, and the recovery concentration easily fluctuates, which is not preferable.

【0016】本実施例の場合、キャリヤガス導入管2は
底部で、混合気排出管3はその上方で開口しているた
め、キャリヤガスとして比重の軽い気体を用いても、比
較的比重の重い昇華ガスを効率よく排出させることがで
きる。
In the case of the present embodiment, since the carrier gas introduction pipe 2 is open at the bottom and the air-fuel mixture discharge pipe 3 is opened above it, even if a gas having a low specific gravity is used as the carrier gas, it has a relatively high specific gravity. The sublimation gas can be efficiently discharged.

【0017】実施例1 図1に示すような気化容器内に、トリメチルインジウム
の結晶6を伝熱管4の表面など容器1内に鎖線で示すよ
うにほぼ均一の厚さで付着させた。
Example 1 A trimethylindium crystal 6 was adhered to the inside of the container 1 such as the surface of the heat transfer tube 4 in a vaporization container as shown in FIG. 1 with a substantially uniform thickness as shown by the chain line.

【0018】容器内温度を水浴5で40℃に保持し、キ
ャリヤガス導入管2からヘリウムガスを流速100ミリ
リットル/分で送入し、トリメチルインジウムを昇華さ
せ、ヘリウムガスとの混合ガスの形でトリメチルインジ
ウムガスを混合気排出管3から取り出した。
The temperature inside the container is maintained at 40 ° C. in the water bath 5, helium gas is fed from the carrier gas introducing pipe 2 at a flow rate of 100 ml / min, trimethylindium is sublimated, and in the form of a mixed gas with helium gas. Trimethylindium gas was taken out from the gas mixture discharge pipe 3.

【0019】排出されてくる混合ガス中のトリメチルイ
ンジウムの量を、ガスクロマトグラフィースペクトル装
置を用い、容器1内のトリメチルインジウム残量との対
比で検出した。測定結果を図3に示す。図3から、容器
1内でのトリメチルインジウムの残量がほとんど空にな
るまで、トリメチルインジウムガスを一定濃度で安定的
に回収できることが分かった。
The amount of trimethylindium in the discharged mixed gas was detected by comparison with the residual amount of trimethylindium in the container 1 by using a gas chromatography spectrometer. The measurement result is shown in FIG. From FIG. 3, it was found that the trimethylindium gas can be stably recovered at a constant concentration until the remaining amount of trimethylindium in the container 1 becomes almost empty.

【0020】比較例 キャリヤガス導入管が貫通してキャリヤガス導入管2が
設けられ、混合気排出管が連結して混合気排出管3が設
けられているだけの、図2に示すような従来タイプの気
化容器を用いた。その他は実施例1と同様にした。結果
を図4に示す。図4から、トリメチルインジウムを回収
するにあたり、残量が減少すると混合ガス中の濃度に変
動が生じてくることが改めて確認された。
COMPARATIVE EXAMPLE A conventional example as shown in FIG. 2 in which a carrier gas introducing pipe 2 is provided so as to penetrate therethrough, and a mixture discharging pipe is connected to provide a mixture discharging pipe 3. A type of vaporization vessel was used. Others were the same as in Example 1. The results are shown in Fig. 4. From FIG. 4, it was reconfirmed that the concentration in the mixed gas fluctuates when the remaining amount decreases when recovering trimethylindium.

【0021】[0021]

【発明の効果】以上、詳細に説明したように本発明の気
化容器では、固体有機金属化合物を容器内の広い範囲で
キャリヤガスと接触させることができる。固体有機金属
化合物は昇華してキャリヤガス中で飽和し、その飽和濃
度で排出される。そのためキャリヤガスと昇華ガスとの
混合率は一定し、効率よく安定的に濃度一定の有機金属
化合物ガスが得られる。
As described above in detail, in the vaporization container of the present invention, the solid organometallic compound can be brought into contact with the carrier gas in a wide range within the container. The solid organometallic compound sublimes and becomes saturated in the carrier gas, and is discharged at its saturated concentration. Therefore, the mixing ratio of the carrier gas and the sublimation gas is constant, and an organometallic compound gas having a constant concentration can be obtained efficiently and stably.

【0022】混合気排出管から得られる混合ガス中の昇
華ガスの濃度は飽和濃度を維持し、その残量が減ってき
てもほとんど低下しないため、基体上で固体有機金属化
合物の結晶を安定的にエピタキシャル成長させることが
でき、特性に信頼性の高い半導体を製造することができ
る。工業上では極めて有用な効果をもたらす。
Since the concentration of the sublimation gas in the mixed gas obtained from the mixed gas discharge pipe maintains the saturated concentration and hardly decreases even when the remaining amount decreases, the crystal of the solid organometallic compound is stabilized on the substrate. It is possible to epitaxially grow the semiconductor, and it is possible to manufacture a semiconductor having highly reliable characteristics. It has an extremely useful effect in industry.

【0023】気化容器の製作にあたっては、従来の液体
有機金属化合物用の気化容器を応用すればよく、容易に
得ることができる。
In the production of the vaporization container, a conventional vaporization container for a liquid organometallic compound may be applied and can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用する気化容器の一実施例を示す部
分断面図である。
FIG. 1 is a partial cross-sectional view showing an embodiment of a vaporization container to which the present invention is applied.

【図2】従来の気化容器の一例を示す部分断面図であ
る。
FIG. 2 is a partial cross-sectional view showing an example of a conventional vaporization container.

【図3】実施例1の結果を示すグラフ図である。FIG. 3 is a graph showing the results of Example 1.

