JPH06172961A - Parts for machine structure excellent in fatigue resistance, particularly in face fatigue strength and its production - Google Patents

Parts for machine structure excellent in fatigue resistance, particularly in face fatigue strength and its production

Info

Publication number
JPH06172961A
JPH06172961A JP32965392A JP32965392A JPH06172961A JP H06172961 A JPH06172961 A JP H06172961A JP 32965392 A JP32965392 A JP 32965392A JP 32965392 A JP32965392 A JP 32965392A JP H06172961 A JPH06172961 A JP H06172961A
Authority
JP
Japan
Prior art keywords
weight
less
fatigue strength
steel
nitriding treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32965392A
Other languages
Japanese (ja)
Other versions
JP3145517B2 (en
Inventor
Yoichi Watanabe
陽一 渡辺
Shunzo Umegaki
俊造 梅垣
Masayoshi Ogura
真義 小倉
Takehiko Kato
猛彦 加藤
Toyofumi Hasegawa
豊文 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Nissan Motor Co Ltd
Original Assignee
Kobe Steel Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nissan Motor Co Ltd filed Critical Kobe Steel Ltd
Priority to JP32965392A priority Critical patent/JP3145517B2/en
Publication of JPH06172961A publication Critical patent/JPH06172961A/en
Application granted granted Critical
Publication of JP3145517B2 publication Critical patent/JP3145517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain parts for machine structure excellent in fatigue strength, particularly in face fatigue strength by subjecting steel having a specified componental compsn. to nitriding treatment or soft-nitriding treatment and induction hardening in combination. CONSTITUTION:Steel having a compsn. contg., by weight, 0.4 to 0.7% C, <=0.3% Si, 0.2 to 1% Mn, 0.2 to 3% Cr, 0.1 to 1% Mo, 0.1 to 1% V, 0.01 to 0.05% Al, 0.003 to 0.02% N, <=0.07% S and <=0.002% Ti, and the balance Fe with inevitable impurities, and in which the content of P and that of O as the impurities are respectively limited to <=0.02% and <=0.002% is used as stock. This steel may furthermore be incorporated with one or more kinds among 0.02 to 0.13% Pb, <=1% Zr and <=1% Te. This stock is formed into the shape of parts, and the parts are thereafter subjected to nitriding treatment or soft-nitriding treatment and are successively subjected to induction hardening to form a hardened surface layer contg. >=0.05wt.% nitrogen concn. at the position with a depth of >=0.2mm from the topmost surface layer. This hardened surface layer has a fine structure of No.12 or above, and the amt. of retained austenite in the surface layer part to a depth of 0.2 is regulated to 10 to 25vol.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用等速ジョイン
トのアウターレースの様に、疲労強度特に面疲労強度の
要求される機械構造用部品、およびその様な部品を製造
する為の方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a machine structural component requiring fatigue strength, particularly surface fatigue strength, such as an outer race of a constant velocity joint for an automobile, and a method for producing such a component. It is a thing.

【0002】[0002]

【従来の技術】機械構造用部品、特にシャフトや等速ジ
ョイント等の産業機械用動力伝達部品は、疲労強度に優
れていることが要求される。この様な部品に、耐面疲労
性を付与する手段として、従来から浸炭、窒化処理、或
はS48C,S55C等の中炭素鋼を用いた高周波焼入
れ等の表面硬化処理が広く行なわれている。
2. Description of the Related Art Mechanical structural parts, particularly power transmission parts for industrial machines such as shafts and constant velocity joints, are required to have excellent fatigue strength. As means for imparting surface fatigue resistance to such parts, carburizing, nitriding, or surface hardening such as induction hardening using medium carbon steel such as S48C and S55C has been widely performed.

【0003】[0003]

【発明が解決しようとする課題】近年、産業機械とりわ
け自動車等の燃料消費効率の向上を目的として、各種鋼
部品の高強度化による軽量化が指向されている。例え
ば、自動車用等速ジョイントのアウターレースは、その
小型化若しくは薄肉化を図った場合、ボール溝部におい
て接触面圧が増加することによってピッチングやフレー
キングが早期に発生するので、面疲労強度の大幅な向上
が不可欠となる。この様な面疲労強度の向上には、表面
硬さを上げる等して表面層を強化することが最も有効で
あることが知られている。
In recent years, for the purpose of improving the fuel consumption efficiency of industrial machines, particularly automobiles, weight reduction has been aimed at by increasing the strength of various steel parts. For example, when the outer race of a constant velocity joint for automobiles is made smaller or thinner, the contact surface pressure increases in the ball groove portion, which causes early pitching and flaking. Improvement is essential. It is known that strengthening the surface layer by increasing the surface hardness is the most effective for improving such surface fatigue strength.

【0004】しかしながら、上記の様な駆動力伝達部品
においては、従来の中炭素鋼と常法の組合せによる技術
では、硬度や靭性において限界があり、大幅に疲労強度
特に面疲労強度を向上させることは困難である。
However, in the driving force transmitting component as described above, there is a limit in hardness and toughness in the conventional technique using a combination of medium carbon steel and a conventional method, and it is necessary to significantly improve the fatigue strength, particularly the surface fatigue strength. It is difficult.

【0005】本発明は、こうした技術的課題を解決する
為になされたものであって、その目的は、疲労強度特に
面疲労強度を大幅に向上させた機械構造用部品、および
その様な機械構造用部品を製造する為の方法を提供する
ことにある。
The present invention has been made in order to solve such technical problems, and its purpose is to provide a mechanical structural component having significantly improved fatigue strength, particularly surface fatigue strength, and such a mechanical structure. It is to provide a method for manufacturing a component for use.

【0006】[0006]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、C:0.4〜0.7重量%,Si:0.3重
量%以下,Mn:0.2〜1重量%,Cr:0.2〜3
重量%,Mo:0.1〜1重量%,V:0.1〜1重量
%,Al:0.01〜0.05重量%,N:0.003
〜0.02重量%,S:0.07重量%以下,Ti:
0.002重量%以下を夫々含有し、残部Feおよび不
可避不純物からなり、該不純物中のPおよびOを夫々
0.02重量%以下、0.002重量%以下に抑えてな
る鋼を素材とし、該素材を所定の部品形状に成形した
後、窒化処理または軟窒化処理を行い、引き続き高周波
焼入れ処理を行うことによって、表面から窒素を拡散さ
せ、最表面から少なくとも0.2mmの深さ位置におい
て窒素濃度を0.05重量%以上含有させた表面硬化層
を形成する点に要旨を有する疲労強度特に面疲労強度に
優れた機械構造用部品の製造方法である。
Means for Solving the Problems The present invention capable of achieving the above object is that C: 0.4 to 0.7% by weight, Si: 0.3% by weight or less, and Mn: 0.2 to 1% by weight. %, Cr: 0.2 to 3
% By weight, Mo: 0.1 to 1% by weight, V: 0.1 to 1% by weight, Al: 0.01 to 0.05% by weight, N: 0.003
~ 0.02% by weight, S: 0.07% by weight or less, Ti:
A steel containing 0.002% by weight or less and the balance Fe and unavoidable impurities, and P and O in the impurities being 0.02% by weight or less and 0.002% by weight or less, respectively, After forming the material into a predetermined part shape, nitriding treatment or soft nitriding treatment is performed, and then induction hardening treatment is performed to diffuse nitrogen from the surface, so that nitrogen is formed at a depth of at least 0.2 mm from the outermost surface. This is a method for producing a mechanical structural component excellent in fatigue strength, particularly surface fatigue strength, which is characterized in that a surface-hardened layer containing a concentration of 0.05% by weight or more is formed.

【0007】また本発明の機械構造用部品とは、上記方
法によって製造されたものであり、最表面から少なくと
も0.2mmの深さ位置におけるオーステナイト結晶粒
度がNo.12以上の微細な組織を有すると共に、表層
部における残留オーステナイト量が10〜25体積%で
ある点に要旨を有するものである。
The mechanical structural component of the present invention is manufactured by the above method, and has an austenite grain size of No. 2 at a depth of at least 0.2 mm from the outermost surface. It has a fine structure of 12 or more and has a gist in that the amount of retained austenite in the surface layer portion is 10 to 25% by volume.

【0008】[0008]

【作用】本発明者らは、上記目的を達成する為に、鋼材
成分組成と表面硬化処理の両面から検討した。その結
果、疲労強度特に面疲労強度を向上させる為には、下記
の3点が重要であるとの知見が得られた。 (1)部品表層部の常温および高温硬度を高くする必要
のあること。 (2)高温硬度を更に高める為(即ち軟化抵抗を高める
為)には、窒素をより多量により深くまで侵入・拡散さ
せ、微細な炭・窒化物の析出による表面硬化層を形成す
ることが有効であること。 (3)部品表層部に残留オーステナイトを適正量生成さ
せることによって、加工誘起変態による硬度上昇とクッ
ション効果による見かけの面圧を低下させること。
In order to achieve the above object, the present inventors have studied from both aspects of the steel material composition and the surface hardening treatment. As a result, it was found that the following three points are important for improving the fatigue strength, particularly the surface fatigue strength. (1) It is necessary to increase the room temperature and high temperature hardness of the surface layer of the component. (2) In order to further increase the high-temperature hardness (that is, to increase the softening resistance), it is effective to infiltrate and diffuse a larger amount of nitrogen deeper to form a surface hardened layer by depositing fine carbon and nitride. To be. (3) By generating an appropriate amount of retained austenite in the surface layer of the component, the hardness increase due to the work-induced transformation and the apparent surface pressure due to the cushioning effect are reduced.

【0009】そして上記特性を得る為に、まず窒化また
は軟窒化処理を必要とするが、その際材料面からは窒素
濃度の上昇に主にMoとVの添加が有効であること、ま
た工法面からは窒素の拡散、固溶更には微細炭・窒化物
の析出の促進、およびそれに基づくマルテンサイトの強
靱化の為に、窒化処理若しくは軟窒化処理と高周波焼入
れと組合わせることが極めて有効であることが分かっ
た。
In order to obtain the above characteristics, first, nitriding or soft nitriding treatment is required. At that time, from the viewpoint of the material, addition of Mo and V is mainly effective for increasing the nitrogen concentration, and the method It is extremely effective to combine nitriding or soft nitriding with induction hardening in order to diffuse nitrogen, promote solid solution, precipitation of fine carbon / nitride, and strengthen the martensite based on it. I found out.

【0010】尚軟窒化処理後高周波焼入れを行なう方法
については、例えば特開平2−232353号公報に、
SCM鋼、工具鋼への軟窒化処理にした後さらに高周波
焼入れを行なう方法が記載されているが、本発明が適用
鋼の最適合金成分範囲を言及していること、および本発
明の目的がピッチングやフレーキング発生寿命を大幅に
向上達成できる様な面疲労強度向上を意図している点に
おいて上記方法とは異なるものである。
A method of induction hardening after soft nitriding treatment is disclosed, for example, in Japanese Patent Laid-Open No. 2-232353.
Although a method of performing soft nitriding treatment on SCM steel and tool steel and then performing induction hardening is described, the present invention refers to the optimum alloy composition range of the applied steel, and the object of the present invention is pitching. It is different from the above method in that it is intended to improve the surface fatigue strength so that the flaking occurrence life can be significantly improved and achieved.