【図4】比較例の結果を示すグラフ図である。FIG. 4 is a graph showing the results of a comparative example.

【符号の説明】[Explanation of symbols]

1は筒容器、2はキャリヤガス導入管、3は混合気排出
管、4は伝熱管、5は水浴、6は付着したトリメチルイ
ンジウムである。
Reference numeral 1 is a cylindrical container, 2 is a carrier gas introduction pipe, 3 is a mixture discharge pipe, 4 is a heat transfer pipe, 5 is a water bath, and 6 is trimethylindium attached.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大崎 浩美 新潟県中頸城郡頸城村大字西福島28番地の 1 信越化学工業株式会社合成技術研究所 内 (72)発明者 朝倉 和之 新潟県中頸城郡頸城村大字西福島28番地の 1 信越化学工業株式会社合成技術研究所 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromi Osaki, Hiromi Osaki, 28, Nishi-Fukushima, Chugiki-mura, Nakakubiki-gun, Niigata Prefecture, Shinsei Chemical Industry Co., Ltd. 28, Nishi-Fukushima, Kikugi-mura, Gunma 1 Shin-Etsu Chemical Co., Ltd. Synthetic Technology Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 キャリヤガス導入管と混合気排出管とが
それぞれ容器内で開口し、伝熱管がその容器内を貫通し
ていることを特徴とする気化容器。
1. A vaporization container characterized in that a carrier gas introduction pipe and a mixture gas discharge pipe are each opened in the container, and a heat transfer pipe penetrates through the container.
【請求項2】 該伝熱管の本数は2〜5、しかもそれら
が底壁と平行に設けられている請求項1に記載の気化容
器。
2. The vaporization container according to claim 1, wherein the number of the heat transfer tubes is 2 to 5, and the heat transfer tubes are provided in parallel with the bottom wall.
【請求項3】 該キャリヤガス導入管は底部で、該混合
気排出管はその上方で開口している請求項1または2に
記載の気化容器。
3. The vaporization container according to claim 1, wherein the carrier gas introduction pipe is opened at the bottom, and the air-fuel mixture discharge pipe is opened above it.
JP32305792A 1992-12-02 1992-12-02 Vaporization vessel Pending JPH06173011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32305792A JPH06173011A (en) 1992-12-02 1992-12-02 Vaporization vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32305792A JPH06173011A (en) 1992-12-02 1992-12-02 Vaporization vessel

Publications (1)

Publication Number Publication Date
JPH06173011A true JPH06173011A (en) 1994-06-21

Family

ID=18150616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32305792A Pending JPH06173011A (en) 1992-12-02 1992-12-02 Vaporization vessel

Country Status (1)

Country Link
JP (1) JPH06173011A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134741A (en) * 2002-06-17 2004-04-30 Asm Internatl Nv Control system for sublimation of reactant
JP4757403B2 (en) * 2001-06-01 2011-08-24 東京エレクトロン株式会社 Solid material vaporizer
WO2023221164A1 (en) * 2022-05-18 2023-11-23 江苏南大光电材料股份有限公司 Solid-state source gasification device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757403B2 (en) * 2001-06-01 2011-08-24 東京エレクトロン株式会社 Solid material vaporizer
JP2004134741A (en) * 2002-06-17 2004-04-30 Asm Internatl Nv Control system for sublimation of reactant
JP4486794B2 (en) * 2002-06-17 2010-06-23 エーエスエム インターナショナル エヌ.ヴェー. Method for generating vapor from solid precursor, substrate processing system and mixture
WO2023221164A1 (en) * 2022-05-18 2023-11-23 江苏南大光电材料股份有限公司 Solid-state source gasification device

Similar Documents

Publication Publication Date Title
US10240230B2 (en) Process and method for in-situ dry cleaning of thin film deposition reactors and thin film layers
US6444038B1 (en) Dual fritted bubbler
US20060160367A1 (en) Methods of treating semiconductor substrates
US7695565B2 (en) Sublimation chamber for phase controlled sublimation
EP1885917B1 (en) Epitaxial reactor with device for introducing reaction gases
JPH06216034A (en) Steam generator for chemical vapor deposition device
JP2001115263A (en) Bubbler having two frits
US3635771A (en) Method of depositing semiconductor material
Vook et al. Growth of GaAs by metalorganic chemical vapor deposition using thermally decomposed trimethylarsenic
US6106898A (en) Process for preparing nitride film
JP2007500950A (en) Chemical vapor deposition epitaxial growth
JPH06173011A (en) Vaporization vessel
Voronenkov et al. Hydride Vapor‐Phase Epitaxy Reactor for Bulk GaN Growth
EP1330561B1 (en) Integrated phase separator for ultra high vacuum system
JP2528912B2 (en) Semiconductor growth equipment
KR940007175Y1 (en) Low pressure cvd apparatus of wafer
JP3560457B2 (en) Vaporization container for liquid source for vapor phase growth
JPH05190454A (en) Vapor phase epitaxial growth device
Yokoyama et al. Selective epitaxial growth of GaAs using dimethylgalliumchloride by multi-wafer low-pressure metal organic vapor phase epitaxy (LP-MOVPE)
JPH05287534A (en) Production of thin film using organic metal complex
JPH10242058A (en) Manufacture of iii-v compound semiconductor film containing nitrogen
JPH0451520B2 (en)
JP2575948B2 (en) Method for growing ZnSe crystal
Trassoudaine et al. Growth of Gallium Nitride by Hydride Vapor Phase Epitaxy
Von Münch Chrystallization and epitaxy of GaAs from the vapour phase