【0011】また特開昭60−169544号公報に
は、機械構造用部品特に歯車の製造に適した鋼材の成分
を規定すると共に、疲労強度の向上手段として高周波焼
入れを施す技術が提案されているが、本発明は窒化処理
または軟窒化処理後に高周波焼入れ処理を行なうことに
よって大幅な疲労強度の向上を達成可能とするものであ
り、その点において上記方法と異なるものである。更
に、特開平4−66646号公報には、窒化処理を施す
ことによって疲労強度を大幅に改善できる鋼材に関する
技術が報告されているが、この技術は焼入れ焼戻し処理
と窒化処理の組み合せによって疲労強度が改善できる鋼
材が主眼になっており、本発明とは基本的に異なるもの
である。まず本発明における化学成分限定理由は下記の
通りである。
Further, Japanese Laid-Open Patent Publication No. 60-169544 proposes a technique for defining the components of a steel material suitable for manufacturing mechanical structural parts, particularly gears, and performing induction hardening as a means for improving fatigue strength. However, the present invention is capable of achieving a significant improvement in fatigue strength by performing induction hardening treatment after nitriding treatment or soft nitriding treatment, which is different from the above method. Further, Japanese Patent Application Laid-Open No. 4-66646 reports a technique relating to a steel material capable of significantly improving fatigue strength by performing nitriding treatment. However, this technique shows that the fatigue strength is improved by a combination of quenching and tempering treatment and nitriding treatment. The focus is on steel materials that can be improved, which is basically different from the present invention. First, the reasons for limiting the chemical components in the present invention are as follows.

【0012】C:0.4〜0.7重量% Cは常温および高温硬さを得るのに必要な元素であり、
含有量が0.4重量%未満では使用時の高い面圧に耐え
ることができない。しかしながら、C含有量が多過ぎる
と、特に部品鍛造時の変形抵抗の上昇による鍛造工具寿
命の低下、或はその後の切削加工時の工具寿命の低下を
引き起こすので、0.7重量%以下とすべきである。尚
C含有量の好ましい範囲は、0.5〜0.6重量%程度
である。
C: 0.4 to 0.7% by weight C is an element necessary for obtaining hardness at ordinary temperature and high temperature,
If the content is less than 0.4% by weight, it cannot withstand a high surface pressure during use. However, if the C content is too large, the life of the forging tool is shortened due to an increase in the deformation resistance during the forging of the parts, or the life of the tool is shortened during the subsequent cutting work. Should be. The preferable range of the C content is about 0.5 to 0.6% by weight.

【0013】Si:0.3重量%以下 Siは鋼の内部品質を向上させるのに必要な元素である
が、あまり多過ぎると鋼素材の硬さ上昇によって鍛造加
工性や切削加工性に悪影響を及ぼすので、0.3重量%
以下とすべきである。尚Si含有量の好ましい範囲は、
0.15〜0.3重量%程度である。
Si: 0.3 wt% or less Si is an element necessary for improving the internal quality of steel, but if it is too much, the hardness of the steel material increases, which adversely affects forgeability and machinability. 0.3% by weight
Should be: The preferred range of Si content is
It is about 0.15 to 0.3% by weight.

【0014】Mn:0.2〜1重量% Mnは鋼の内部品質を向上させると共に高周波焼入れ性
も向上させ、且つ表面硬さを得るのに必要な元素であ
り、Mn含有量が0.2重量%未満ではこの様な効果が
得られない。しかしながら、Mn含有量が多過ぎると、
特に部品鍛造時の変形抵抗の上昇による鍛造工具寿命の
低下、或はその後の切削加工時の工具寿命の低下を引き
起こすので、1重量%以下とすべきである。尚Mnのよ
り好ましい範囲は、0.5〜0.6重量%程度である。
Mn: 0.2-1% by weight Mn is an element necessary for improving the internal quality of the steel, the induction hardenability, and the surface hardness, and the Mn content is 0.2. If it is less than wt%, such an effect cannot be obtained. However, if the Mn content is too high,
In particular, the life of the forging tool is shortened due to the increase of the deformation resistance during the forging of the parts, or the life of the tool during the subsequent cutting is shortened, so the content should be 1% by weight or less. The more preferable range of Mn is about 0.5 to 0.6% by weight.

【0015】Cr:0.2〜3重量% Crは高周波焼入れ性を向上させ、しかも炭窒化物の形
成による硬度上昇に必要な元素であり、含有量が0.2
重量%未満では使用時の高い面圧に耐えることができな
い。しかしながら、Cr含有量が多過ぎると、過剰な炭
窒化物の形成による過度の表面硬度上昇を招き、疲労限
を低下させる。また部品鍛造時の変形抵抗の上昇による
鍛造工具寿命の低下、或はその後の切削加工時の工具寿
命の低下を引き起こすので、3重量%以下とすべきであ
る。尚Crのより好ましい範囲は、0.45〜0.6重
量%程度である。
Cr: 0.2 to 3% by weight Cr is an element which improves the induction hardenability and is necessary for increasing the hardness due to the formation of carbonitrides, and its content is 0.2.
If it is less than wt%, it cannot withstand high surface pressure during use. However, if the Cr content is too high, excessive carbonitride formation causes an excessive increase in surface hardness, which lowers the fatigue limit. Further, since the life of the forging tool is shortened due to the increase of the deformation resistance during the forging of the parts, or the life of the tool during the subsequent cutting process is shortened, it should be 3% by weight or less. A more preferable range of Cr is about 0.45 to 0.6% by weight.

【0016】Mo:0.1〜1重量% Moは高周波焼入れ性を向上させると共に、Mo炭窒化
物の形成によって窒素をより深く且つより多量に侵入・
拡散させて軟化抵抗を向上させるのに必要な元素であ
り、Mo含有量が0.1重量%未満ではこれらの効果が
得られず、使用時の高い面圧に耐えることができない。
しかしながら、Mo含有量が多過ぎると、過剰な炭窒化
物の形成による過度の表面硬度上昇を招き、疲労限を低
下させる。また温間鍛造時の変形抵抗の上昇による鍛造
工具寿命の低下を引き起こすので、1重量%以下とすべ
きである。尚Moのより好ましい範囲は、0.3〜0.
6重量%程度である。
Mo: 0.1 to 1% by weight Mo improves the induction hardenability and, at the same time, penetrates nitrogen more deeply and more due to the formation of Mo carbonitride.
It is an element necessary to diffuse and improve the softening resistance. If the Mo content is less than 0.1% by weight, these effects cannot be obtained, and a high surface pressure during use cannot be endured.
However, if the Mo content is too large, excessive carbonitride formation causes an excessive increase in surface hardness, which lowers the fatigue limit. Further, since it causes a decrease in forging tool life due to an increase in deformation resistance during warm forging, it should be 1% by weight or less. The more preferable range of Mo is 0.3-0.
It is about 6% by weight.

【0017】V:0.1〜1重量% VはMoと同様に炭窒化物の形成によって窒素をより深
く且つ多量に侵入・拡散させて軟化抵抗を向上させるの
に必要な元素であり、V含有量が0.1重量%未満では
この様な効果が得られず、使用時の高い面圧に耐えるこ
とができない。しかしながら、V含有量が多過ぎると、
過剰な炭窒化物が焼入れ加熱時に固溶しきれずに、その
効果が飽和するので、1重量%以下とすべきである。尚
Vのより好ましい範囲は、0.3〜0.6重量%程度で
ある。
V: 0.1 to 1 wt% V is an element necessary for improving the softening resistance by penetrating and diffusing nitrogen deeper and in a large amount by forming a carbonitride like Mo. If the content is less than 0.1% by weight, such an effect cannot be obtained and the bearing cannot withstand a high surface pressure during use. However, if the V content is too high,
Excess carbonitride cannot be dissolved completely during quenching and heating, and its effect is saturated, so the amount should be 1% by weight or less. A more preferable range of V is about 0.3 to 0.6% by weight.

【0018】Al:0.01〜0.05重量% Alは脱酸に有効な元素であり、Al含有量が0.01
重量%未満ではこの効果が達成されず、また0.05重
量%を超えて含有させても窒化層硬さを増加させ過ぎて
疲労限を低下させる。
Al: 0.01 to 0.05% by weight Al is an element effective for deoxidation, and has an Al content of 0.01.
This effect is not achieved if the content is less than 10% by weight, and if the content exceeds 0.05% by weight, the hardness of the nitride layer is excessively increased and the fatigue limit is lowered.

【0019】N:0.003〜0.02重量% NはAlと結合してAlNとなり、結晶粒度を微細化す
る効果を発揮する。N含有量が0.003重量%未満で
は、その効果は不十分となる。しかしながら、N含有量
が多過ぎると、圧延時に割れが発生し易くなるので、
0.02重量%以下とすべきである。
N: 0.003 to 0.02% by weight N is combined with Al to form AlN, which has the effect of refining the crystal grain size. If the N content is less than 0.003% by weight, the effect will be insufficient. However, if the N content is too high, cracking tends to occur during rolling, so
It should be 0.02% by weight or less.

【0020】S:0.07重量%以下 Sは部品切削加工時の被削性向上に有効な元素である
が、0.07重量%を超えて含有されると、疲労強度に
悪影響を与える。
S: 0.07 wt% or less S is an element effective for improving the machinability at the time of cutting a part, but if it is contained in excess of 0.07 wt%, the fatigue strength is adversely affected.

【0021】Ti:0.002重量%以下 Tiは窒化物を形成して結晶粒度を微細化し、疲労強度
向上に有効な元素であるが、過剰に含有すると却って疲
労強度の低下を招くので、0.002重量%以下とすべ
きである。
Ti: 0.002% by weight or less Ti is an element effective in improving the fatigue strength by forming a nitride by forming a fine grain size. However, if it is contained excessively, the fatigue strength is rather lowered. It should be below 0.002% by weight.

【0022】本発明の部品は、以上の元素を基本成分と
し残部Feおよび不可避不純物からなるものであるが、
不可避不純物のうち特にP,Oはその含有量を極力抑え
る必要がある。また本発明の部品には、必要によりP
b,Zr,Te等を添加してもよい。これらの元素の化
学成分限定理由は下記の通りである。
The component of the present invention comprises the above elements as basic components and the balance Fe and unavoidable impurities.
Of the unavoidable impurities, it is necessary to suppress the content of P and O as much as possible. If necessary, the parts of the present invention may have P
You may add b, Zr, Te, etc. The reasons for limiting the chemical composition of these elements are as follows.

【0023】P:0.02重量%以下 Pは結晶粒界を脆化する有害な不純物元素であり、疲労
強度に悪影響を与えるので、その含有量は0.02重量
%以下に抑えるべきである。
P: 0.02 wt% or less P is a harmful impurity element that embrittles the grain boundaries and adversely affects fatigue strength, so its content should be kept to 0.02 wt% or less. .

【0024】O:0.002重量%以下 Oは酸化物を形成し、特に疲労強度に有害な不純物元素
であり、その含有量は極力低くする必要があり、0.0
02重量%以下に抑えるべきである。
O: 0.002% by weight or less O forms an oxide, and is an impurity element that is particularly harmful to fatigue strength, and its content must be as low as possible.
It should be kept below 02% by weight.

【0025】Pb:0.02〜0.13重量%,Zr:
1重量%およびTe:1重量% 以下よりなる群から選ばれる1種以上 Pb,ZrおよびTeは、いずれも被削性を向上させる
のに有効な元素である。Pbは部分切削加工時の被削性
を向上させる効果があり、Pb含有量が0.02重量%
未満ではその効果が得られず、0.13重量%を超えて
含有されても疲労強度に悪影響を与える。尚Pbのより
好ましい範囲は、0.05〜0.1重量%程度である。
一方、ZrおよびTeは被削性向上効果の他、Sととも
に添加されることによって、硫化物系介在物の形状を丸
くして靭性を向上させる効果がある。しかしながら、Z
rおよびFeの含有量が1重量%を超えるとその効果が
飽和する。
Pb: 0.02 to 0.13% by weight, Zr:
1% by weight and Te: 1% or more selected from the group consisting of 1% by weight or less Pb, Zr and Te are all effective elements for improving machinability. Pb has the effect of improving machinability during partial cutting, and the Pb content is 0.02% by weight.
If it is less than 0.1%, the effect cannot be obtained, and if it exceeds 0.13% by weight, the fatigue strength is adversely affected. A more preferable range of Pb is about 0.05 to 0.1% by weight.
On the other hand, Zr and Te have the effect of improving the machinability and the effect of rounding the shape of the sulfide-based inclusions and improving the toughness when added together with S. However, Z
If the content of r and Fe exceeds 1% by weight, the effect is saturated.

【0026】本発明の部品は、上記の様な化学成分組成
の鋼を素材とし、該素材を所定の形状に成形した後、窒
化処理または軟窒化処理を行い、引き続き高周波焼入れ
処理を行うことによって、表面から窒素を拡散させ、最
表面から少なくとも0.2mmの深さ位置における窒素
濃度を0.05重量%以上と規定しているが、これは次
の様な理由による。即ち、この位置における窒素濃度が
0.05重量%未満であると、軟化抵抗の低下によって
使用中に塑性流動を起こし、ピッチング寿命を低下させ
るからである。
The parts of the present invention are made by using steel having the above chemical composition as a raw material, shaping the raw material into a predetermined shape, subjecting it to nitriding treatment or soft nitriding treatment, and then performing induction hardening treatment. The nitrogen concentration is defined as 0.05 wt% or more at the depth of at least 0.2 mm from the outermost surface by diffusing nitrogen from the surface, for the following reason. That is, if the nitrogen concentration at this position is less than 0.05% by weight, the softening resistance is lowered, causing plastic flow during use, which shortens the pitching life.

【0027】本発明の部品では、最表面から少なくとも
0.2mm位置の深さ位置におけるオーステナイトの結
晶粒度がNo.12以上の微細な組織とする必要がある
が、当該位置における結晶粒度がNo.12未満である
と、結晶粒が大き過ぎて靭性低下を招き、ピッチング寿
命を低下させる。また本発明の部品では、少なくとも
0.2mm深さまでの表層部における残留オーステナイ
ト量を10〜25体積%とする必要があるが、残留オー
ステナイト量が上記範囲を外れて、10体積%未満若し
くは25体積%を超えるとピッチング寿命の低下を招
く。
In the component of the present invention, the austenite grain size at the depth position of at least 0.2 mm from the outermost surface is no. It is necessary to have a fine structure of 12 or more, but the grain size at that position is No. If it is less than 12, the crystal grains are too large and the toughness is lowered, and the pitching life is shortened. Further, in the component of the present invention, the amount of retained austenite in the surface layer portion at least to a depth of 0.2 mm needs to be 10 to 25% by volume, but the amount of retained austenite is out of the above range and is less than 10% by volume or 25% by volume. %, The pitching life is shortened.

【0028】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any modification of the design of the present invention can be made without departing from the spirit of the preceding and following paragraphs. It is included in the technical scope.

【0029】[0029]

【実施例】表1(本発明鋼)および表2(比較鋼)に示
す化学成分の鋼を小型真空炉(150kg/ch)を用
いて溶製し、鍛造によって直径:30mmの棒鋼に鍛伸
後、焼きならし処理を行なった。引き続き、機械加工に
よって、中央部に直径25mm,長さ:30mmの円筒
部を有する全長125mm(直径:20mm)のローラ
ーピッチング試験片を作製し、表面硬化処理として、ガ
ス軟窒化処理および高周波焼入れ処理を行なった。その
ときの処理条件を表3に示す。そして、それらの試験片
についてローラーピッチング試験(面圧3666N/m
2 )を行なった。
EXAMPLES Steels having chemical compositions shown in Tables 1 (inventive steels) and 2 (comparative steels) were melted using a small vacuum furnace (150 kg / ch) and forged into a steel bar having a diameter of 30 mm. After that, a normalizing process was performed. Subsequently, a roller pitching test piece having a total length of 125 mm (diameter: 20 mm) having a cylindrical portion having a diameter of 25 mm and a length of 30 mm in the central portion was produced by machining, and a gas soft nitriding treatment and an induction hardening treatment were performed as a surface hardening treatment. Was done. Table 3 shows the processing conditions at that time. Then, a roller pitching test (contact pressure: 3666 N / m) was performed on these test pieces.
m 2 ) was performed.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】表面硬化処理した試験片を用いて、最表面
から0.2 mmの深さ位置における常温硬さ、高温硬さ(4
00℃)、窒素濃度およびオーステナイト結晶粒度N
o.並びに表層部での残留オーステナイト量についても
調査した。それらの調査結果をローラーピッチング試験
の結果(ピッチング発生寿命)と共に、表4(実施例)
および表5(比較例)に示す。
Using a surface-hardened test piece, room temperature hardness and high temperature hardness (4 mm) at a depth of 0.2 mm from the outermost surface were measured.
00 ° C), nitrogen concentration and austenite grain size N
o. The amount of retained austenite in the surface layer was also investigated. The results of these investigations are shown in Table 4 (Examples) together with the results of the roller pitching test (pitting occurrence life).
And Table 5 (comparative example).

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】表4および表5の結果より、窒素濃度と4
00℃高温硬さの関係を示したのが図1であるが、窒素
濃度が高くなるにつれて高温硬さが上昇していることが
分かる。特に窒素濃度が0.05重量%未満では、高い
高温硬さが得られなくなっており、ピッチング発生寿命
の低下が著しくなる。
From the results shown in Tables 4 and 5, the nitrogen concentration and 4
FIG. 1 shows the relationship between the 00 ° C. high temperature hardness, and it can be seen that the high temperature hardness increases as the nitrogen concentration increases. In particular, when the nitrogen concentration is less than 0.05% by weight, high high temperature hardness cannot be obtained, and the pitting occurrence life is significantly reduced.

【0037】図2は残留オーステナイト量とピッチング
発生寿命の関係を示したものであるが、残留オーステナ
イト量が10〜25体積%の範囲内では、優れたピッチ
ング発生寿命を示していることが分かる。尚表5に示す
比較例のうち、高温硬度および窒素濃度が高く、しかも
オーステナイト結晶粒度が細粒(No.12以上)にもか
かわらず、ピッチング発生寿命が低いものが認められる
が(No.16,18,20,22,25)、これは残留
オーステナイト量が25体積%を超えているからであ
る。
FIG. 2 shows the relationship between the retained austenite amount and the pitting occurrence life. It can be seen that when the retained austenite amount is in the range of 10 to 25% by volume, excellent pitting occurrence life is exhibited. In addition, among the comparative examples shown in Table 5, those having a high high temperature hardness and a high nitrogen concentration and a fine austenite grain size (No. 12 or more) but a short pitting occurrence life are recognized (No. 16). , 18, 20, 22, 25) because the amount of retained austenite exceeds 25% by volume.

【0038】これらの結果から、次の様に考察できる。
まずNo.1〜3,15,16のものはC量の影響につい
て示したものであり、本発明鋼(No.1〜No.3)はC
量の下限,中央,上限の特性を示すが、比較鋼のNo.1
6に比べ細粒で高温硬度,窒素濃度,残留オーステナイ
ト量が高く、高いピッチング発生寿命示している。また
比較鋼のNo.16の場合、細粒で高温硬度,窒素濃度と
もに高いが、残留オーステナイト量が適正領域を越えて
高くなりすぎ、ピッチング発生寿命が低下している。ま
た硬度が過度に高いと鍛造成形時の変形抵抗が高くなり
過ぎ、工具寿命が低下するので好ましくない。
From these results, the following can be considered.
First, Nos. 1 to 3, 15, and 16 show the influence of the amount of C, and the steels of the present invention (No. 1 to No. 3) are C.
It shows the characteristics of the lower limit, the center, and the upper limit of the amount.
Compared with No. 6, fine grains have high high-temperature hardness, nitrogen concentration, and retained austenite amount, and have a long pitting occurrence life. Further, in the case of Comparative Steel No. 16, fine particles have high temperature hardness and high nitrogen concentration, but the amount of retained austenite becomes too high beyond the proper range, and the pitting occurrence life is reduced. Further, if the hardness is excessively high, the deformation resistance during forging becomes too high, and the tool life is shortened, which is not preferable.

【0039】No.4,5,8,9はMn量の影響につい
て示したものであり、本発明鋼No.4,5はMn量の下
限,上限の特性を示すが、比較鋼のNo.17に比べ細粒
で高温硬度,窒素濃度,残留オーステナイト量が高く、
高いピッチング発生寿命を示している。また比較鋼のN
o.18の場合、やはり残留オーステナイト量が適正領域
を越えて高くなりすぎ、ピッチング発生寿命が低下して
いる。
Nos. 4, 5, 8 and 9 show the effects of the amount of Mn, and the steels No. 4 and 5 of the present invention show the characteristics of the lower and upper limits of the amount of Mn. Compared with No. 17, high temperature hardness, nitrogen concentration, and high retained austenite amount,
It shows a high pitting life. Also, the comparative steel N
In the case of o.18, the residual austenite amount is too high beyond the proper range, and the life for occurrence of pitting is reduced.

【0040】No.6,7,19,20はCr量の影響に
ついて示したものであり、本発明鋼No.6,7はCr量
の下限,上限の特性を示すが、比較鋼のNo.19に比べ
細粒で高温硬度,窒素濃度および残留オーステナイト量
が高く、高いピッチング発生寿命示している。また比較
鋼のNo.20の場合、高温硬度,窒素濃度ともに高いに
もかかわらず、残留オーステナイト量が適正領域を越え
て高くなりすぎ、ピッチング発生寿命が低下している。
Nos. 6, 7, 19 and 20 show the influence of the Cr content, and the steels No. 6 and 7 of the present invention show the characteristics of the lower limit and the upper limit of the Cr content. Compared with No. 19, the high-temperature hardness, the nitrogen concentration, and the amount of retained austenite are high in the fine grains, and the pitting occurrence life is high. Further, in the case of the comparative steel No. 20, although the high temperature hardness and the nitrogen concentration are both high, the retained austenite amount becomes too high beyond the proper range, and the pitching occurrence life is reduced.

【0041】No.8,9,21,22はMo量の影響に
ついて示したものであり、本発明鋼No.8,9はMo量
の下限,上限の特性を示すが、比較鋼のNo.21に比べ
細粒で高温硬度,窒素濃度および残留オーステナイト量
が高く、高いピッチング発生寿命示している。また比較
鋼のNo.22の場合、比較鋼No.23の場合と同様に、
残留オーステナイト量が高くなり過ぎ、ピッチング発生
寿命が低下している。
Nos. 8, 9, 21, and 22 show the influence of the amount of Mo, and the steels No. 8 and 9 of the present invention show the characteristics of the lower limit and the upper limit of the amount of Mo. Compared with No. 21, the fine grains were high in high temperature hardness, nitrogen concentration and retained austenite amount, and showed a long pitting occurrence life. In the case of comparative steel No. 22, as in the case of comparative steel No. 23,
The amount of retained austenite becomes too high and the pitting occurrence life is reduced.

【0042】No.10,11,23,24はV量の影響
について示したものであり、本発明鋼No.10,11は
V量の下限,上限の特性を示すが、比較鋼のNo.23,
24に比べ細粒で高温硬度,窒素濃度,残留オーステナ
イト量が高く、高いピッチング発生寿命示している。N
o.25はTi量が多過ぎるものであるが、Tiを0.0
02重量%以下に制限した本発明鋼(例えば、No.2)
に比較してピッチング発生寿命が低下している。
Nos. 10, 11, 23 and 24 show the influence of the V content, and the steels No. 10 and 11 of the present invention show the characteristics of the lower limit and the upper limit of the V content. 23,
Compared with No. 24, the fine particles have higher high-temperature hardness, nitrogen concentration, and retained austenite amount, and show a longer pitting occurrence life. N
O.25 has too much Ti content, but Ti content is 0.0
The steel of the present invention limited to 02% by weight or less (for example, No. 2)
The pitting occurrence life is reduced as compared with.

【0043】No.12〜14の本発明鋼は各々Pb,Z
r,Teを添加した場合の影響について示したものであ
るが、いずれも細粒で適正な範囲の硬度,窒素量,残留
オーステナイト量を示し、優れたピッチング発生寿命を
示している。
The steels of the present invention Nos. 12 to 14 are Pb and Z, respectively.
The effects of the addition of r and Te are shown, and all of them show the hardness, the amount of nitrogen, and the amount of retained austenite in a proper range in the fine grains, and show the excellent pitting occurrence life.

【0044】No.26の比較鋼は熱処理としてガス軟窒
化処理を省き、高周波焼入れ処理のみ施した場合の特性
を示すものである。この場合、硬度が若干低下するとと
もに、窒素量が極端に低下し、ほぼマトリックスの窒素
濃度となり、それに応じて残留オーステナイト量も低下
し、ピッチング発生寿命の低下を招いている。
The comparative steel No. 26 shows the characteristics when the gas soft nitriding treatment is omitted as the heat treatment and only the induction hardening treatment is performed. In this case, the hardness is slightly lowered, the nitrogen amount is extremely lowered, and the nitrogen concentration of the matrix is almost reached, and accordingly, the retained austenite amount is also lowered, and the pitching occurrence life is shortened.

【0045】[0045]

【発明の効果】本発明は以上の様に構成されており、疲
労特性特に面疲労強度に極めて優れた機械構造用部品が
実現でき、この部品は等速ジョイントのアウターレース
として最適である。
As described above, the present invention can realize a machine structural component having extremely excellent fatigue characteristics, particularly surface fatigue strength, and this component is optimal as an outer race for a constant velocity joint.

【図面の簡単な説明】[Brief description of drawings]

【図1】最表面から0.2mmの深さ位置での窒素濃度
と高温硬さ(400℃)の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between nitrogen concentration and high-temperature hardness (400 ° C.) at a depth of 0.2 mm from the outermost surface.

【図2】表面層の残留オーステナイト量とピッチング発
生寿命の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the amount of retained austenite in the surface layer and the pitting life.

フロントページの続き (72)発明者 小倉 真義 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 加藤 猛彦 兵庫県神戸市灘区灘浜東町2番地 株式会 社神戸製鋼所神戸製鉄所内 (72)発明者 長谷川 豊文 兵庫県神戸市灘区灘浜東町2番地 株式会 社神戸製鋼所神戸製鉄所内Front page continuation (72) Inventor Masayoshi Ogura 2 Takaracho, Kanagawa-ku, Kanagawa Prefecture Nissan Motor Co., Ltd. (72) Inventor Takehiko Kato 2 Nadahama-Higashicho, Nada-ku, Kobe-shi, Hyogo Kobe Steel Works Kobe Steel In-house (72) Inventor Toyofumi Hasegawa 2 Nadahamahigashi-cho, Nada-ku, Kobe-shi, Hyogo Stock Company Kobe Steel Works Kobe Steel Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.4〜0.7重量%,Si:0.
3重量%以下,Mn:0.2〜1重量%,Cr:0.2
〜3重量%,Mo:0.1〜1重量%,V:0.1〜1
重量%,Al:0.01〜0.05重量%,N:0.0
03〜0.02重量%,S:0.07重量%以下,T
i:0.002重量%以下を夫々含有し、残部Feおよ
び不可避不純物からなり、該不純物中のPおよびOを夫
々0.02重量%以下、0.002重量%以下に抑えて
なる鋼を素材とし、該素材を所定の部品形状に成形した
後、窒化処理または軟窒化処理を行い、引き続き高周波
焼入れ処理を行うことによって、表面から窒素を拡散さ
せ、最表面から少なくとも0.2mmの深さ位置におい
て窒素濃度を0.05重量%以上含有させた表面硬化層
を形成することを特徴とする疲労強度特に面疲労強度に
優れた機械構造用部品の製造方法。
1. C: 0.4 to 0.7% by weight, Si: 0.
3% by weight or less, Mn: 0.2 to 1% by weight, Cr: 0.2
~ 3 wt%, Mo: 0.1-1 wt%, V: 0.1-1
% By weight, Al: 0.01 to 0.05% by weight, N: 0.0
03-0.02% by weight, S: 0.07% by weight or less, T
i: a steel containing 0.002% by weight or less and the balance Fe and unavoidable impurities, and P and O in the impurities being 0.02% by weight or less and 0.002% by weight or less, respectively. After molding the material into a predetermined part shape, nitriding treatment or soft nitriding treatment is performed, and then induction hardening treatment is performed to diffuse nitrogen from the surface and to a depth position of at least 0.2 mm from the outermost surface. 2. A method for manufacturing a machine structural component having excellent fatigue strength, particularly surface fatigue strength, which comprises forming a surface-hardened layer having a nitrogen concentration of 0.05 wt% or more.
【請求項2】 更に、Pb:0.02〜0.13重量
%,Zr:1重量%以下およびTe:1重量%以下より
なる群から選ばれる1種以上を含有する鋼を素材とする
ものである請求項1に記載の製造方法。
2. A steel material containing at least one selected from the group consisting of Pb: 0.02 to 0.13% by weight, Zr: 1% by weight or less and Te: 1% by weight or less. The manufacturing method according to claim 1, wherein
【請求項3】 表面硬化層が、微細な炭・窒化物を析出
させることによって形成される請求項1または2に記載
の製造方法。
3. The method according to claim 1, wherein the surface hardened layer is formed by depositing fine carbon / nitride.
【請求項4】 請求項1〜3のいずれかの記載の方法に
よって製造されたものであり、最表面から少なくとも
0.2mmの深さ位置におけるオーステナイト結晶粒度
がNo.12以上の微細な組織を有すると共に、少なく
とも0.2mm深さまでの表層部における残留オーステ
ナイト量が10〜25体積%であることを特徴とする疲
労強度特に面疲労強度に優れた機械構造用部品。
4. The method according to any one of claims 1 to 3, wherein the austenite grain size at a depth position of at least 0.2 mm from the outermost surface is No. A mechanical structural component excellent in fatigue strength, particularly surface fatigue strength, having a fine structure of 12 or more and having a retained austenite amount of 10 to 25% by volume in a surface layer portion to a depth of at least 0.2 mm.
JP32965392A 1992-12-09 1992-12-09 Component for mechanical structure excellent in fatigue strength, especially surface fatigue strength, and method of manufacturing the same Expired - Fee Related JP3145517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32965392A JP3145517B2 (en) 1992-12-09 1992-12-09 Component for mechanical structure excellent in fatigue strength, especially surface fatigue strength, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32965392A JP3145517B2 (en) 1992-12-09 1992-12-09 Component for mechanical structure excellent in fatigue strength, especially surface fatigue strength, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06172961A true JPH06172961A (en) 1994-06-21
JP3145517B2 JP3145517B2 (en) 2001-03-12

Family

ID=18223754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32965392A Expired - Fee Related JP3145517B2 (en) 1992-12-09 1992-12-09 Component for mechanical structure excellent in fatigue strength, especially surface fatigue strength, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3145517B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070958A1 (en) 2008-12-19 2010-06-24 新日本製鐵株式会社 Hardfacing steel for machine structure, and steel component for machine structure
WO2010082685A1 (en) 2009-01-16 2010-07-22 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and component for machine structural use
WO2012056785A1 (en) 2010-10-27 2012-05-03 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and steel component for machine structural use and process for producing same
WO2013147258A1 (en) 2012-03-30 2013-10-03 株式会社神戸製鋼所 Gear having excellent seizing resistance
WO2014136307A1 (en) 2013-03-08 2014-09-12 新日鐵住金株式会社 Semi-finished material for induction hardened component and method for producing same
WO2014192117A1 (en) 2013-05-30 2014-12-04 新日鐵住金株式会社 Soft-nitrided induction-quenched steel component
JP2017155283A (en) * 2016-03-01 2017-09-07 大同特殊鋼株式会社 Non-heat treated steel for hot forging and automobile component
KR20210023321A (en) 2019-08-22 2021-03-04 박인석 Low Deformation Heat Treatment of Steel Parts

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762077B2 (en) 2006-08-09 2011-08-31 日本パーカライジング株式会社 Hardening method of steel member, hardened steel member and hardened surface protective agent
JP5328545B2 (en) 2009-07-31 2013-10-30 日本パーカライジング株式会社 Steel member having nitrogen compound layer and method for producing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156231B2 (en) 2008-12-19 2015-10-13 Nippon Steel & Sumitomo Metal Corporation Steel for machine structure use for surface hardening and steel part for machine structure use
WO2010070958A1 (en) 2008-12-19 2010-06-24 新日本製鐵株式会社 Hardfacing steel for machine structure, and steel component for machine structure
WO2010082685A1 (en) 2009-01-16 2010-07-22 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and component for machine structural use
US8802005B2 (en) 2009-01-16 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Steel for surface hardening for machine structural use and part for machine structural use
US9777343B2 (en) 2009-01-16 2017-10-03 Nippon Steel & Sumitomo Metal Corporation Steel for surface hardening for machine structural use and part for machine structural use
WO2012056785A1 (en) 2010-10-27 2012-05-03 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and steel component for machine structural use and process for producing same
WO2013147258A1 (en) 2012-03-30 2013-10-03 株式会社神戸製鋼所 Gear having excellent seizing resistance
US9587288B2 (en) 2012-03-30 2017-03-07 Kobe Steel, Ltd. Gear having excellent seizing resistance
CN104220621A (en) * 2012-03-30 2014-12-17 株式会社神户制钢所 Gear having excellent seizing resistance
CN105026602A (en) * 2013-03-08 2015-11-04 新日铁住金株式会社 Semi-finished material for induction hardened component and method for producing same
JP5994924B2 (en) * 2013-03-08 2016-09-21 新日鐵住金株式会社 Shaped material of induction-hardened parts and method for manufacturing the same
EP2966189A4 (en) * 2013-03-08 2016-11-30 Nippon Steel & Sumitomo Metal Corp Semi-finished material for induction hardened component and method for producing same
WO2014136307A1 (en) 2013-03-08 2014-09-12 新日鐵住金株式会社 Semi-finished material for induction hardened component and method for producing same
US10072314B2 (en) 2013-03-08 2018-09-11 Nippon Steel & Sumitomo Metal Corporation Roughly shaped material for induction hardened components and method for producing same
KR20150109480A (en) 2013-05-30 2015-10-01 신닛테츠스미킨 카부시키카이샤 Soft-nitrided induction-quenched steel component
JP5958652B2 (en) * 2013-05-30 2016-08-02 新日鐵住金株式会社 Soft nitrided induction hardened steel parts with excellent surface fatigue strength
WO2014192117A1 (en) 2013-05-30 2014-12-04 新日鐵住金株式会社 Soft-nitrided induction-quenched steel component
US10151010B2 (en) 2013-05-30 2018-12-11 Nippon Steel & Sumitomo Metal Corporation Soft nitrided induction hardened steel part
JP2017155283A (en) * 2016-03-01 2017-09-07 大同特殊鋼株式会社 Non-heat treated steel for hot forging and automobile component
KR20210023321A (en) 2019-08-22 2021-03-04 박인석 Low Deformation Heat Treatment of Steel Parts

Also Published As

Publication number Publication date
JP3145517B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
CN101646788B (en) Case-hardened steel pipe excellent in workability and process for production thereof
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
JPH0953148A (en) Machine parts made of high toughness case hardening steel and their production
JP5477111B2 (en) Nitriding induction hardening steel and nitriding induction hardening parts
JP5299118B2 (en) Vacuum carburizing steel and vacuum carburized parts
JP2001073072A (en) Carbo-nitrided parts excellent in pitching resistance
JPH0953149A (en) Case hardening steel with high strength and high toughness
JPH06172961A (en) Parts for machine structure excellent in fatigue resistance, particularly in face fatigue strength and its production
JP2005023375A (en) High hardness steel having excellent cold workability, heat resistance and wear resistance
JP2002212672A (en) Steel member
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP3551573B2 (en) Steel for carburized gear with excellent gear cutting
JP4219863B2 (en) High-strength bainite-type nitrided parts and manufacturing method thereof
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JPH11229032A (en) Production of steel for soft-nitriding and soft-nitrided parts using the steel
JPH09296250A (en) Steel for gear excellent in face fatigue strength
JP6825605B2 (en) Carburizing member
JP3240627B2 (en) Manufacturing method of constant velocity joint parts
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JPH05239602A (en) High bearing pressure parts
JPH10226818A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP2021006659A (en) Steel component and method for producing the same
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees