JPH06172919A - Machine tool, precision measuring instrument and molding die using low thermal expansion cast iron - Google Patents

Machine tool, precision measuring instrument and molding die using low thermal expansion cast iron

Info

Publication number
JPH06172919A
JPH06172919A JP4343300A JP34330092A JPH06172919A JP H06172919 A JPH06172919 A JP H06172919A JP 4343300 A JP4343300 A JP 4343300A JP 34330092 A JP34330092 A JP 34330092A JP H06172919 A JPH06172919 A JP H06172919A
Authority
JP
Japan
Prior art keywords
thermal expansion
cast iron
less
amount
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4343300A
Other languages
Japanese (ja)
Other versions
JP2568022B2 (en
Inventor
Takanobu Nishimura
隆宣 西村
Motoo Suzuki
基夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP63276045A external-priority patent/JPH0699777B2/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4343300A priority Critical patent/JP2568022B2/en
Publication of JPH06172919A publication Critical patent/JPH06172919A/en
Application granted granted Critical
Publication of JP2568022B2 publication Critical patent/JP2568022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a machine tool or the like having high accuracy and excellent in function by constituting it of cast iron having a graphite structure, having a specified compsn. constituted of carbon of solid solution, Si, Ni, Co and Fe and having a low thermal expansion coefficient. CONSTITUTION:The compsn. of cast iron having a graphite structure in an austenitic base matrix is constituted of a one contg., by weight, 0.09 to 0.43% carbon of solid solution, <1.0% Si, 29 to 34% Ni and 4 to 8% Co and furthermore contg., at need, >=1.0% Mn and <=0.1% Mg, and the balance Fe. In this compsn., the cast iron whose thermal expansion coefficient in the temp. range of 0 to 200 deg.C is regulated to 4X10<-6>/ deg.C or below and simultaneously satisfying the characteristics such as castability, machinability and vibration absorption without deteriorating the mechanical strength can be obtd. By using this low thermal expansion cast iron, the machine tool, precision measuring instrument, molding die or the like having high accuracy and high performance can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオ−ステナイト系の低熱
膨張鋳鉄に係り、特に熱膨張率が低く、かつ鋳造性、被
削性、振動吸収能等の特性を同時に満足する低熱膨張鋳
鉄を用いた工作機械、精密測定機器および成形用金型に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic low thermal expansion cast iron, and particularly to a low thermal expansion cast iron which has a low coefficient of thermal expansion and which simultaneously satisfies characteristics such as castability, machinability, and vibration absorbing ability. The present invention relates to a used machine tool, a precision measuring instrument, and a molding die.

【0002】[0002]

【従来の技術】周知のように、鋳鉄は工業の基礎材料と
して広く使用されている。その理由はこの材料の鋳造性
が良く、多種多様な複雑形状でも成形できること、切削
加工が容易であること、材料の加工や溶解に要する費用
が比較的安価で小規模な工場でも容易に製造できること
等の長所を有しているためである。
As is well known, cast iron is widely used as a basic material for industry. The reason for this is that this material has good castability, can be formed into a wide variety of complicated shapes, is easy to cut, and the cost required for processing and melting the material is relatively low, and can be easily manufactured even in a small factory. This is because it has advantages such as

【0003】ところで、最近では新素材を始めとして、
金属以外の有機、無機の様々な材料が開発され、それぞ
れの特性を活かした機能材料が急速に普及しつつある。
特にエレクトロニクス産業の発達に伴い、それに関連す
る工作機械や精密測定機器、成形用金型、科学機器、そ
の他の製造機械類には、より高精度で機能が優れた材料
が要求されるようになった。
By the way, recently, starting with new materials,
Various organic and inorganic materials other than metals have been developed, and functional materials utilizing their respective characteristics are rapidly becoming popular.
In particular, with the development of the electronics industry, higher precision and superior function materials are required for machine tools, precision measuring instruments, molding dies, scientific instruments, and other manufacturing machinery related to them. It was

【0004】鋳鉄においても、上記要求に応えるための
従来の材料や特質に加えて、熱膨張係数の低減化、振動
吸収能の増大化、および耐熱性、耐食性を付加されたも
のが開発されてきている。その代表的なものがインバ−
鋳鉄(36.5%Ni−Fe合金)、またはその改良材
のニレジストD5(ASTM A439タイプD−5)
鋳鉄である。これらの鋳鉄の代表例の化学成分を下記の
表1に示す
Cast iron has also been developed in which, in addition to the conventional materials and properties to meet the above requirements, a thermal expansion coefficient is reduced, vibration absorption capacity is increased, and heat resistance and corrosion resistance are added. ing. The typical one is Inver
Cast iron (36.5% Ni-Fe alloy), or Niresist D5 (ASTM A439 type D-5) which is an improved material thereof.
It is cast iron. The chemical composition of representative examples of these cast irons is shown in Table 1 below.

【0005】[0005]

【表1】 インバ−は鉄中にニッケルを34〜37%(以下、成分
組成割合は全て重量%とする。)含有したものであり、
常温付近(0〜200℃)における熱膨張係数が1.5
×10-6/℃程度と低い値を有する。このインバ−合金
の低膨張性の機構は、一般に「インバ−効果」と呼ばれ
る自発生体積磁歪作用に基づくものである。
[Table 1] The invar is one in which 34 to 37% of nickel is contained in iron (hereinafter, all component composition ratios are represented by weight%).
Thermal expansion coefficient is 1.5 near room temperature (0-200 ℃)
It has a low value of about × 10 -6 / ° C. The mechanism of low expansion of the invar alloy is based on a self-generated volume magnetostriction action generally called "inver effect".

【0006】またス−パ−インバ−は鉄ニッケル基質中
に4〜6%のコバルトを合金化して調製されたものであ
り、常温付近における熱膨張係数が0.5×10-6/℃
とインバ−よりさらに低い優れた特性を有している。
The super invar is prepared by alloying 4 to 6% of cobalt in an iron-nickel substrate and has a coefficient of thermal expansion of 0.5 × 10 −6 / ° C. near room temperature.
And has excellent characteristics lower than Invar.

【0007】しかしながら、上記のインバ−およびス−
パ−インバ−は、共に鋳造性、被削性や振動吸収能が低
いため、かなり狭い分野に限定して実用化されているに
過ぎない。
However, the above-mentioned Inver and Super
Since the pine bar is low in castability, machinability, and vibration absorption ability, it is only put to practical use in a very narrow field.

【0008】また表1の番号3,4,5欄に示すような
鋳鉄系低膨張材も開発実用化されている。例えばニレジ
ストD5は汎用のダクタイル鋳鉄とほぼ同等の炭素、ケ
イ素、マンガンを含有した鉄中に34〜36%のニッケ
ルを合金化して形成され、黒鉛組織を有する鋳鉄にイン
バ−と同量のニッケルを合金化することによって、鋳鉄
の長所である鋳造性、被削性、防振性を保持しつつ、さ
らに耐熱耐食性を兼ね備え、さらに「インバ−効果」に
よる低膨張性を付与したものである。
Further, cast iron low expansion materials as shown in columns 3, 4 and 5 of Table 1 have been developed and put into practical use. For example, Niresist D5 is formed by alloying 34 to 36% nickel in iron containing carbon, silicon, and manganese, which are almost equivalent to those of general-purpose ductile cast iron, and the same amount of nickel as in the invar is added to cast iron having a graphite structure. By alloying, while maintaining the castability, machinability, and vibration isolation which are the advantages of cast iron, it also has heat and corrosion resistance and low expansion due to the "inver effect".

【0009】同様な材料として、ノビナイト鋳鉄が特公
昭60−51547号公報に開示されている。この合金
鋳鉄は汎用のダクタイル鋳鉄中に、ス−パ−インバ−と
同量のニッケルおよびコバルトを合金化することによ
り、鋳造性、被削性と低膨張性とを兼ね備えるように構
成したものである。
As a similar material, novinite cast iron is disclosed in Japanese Patent Publication No. 60-51547. This alloy cast iron is formed by alloying general-purpose ductile cast iron with nickel and cobalt in the same amount as that of the super-invar, so as to have both castability, machinability and low expansion. is there.

【0010】しかしながら、上記ニレジストD5および
ノビナイト鋳鉄は、汎用のダクタイル鋳鉄と同程度の炭
素、ケイ素、マンガンを含有しているため、インバ−や
ス−パ−インバ−が有する低膨張性が損なわれている。
すなわち、本願発明者等の実測によると、それぞれの熱
膨張係数は5×10-6/℃、4×10-6/℃と大きな値
となっている。
However, since the Niresist D5 and the nobinite cast iron contain carbon, silicon and manganese to the same extent as general-purpose ductile cast iron, the low expansion properties of the invar and superinver are impaired. ing.
That is, according to the actual measurement by the inventors of the present application, the respective thermal expansion coefficients are large values of 5 × 10 −6 / ° C. and 4 × 10 −6 / ° C.

【0011】しかし上記の鋳鉄合金では、近年の一層の
熱膨張係数の低減に対する要望には十分対応できず、最
近の精密機器や高精度、FRP用金型材等に対しては、
さらに低い熱膨張係数の材料が必要となっている。
However, the above cast iron alloy cannot sufficiently meet the recent demand for further reduction of the coefficient of thermal expansion, and for the recent precision equipment, high precision, mold materials for FRP, etc.,
Materials with even lower coefficients of thermal expansion are needed.

【0012】本願発明者等は上記の要請に対応すべく、
熱膨張係数が従来の4×10-6/℃を下廻り、かつ鋳造
性、被削性、振動吸収能を兼ね備えた材料を提供するた
めに、各合金元素の含有量と熱膨張係数、機械的性質と
の関係を、数多くの実験および統計的分析法により明ら
かにし、新規な低熱膨張鋳鉄を発見し、特願昭62−2
68249号として出願した。
In order to meet the above-mentioned demand, the inventors of the present application have
In order to provide a material having a thermal expansion coefficient lower than the conventional 4 × 10 −6 / ° C. and having castability, machinability, and vibration absorption ability, the content of each alloying element and the thermal expansion coefficient, mechanical The relationship with the properties was clarified by many experiments and statistical analysis methods, and a novel low thermal expansion cast iron was discovered.
Filed as No. 68249.

【0013】上記低熱膨張鋳鉄は表1の最下欄に示す組
成を有する。すなわちオ−ステナイト基地鉄を有する鋳
鉄において、成分組成として炭素1.0%以上3.5%
以下、ケイ素1.5%以下、ニッケル32%以上39.
5%以下、コバルト1.0%以上4%未満を含み上記ニ
ッケルとコバルトとの合計含有量を41%以下にした鋳
鉄を用いることにより、(1)熱膨張係数が2×10-6
/℃程度と低く、(2)優れた鋳造性、被削性、振動吸
収能および機械的強度を備えた低熱膨張材料を提供でき
ることを初めて見い出した。
The low thermal expansion cast iron has the composition shown in the bottom column of Table 1. That is, in cast iron having austenitic base iron, the composition of the carbon is 1.0% or more and 3.5% or more.
Below, silicon 1.5% or less, nickel 32% or more 39.
By using cast iron containing 5% or less and 1.0% or more and less than 4% of cobalt and the total content of nickel and cobalt is 41% or less, (1) the coefficient of thermal expansion is 2 × 10 −6.
It was found for the first time that (2) a low thermal expansion material having low castability, machinability, vibration absorption ability and mechanical strength can be provided.

【0014】すなわち本願発明者等は、種々実験を繰り
返した結果、炭素1〜3.5%、ニッケル32〜39.
5%を含んだ鋳鉄にコバルトを1〜4%添加すると共
に、ケイ素添加量を1.5%以下、好ましくは1%以下
に低く設定したときに熱膨張係数が非常に小さく、しか
も鋳造性、加工性も良好な鋳鉄が得られることを発見し
た。
That is, the present inventors repeated various experiments and as a result, 1 to 3.5% of carbon, 32 to 39.
When 1 to 4% of cobalt is added to cast iron containing 5% and the amount of silicon added is set to 1.5% or less, preferably 1% or less, the coefficient of thermal expansion is very small, and the castability is It was discovered that cast iron with good workability can be obtained.

【0015】この低膨張鋳鉄の開発により、より高精度
の工作機械、精密測定機器および成形用金型等の加工品
を提供することが可能となった。
With the development of this low expansion cast iron, it has become possible to provide machined parts with higher precision, precision measuring instruments, and processed products such as molding dies.

【0016】[0016]

【発明が解決しようとする課題】しかしながら、機器の
大型化、高精度化がさらに進展し従来の低熱膨張鋳鉄で
も充分対応できない事態も発生しつつある。例えば、近
年の衛生放送等の通信技術の発展に伴い、その送受信設
備に使用するパラボラアンテナ等は非常に大型化し低熱
膨張性はもとより、その加工精度、即ち、鋳造性、被削
性、振動吸収能および機械的強度などに極めて高いもの
が要求されている。例えば、アンテナ反射体としては、
高い剛性と耐食性とを有するカ−ボン繊維強化プラスチ
ック(CFRP)が一般に採用されている。ところが、
このCFRPの熱膨張係数は約1.5×10-6/℃と極
めて小さいため、成形後においても製品の高い寸法精度
を確保するためには、成形用金型を同程度の熱膨張係数
を有する材料で構成する必要がある。したがって熱膨張
係数が従来のものより、さらに小さく、少なくとも1.
5×10-6/℃以下であり、かつ機械的特性も優れた材
料で成形用金型を構成することが必須となっている。
However, as the size and precision of the equipment have been further advanced, there is a situation in which conventional low thermal expansion cast iron cannot sufficiently cope with the situation. For example, with the development of communication technology such as satellite broadcasting in recent years, parabolic antennas used for transmitting and receiving equipment have become extremely large and have low thermal expansion, and also their processing accuracy, that is, castability, machinability, vibration absorption. It is required to have extremely high performance and mechanical strength. For example, as an antenna reflector,
Carbon fiber reinforced plastic (CFRP) having high rigidity and corrosion resistance is generally adopted. However,
The coefficient of thermal expansion of CFRP is extremely small, about 1.5 × 10 -6 / ° C. Therefore, in order to ensure high dimensional accuracy of the product even after molding, the molding die should have a similar coefficient of thermal expansion. It must be composed of the material that it has. Therefore, the coefficient of thermal expansion is smaller than that of the conventional one and is at least 1.
It is essential that the molding die be made of a material having a temperature of 5 × 10 −6 / ° C. or less and excellent mechanical properties.

【0017】本発明は上記の課題を解決するためになさ
れたものであり、工作機械、精密測定機器および成形用
金型材料として更に一層優れた鋳造性、被削性および振
動吸収能を保有し、かつ熱膨張係数が使用温度0〜20
0℃の範囲において4×10-6/℃以下、好ましくは3
×10-6/℃以下であり、更に好ましくは熱膨張係数が
1.5×10-6/℃以下となる特性を同時に満足する低
熱膨張鋳鉄を用いた工作機械、精密測定機器および成形
用金型提供することを目的とする。
The present invention has been made to solve the above problems, and possesses further excellent castability, machinability and vibration absorbing ability as a machine tool, a precision measuring instrument and a molding die material. And the coefficient of thermal expansion is 0 to 20
4 × 10 −6 / ° C. or less, preferably 3 at 0 ° C.
A machine tool, a precision measuring instrument, and a molding metal using low thermal expansion cast iron that simultaneously satisfy the characteristics of × 10 -6 / ° C or less, and more preferably a thermal expansion coefficient of 1.5 × 10 -6 / ° C or less. The purpose is to provide the mold.

【0018】[0018]

【課題を解決するための手段と作用】本発明は以上の観
点から鋳造性、被削性を改善するために鋳造仮定におい
て黒鉛が合金組織内に晶出できる最小限の成分条件を数
多くの実験分析を経て見い出し、同時に低熱膨張性を得
るための最適成分条件を発見することにより、上記目的
を達成するものである。
In order to improve the castability and machinability from the above viewpoints, the present invention has conducted a number of experiments on the minimum compositional conditions under which the graphite can be crystallized in the alloy structure under the assumption of casting. The above object is achieved by finding out through analysis and at the same time discovering optimum component conditions for obtaining low thermal expansion.

【0019】すなわち、本発明に掛かる工作機械、精密
測定機器および成形用金型は、オ−ステナイト基地鉄中
に黒鉛組織を有する鋳鉄において、重量%で表示した成
分組成として固溶炭素を0.09%以上0.43%以
下、ケイ素1.0%未満、ニッケル29%以上34%以
下、コバルト4%以上8%以下を含み残部鉄から成り、
0〜200℃の温度範囲における熱膨張係数が4×10
-6/℃以下である低熱膨張鋳鉄を用いたことを特徴とす
る。
That is, the machine tool, the precision measuring instrument and the molding die according to the present invention are cast iron having a graphite structure in austenite base iron and solid solution carbon as a component composition expressed in% by weight. 09% or more and 0.43% or less, silicon less than 1.0%, nickel 29% or more and 34% or less, cobalt 4% or more and 8% or less, and the balance iron,
The coefficient of thermal expansion in the temperature range of 0 to 200 ° C. is 4 × 10
It is characterized by using cast iron having a low thermal expansion of -6 / ° C or less.

【0020】なお好ましくは上記成分組成に加えてマン
ガンを1.0%以下、好ましくは0.5%以下、マグネ
シウムを0.1%以下を含有させた鋳鉄を用いたもので
ある。 上記成分組成範囲は発明者等による各種の実験
および分析によって初めて得られた下記の結果に基づい
て設定されたものである。
It is preferable to use cast iron containing 1.0% or less of manganese, preferably 0.5% or less, and 0.1% or less of magnesium in addition to the above component composition. The above-mentioned component composition range is set based on the following results obtained for the first time by various experiments and analyzes by the inventors.

【0021】まず第1の結果として、熱膨張係数と各元
素の含有量との関係を求め、下記(1),(2)式の関
係を得た。
First, as a first result, the relationship between the coefficient of thermal expansion and the content of each element was obtained, and the relationships of the following equations (1) and (2) were obtained.

【0022】 熱膨張係数(×10-6/℃) =14.905+0.1[固溶C量](%) +1.49×[Si量](%) −0.32×[Ni量](%) −0.70×[Co量](%) +1.35×[Mn量](%)・・・・・(1) 熱膨張係数(×10-6/℃) =−2.14+1.75[固溶C量](%) +2.11×[Si量](%) +0.14×[Ni量](%) +0.28×[Co量](%) +0.25×[Mn量](%)・・・・・(2) ところで、Fe−Ni系合金の熱膨張係数とNi量との
関係は図1に示すように、Ni含有量が約36%付近で
熱膨張係数が極小となる。したがって(1)式はNi含
有量が熱膨張係数の極小点より低い領域での各合金元素
の熱膨張係数に対する分析の結果として得られた関係式
である。
Thermal expansion coefficient (× 10 −6 / ° C.) = 14.905 + 0.1 [solid solution C amount] (%) + 1.49 × [Si amount] (%) −0.32 × [Ni amount] ( %) −0.70 × [Co amount] (%) + 1.35 × [Mn amount] (%) (1) Thermal expansion coefficient (× 10 −6 / ° C.) = −2.14 + 1. 75 [Solid C content] (%) +2.11 x [Si content] (%) +0.14 x [Ni content] (%) +0.28 x [Co content] (%) +0.25 x [Mn content] ] (%) (2) By the way, as shown in FIG. 1, the relationship between the thermal expansion coefficient and the Ni content of the Fe-Ni alloy is such that the thermal expansion coefficient is about 36% when the Ni content is around 36%. It becomes the minimum. Therefore, the equation (1) is a relational expression obtained as a result of the analysis on the thermal expansion coefficient of each alloy element in the region where the Ni content is lower than the minimum point of the thermal expansion coefficient.

【0023】一方、(2)式はNi含有量が極小点より
高い領域での各合金元素の熱膨張係数に対する分析によ
り得た関係式である。
On the other hand, the expression (2) is a relational expression obtained by analysis of the thermal expansion coefficient of each alloying element in the region where the Ni content is higher than the minimum point.

【0024】上記(1)式および(2)式中の各係数を
比較すると、Si量(%)の係数が最も大きい。つま
り、ケイ素含有量が正の相関を持って熱膨張特性に最も
大きな影響を及ぼすことがわかる。
Comparing the coefficients in the above equations (1) and (2), the coefficient of Si content (%) is the largest. That is, it can be seen that the silicon content has a positive correlation and has the greatest effect on the thermal expansion characteristics.

【0025】したがって、ケイ素量を極力低減すること
によって、より低い熱膨張係数が得られることが理解で
きる。
Therefore, it can be understood that a lower coefficient of thermal expansion can be obtained by reducing the amount of silicon as much as possible.

【0026】またFe−Ni合金における炭素含有量が
熱膨張係数に与える影響については、従来含有炭素全体
量が大きく影響すると考えられていた。しかしながら、
本発明者等の実験により、影響を与えるのは含有炭素量
全体ではなく、固溶している炭素量のみであるという事
実が発見された。
Regarding the effect of the carbon content in the Fe-Ni alloy on the coefficient of thermal expansion, it was conventionally thought that the total content of carbon contained had a great effect. However,
From the experiments conducted by the present inventors, it was discovered that it is not the entire carbon content that is affected, but only the amount of carbon that is in solid solution.

【0027】そして、上記ケイ素量および固溶炭素量を
所定範囲に低減化することにより熱膨張特性をより改善
できることを初めて見い出した。
For the first time, it has been found that the thermal expansion characteristics can be further improved by reducing the silicon content and the solid solution carbon content within a predetermined range.

【0028】次に、第2の結果として、NiとCoとの
合計含有量を変化させた場合における温度と熱膨張係数
との関係は第2図に示すように、各Ni+Co量の割合
に応じて熱膨張係数の温度依存性が急に立ち上がる屈曲
点Bが現われ、その屈曲点Bに対応する温度(以下屈曲
点温度という。)が高温側に変化するという事実であ
る。
Next, as a second result, the relationship between the temperature and the coefficient of thermal expansion when the total content of Ni and Co is changed is as shown in FIG. 2, depending on the ratio of each Ni + Co content. The fact is that a bending point B at which the temperature dependence of the thermal expansion coefficient suddenly rises appears, and the temperature corresponding to the bending point B (hereinafter referred to as the bending point temperature) changes to the high temperature side.

【0029】すなわち第2図から明らかなように、Ni
+Co量が増加すると屈曲点温度が高温側へ移行し、そ
の結果、常温から200℃までの実用温度範囲において
熱膨張係数が高くなる。逆に、屈曲点温度が325℃以
下、好ましくは200〜250℃になるように成分組成
を設定すると、実用温度範囲(0〜200℃)におい
て、低い熱膨張係数を得ることができる。
That is, as is clear from FIG.
When the + Co amount increases, the bending point temperature shifts to the high temperature side, and as a result, the coefficient of thermal expansion increases in the practical temperature range from room temperature to 200 ° C. On the contrary, when the component composition is set such that the bending point temperature is 325 ° C. or lower, preferably 200 to 250 ° C., a low thermal expansion coefficient can be obtained in the practical temperature range (0 to 200 ° C.).

【0030】本発明者等は、この屈曲点温度と各元素量
との関係を実験で求め、下記(3)式を得た。
The inventors of the present invention experimentally determined the relationship between the inflection point temperature and the amount of each element and obtained the following equation (3).

【0031】 屈曲点温度(℃) =22.5×[Ni(%)+Co(%)] −22×Mn(%)−600.3・・・・・(3) (3)式からMnを添加することにより屈曲点温度をよ
り低温度領域に移行させることが可能であるという知見
が得られた。
Bending point temperature (° C.) = 22.5 × [Ni (%) + Co (%)] − 22 × Mn (%) − 600.3 (3) Mn is calculated from the equation (3). It was found that the addition makes it possible to shift the inflection point temperature to a lower temperature region.

【0032】次に第3の結果として固溶炭素量および炭
化物量を低減することによって、鋳造性、切削加工性が
改善され、さらに振動吸収能を大きくすることが可能と
なることが判明した。
Next, as a third result, it was found that by reducing the amount of solute carbon and the amount of carbide, the castability and the machinability were improved, and the vibration absorbing ability could be increased.

【0033】すなわち、固溶炭素以外の炭素は黒鉛ある
いは炭化物として存在する。そのうち、黒鉛晶出量が大
である程、鋳造時の収縮巣が少なく、切削加工性、つま
り被削性を良好とし、また振動吸収能が大となる。一
方、炭化物が析出した場合は、逆にミクロ巣発生の要因
となり、被削性も悪くなる。したがって、可及的に固溶
C量と炭化物の析出量を低くし、黒鉛晶出量を高くする
ことが重要となる。
That is, carbon other than solid solution carbon exists as graphite or carbide. Among them, the larger the amount of crystallized graphite, the less shrinkage cavities during casting, the better the machinability, that is, the machinability, and the greater the vibration absorbing ability. On the other hand, when the carbide is deposited, it causes the generation of micro-cavities and the machinability is deteriorated. Therefore, it is important to reduce the amount of solute C and the amount of precipitated carbide as much as possible and increase the amount of crystallized graphite.

【0034】さらに第4の結果として固溶炭素量と機械
的強度との関係式が下記(4)〜(7)式の通りに得ら
れた。
As a fourth result, a relational expression between the amount of solute carbon and mechanical strength was obtained as shown in the following equations (4) to (7).

【0035】 引張強さ(kgf/mm2 ) =19.6+93[固溶C量](%)・・・・・(4) 耐力(kgf/mm2 ) =4.8+135.5[固溶C量](%)・・・・・(5) ヤング率(kgf/mm2 ) =6982.5+19750[固溶C量](%)・・・・・(6) 硬さ(HB) =128.6+133[固溶C量](%)・・・・・(7) 前記(1),(2)式より熱膨張係数を低下させるため
には固溶C量を低減することが望ましいが、上記(4)
〜(7)式から明らかなように機械的強度を向上させる
ためには、固溶C量をある程度増加させることが必要で
あるしたがって、低熱膨張特性と良好な機械的特性とを
同時に満足させるための最適な組成範囲が決定される。
Tensile strength (kgf / mm 2 ) = 19.6 + 93 [amount of solid solution C] (%) (4) Proof strength (kgf / mm 2 ) = 4.8 + 135.5 [solid solution C Amount] (%) (5) Young's modulus (kgf / mm 2 ) = 6982.5 + 19750 [Solute C amount] (%) (6) Hardness (HB) = 128. 6 + 133 [solid solution C content] (%) (7) It is desirable to reduce the solid solution C content in order to lower the coefficient of thermal expansion from the equations (1) and (2). (4)
As is clear from the formula (7), it is necessary to increase the amount of solid solution C to some extent in order to improve the mechanical strength. Therefore, in order to satisfy both the low thermal expansion property and the good mechanical property at the same time. The optimal composition range of is determined.

【0036】最後に第5の結果として固溶炭素量と含有
炭素全量との関係は、従来は正の相関をもって増減する
ことが考えられていたが、本発明者らの実験結果によれ
ば第3図に示すように、固溶炭素量は全炭素量が増加す
るに伴って低下することが初めて確認されている。
Finally, as a fifth result, the relationship between the amount of solid-solved carbon and the total amount of contained carbon was conventionally considered to increase or decrease with a positive correlation, but according to the results of experiments by the present inventors, As shown in FIG. 3, it was confirmed for the first time that the amount of solute carbon decreases as the total amount of carbon increases.

【0037】これは、全C量が高いと凝固初期に晶出す
る黒鉛量が増し、その近辺の固溶Cが安定な黒鉛になる
サイトを提供する役目を果たすため、凝固終了時の固溶
C量が低減し、同時に炭化物となるCが少なくなるもの
と考えられる。この第3図における固溶C量と全C量と
の関係式を(8)式に示す。
This is because if the total amount of C is high, the amount of graphite crystallized in the initial stage of solidification increases, and the solid solution C in the vicinity thereof serves to provide sites for stable graphite. It is considered that the amount of C is reduced, and at the same time, the amount of C that becomes carbide is reduced. The relational expression between the amount of dissolved C and the total amount of C in FIG. 3 is shown in equation (8).

【0038】 [固溶C量](%) =0.65−0.20[全C量](%) この(8)式の関係を(1)〜(7)式に代入すること
によって全炭素量(全C量)と各特性値との関係式が導
出される。
[Solution C content] (%) = 0.65-0.20 [total C content] (%) By substituting the relationship of the equation (8) into the equations (1) to (7), A relational expression between the carbon amount (total C amount) and each characteristic value is derived.

【0039】以上の実験結果から得た知見に基づいて本
願発明に係る低熱膨張鋳鉄の成分組成を決定した。
The composition of the low thermal expansion cast iron according to the present invention was determined based on the findings obtained from the above experimental results.

【0040】次に各元素の含有量の範囲およびその限定
理由について、より詳細に説明する。
Next, the range of the content of each element and the reason for limiting the content will be described in more detail.

【0041】まず炭素含有量は1〜3.5重量%、好ま
しくは1.2〜3重量%、さらに好ましくは2.2〜
2.3重量%に設定される。鋳鉄中の炭素は黒鉛として
晶出した炭素と、鉄中に固溶した炭素とに分かれる。本
発明の目的である鋳造性、被削性、低熱膨張性を高める
ためには、可及的に黒鉛晶出量を大きくして固溶炭素量
を小さくすることが要点となる。
First, the carbon content is 1 to 3.5% by weight, preferably 1.2 to 3% by weight, and more preferably 2.2.
It is set to 2.3% by weight. Carbon in cast iron is divided into carbon crystallized as graphite and carbon solid-dissolved in iron. In order to improve the castability, machinability, and low thermal expansion which are the objects of the present invention, it is essential to increase the amount of crystallized graphite and decrease the amount of solute carbon as much as possible.

【0042】鋳鉄中の全炭素量と固溶炭素量との関係
は、第3図および(8)式で明らかであり、全炭素量を
高める方が本発明の目的に沿っている。
The relationship between the total carbon content in cast iron and the solid solution carbon content is clear from FIG. 3 and equation (8), and increasing the total carbon content is in line with the object of the present invention.

【0043】しかしながら、固溶炭素量と黒鉛晶出量
は、鋳鉄材の機械的性質に大きな影響を及ぼす。すなわ
ち、ヤング率と全炭素量との関係は(6)式に(8)式
を代入して下記(9)式として得られる。
However, the amount of solute carbon and the amount of crystallized graphite have a great influence on the mechanical properties of the cast iron material. That is, the relationship between the Young's modulus and the total carbon content is obtained as the following equation (9) by substituting the equation (8) into the equation (6).

【0044】 ヤング率(kgf/mm2 ) =19820−3950[全炭素量](%)・・・・・(9) すなわち全炭素量を高めるとヤング率が低下することが
わかる。
Young's modulus (kgf / mm 2 ) = 19820-3950 [total carbon amount] (%) (9) That is, it is understood that the Young's modulus decreases as the total carbon amount increases.

【0045】ところで、本発明材の適用対象製品として
は工作機械、精密測定機器および成形用金型などである
が、このような構造材として使用する場合には、ヤング
率は最低9000kgf/mm2 定礎の値が必要とされ
る。
By the way, the products to which the material of the present invention is applied include machine tools, precision measuring instruments and molding dies. When used as such a structural material, the Young's modulus is at least 9000 kgf / mm 2. The value of the foundation is required.

【0046】したがって(9)式から必要とされる全炭
素量は2.8%以下となる。またアルミニウム合金程度
のヤング率でも使用可能な構造部材への適用を考慮する
と、全炭素量は3.5%まで上限値として拡大すること
ができる。
Therefore, the total amount of carbon required from the equation (9) is 2.8% or less. Considering application to a structural member that can be used even with a Young's modulus as high as that of an aluminum alloy, the total carbon content can be increased to 3.5% as an upper limit value.

【0047】さらに後述する各実施例の結果からも明ら
かなように全炭素量を1.2〜2.8%の範囲に設定し
たときに、特に引張り強度などの機械的性質を損なうこ
となく、低い熱膨張係数および優れた鋳造性、被削性お
よび振動吸収能を同時に満足する低熱膨張鋳鉄が得られ
る。このときの全炭素量の範囲に対応する固溶炭素量を
第3図に示す関係式のグラフから求めると、0.09〜
0.43%の範囲となり、固溶炭素量の範囲を0.09
〜0.43%の範囲に設定することが本発明に係る鋳鉄
の低熱膨張性、鋳造性、被削性および振動吸収能等の要
求特性を同時に満足させる上で極めて重要である。
Further, as is clear from the results of the respective examples described later, when the total carbon amount is set in the range of 1.2 to 2.8%, the mechanical properties such as tensile strength are not particularly impaired, It is possible to obtain low thermal expansion cast iron that simultaneously satisfies a low thermal expansion coefficient and excellent castability, machinability, and vibration absorption ability. The solid solution carbon amount corresponding to the range of the total carbon amount at this time is calculated from the graph of the relational expression shown in FIG.
0.43% of the range, the range of solid solution carbon amount 0.09
It is extremely important to set the content in the range of 0.43% to 0.43% in order to simultaneously satisfy the required properties such as low thermal expansion, castability, machinability, and vibration absorbing ability of the cast iron according to the present invention.

【0048】また熱膨張係数と各合金元素との関係を
(1)式と(8)式から下記(10)式のように導出す
ることができる。
The relationship between the coefficient of thermal expansion and each alloying element can be derived from the equations (1) and (8) as the following equation (10).

【0049】 熱膨張係数(×10-6/℃) =14.97−0.02×[全C量](%) +1.49×[Si量](%) −0.32×[Ni量](%) −0.70×[Co量](%) +1.35×[Mn量](%)・・・・・(10) (10)式から明らかなように全炭素量が大きいほど熱
膨張係数が低い材料が得られるため、全炭素量は可及的
に高い値に設定することが望ましい。しかしながら、図
3に示す結果から明らかなように全炭素量が3.5%を
超えると、固溶炭素が減少し、機械的強度が低下すると
ともに鋳造性が低下する。
Thermal expansion coefficient (× 10 −6 / ° C.) = 14.97−0.02 × [total C amount] (%) + 1.49 × [Si amount] (%) −0.32 × [Ni amount ] (%) −0.70 × [Co amount] (%) + 1.35 × [Mn amount] (%) (10) As is clear from the equation (10), the larger the total carbon amount is, Since a material having a low coefficient of thermal expansion can be obtained, it is desirable to set the total carbon content as high as possible. However, as is clear from the results shown in FIG. 3, when the total carbon content exceeds 3.5%, the solid solution carbon decreases, the mechanical strength decreases, and the castability decreases.

【0050】一方、全炭素量の下限値について、黒鉛晶
出性や熱膨張係数との関係から決定される。すなわち健
全な黒鉛組成が得られる全炭素量の下限は約1%であ
る。1%未満であると凝固時における黒鉛核の生成が不
十分となり、炭化物を形成し、被削性を大きく損うこと
となる。
On the other hand, the lower limit of the total carbon content is determined from the relationship with the crystallinity of graphite and the coefficient of thermal expansion. That is, the lower limit of the total amount of carbon that provides a sound graphite composition is about 1%. If it is less than 1%, the formation of graphite nuclei at the time of solidification becomes insufficient, carbide is formed, and the machinability is greatly impaired.

【0051】そのため全炭素量は1%以上、3.5%以
下、好ましくは2.0%以上、3.0%以下に設定され
る。また固溶炭素量は0.09%以上、0.43%以下
に設定される。
Therefore, the total carbon content is set to 1% or more and 3.5% or less, preferably 2.0% or more and 3.0% or less. The amount of solute carbon is set to 0.09% or more and 0.43% or less.

【0052】次にケイ素含有量は1.0%未満に設定さ
れる。(10)式に示す関係式において、ケイ素量の係
数が最も大きく、ケイ素量が熱膨張係数に及ぼす影響が
大きい。したがってケイ素量が低いほど、低い熱膨張係
数が得られる。
Next, the silicon content is set to less than 1.0%. In the relational expression shown in the equation (10), the coefficient of the amount of silicon is the largest, and the amount of silicon has a great influence on the coefficient of thermal expansion. Therefore, the lower the amount of silicon, the lower the coefficient of thermal expansion.

【0053】ケイ素は黒鉛晶出促進のために必要な元素
であるが、一般鋳鉄とは異なり本発明に係る低熱膨張鋳
鉄には、黒鉛化促進元素であるニッケルが30%程度含
有されているため接種効果を発現する最少量、例えば
0.3%以上添加されていればよいことが判明した。ま
た接種剤として黒鉛粒子を使用すれば、ケイ素量は極微
量であっても十分な黒鉛組成が得られることが確認され
た。しかし通常の鋳造現場においては鉄−ケイ素合金が
接種剤として使用されており、この場合の添加量は最大
0.5%で十分である。
Silicon is an element necessary for promoting graphite crystallization, but unlike general cast iron, the low thermal expansion cast iron according to the present invention contains about 30% of nickel, which is a graphitization promoting element. It was found that the minimum amount, for example 0.3% or more, which exhibits the inoculation effect, should be added. It was also confirmed that when graphite particles are used as an inoculant, a sufficient graphite composition can be obtained even if the amount of silicon is extremely small. However, iron-silicon alloys are used as inoculants in ordinary casting sites, and the addition amount in this case is 0.5% at the maximum.

【0054】次にマンガンの含有量は1.0%以下に設
定される。マンガンを添加することにより図2に示す屈
曲点Bが低温側に移行し、常温から200℃までの実用
温度領域における熱膨張係数を低下させる効果がある。
しかしケイ素と同様に含有量が1%を超えると熱膨張係
数を逆に増大させる。
Next, the manganese content is set to 1.0% or less. By adding manganese, the inflection point B shown in FIG. 2 shifts to the low temperature side, which has the effect of lowering the coefficient of thermal expansion in the practical temperature range from room temperature to 200 ° C.
However, like silicon, when the content exceeds 1%, the coefficient of thermal expansion increases conversely.

【0055】そのため添加量は1.0%以下、好ましく
は0.5%以下に設定される。
Therefore, the addition amount is set to 1.0% or less, preferably 0.5% or less.

【0056】次にNi含有量は29〜34%に設定され
る。Ni含有量は29%未満または34%を超えるとい
ずれも熱膨張係数が増大することになるため、上記範囲
に設定される。
Next, the Ni content is set to 29 to 34%. If the Ni content is less than 29% or more than 34%, the coefficient of thermal expansion will increase, so the Ni content is set to the above range.

【0057】またCo含有量は4〜8%の範囲に設定さ
れる。Co含有量が4%未満であると熱膨張係数が高く
なる一方、8%を超えると図2に示す屈曲点が高温側に
移行することになり、常温から200℃までの実用温度
領域における熱膨張係数を増大させることになる。
The Co content is set in the range of 4-8%. When the Co content is less than 4%, the coefficient of thermal expansion increases, while when it exceeds 8%, the bending point shown in FIG. 2 shifts to the high temperature side, and the heat in the practical temperature range from room temperature to 200 ° C. It will increase the expansion coefficient.

【0058】ここでNi含有量およびCo含有量の適正
範囲は、前記炭素、ケイ素、マンガンの含有量によって
影響を受ける。熱膨張係数を極小とするNi含有量は、
実験の結果、下記(11)式によって与えられる。
Here, the proper range of Ni content and Co content is influenced by the contents of carbon, silicon and manganese. The Ni content that minimizes the coefficient of thermal expansion is
The result of the experiment is given by the following equation (11).

【0059】 極小点のNi含有量(%) =35−0.29×[Co量](%) −6.0[0.65−0.2全C量](%) +0.57[Mn量](%) +0.45[Si量](%)・・・・・(11) ここで前述の理由により、全炭素量を1.5%、ケイ素
量を0%、マンガン量を0%とすると、極小点のNi含
有量(%)は下記(12)式で与えられる。
Ni content (%) at the minimum point = 35−0.29 × [Co content] (%) −6.0 [0.65-0.2 total C content] (%) + 0.57 [Mn Amount] (%) +0.45 [Si amount] (%) (11) Here, for the above reason, the total carbon amount is 1.5%, the silicon amount is 0%, and the manganese amount is 0%. Then, the Ni content (%) at the minimum point is given by the following equation (12).

【0060】 極小点のNi含有量(%) =33−0.29×[Co量](%)・・・・・(12) 一方、NiとCoとの合計含有量は、図2に示す熱膨張
係数曲線における屈曲点Bに対応する温度(屈曲点温度
θ)と、その熱膨張係数値とに影響を及ぼす。屈曲点温
度θ以下の範囲では、熱膨張係数の温度変化は小さい一
方、屈曲点温度θを超える範囲では大きく上昇してしま
う。
Ni content (%) at the minimum point = 33−0.29 × [Co content] (%) (12) On the other hand, the total content of Ni and Co is shown in FIG. The temperature (bending point temperature θ) corresponding to the bending point B in the thermal expansion coefficient curve and the thermal expansion coefficient value are affected. In the range of the bending point temperature θ or less, the temperature change of the thermal expansion coefficient is small, while in the range of exceeding the bending point temperature θ, it greatly increases.

【0061】ここで屈曲点温度θと、NiおよびCoの
合計含有量との関係を実験により明らかにした結果、下
記(13)式を得た。
As a result of clarifying the relationship between the bending point temperature θ and the total content of Ni and Co by experiments, the following equation (13) was obtained.

【0062】 屈曲点温度θ(℃) =22.5×[Ni量(%)+Co量(%)] −600.7 ・・・・・(13) ここで例えば常温から約200℃までの実用温度領域に
おいて使用するCFRP用金型を適用対象にすると仮定
し、屈曲点温度θを200〜250℃に設定すると、N
iとCoとの合計含有量の適正範囲は下記(14)式に
よって与えられる。
Bending point temperature θ (° C.) = 22.5 × [Ni amount (%) + Co amount (%)] −600.7 (13) Here, for example, from room temperature to about 200 ° C. Assuming that the CFRP mold used in the temperature range is applied, and the bending point temperature θ is set to 200 to 250 ° C., N
The appropriate range of the total content of i and Co is given by the following equation (14).

【0063】 Ni量(%)+Co量(%) =36〜38(%)・・・・・(14) そして上記(14)式および(12)式との関係から、
最適Ni量は29〜33%、最適Co量は4〜7%と算
出され、この範囲に成分組成が設定される。
Ni amount (%) + Co amount (%) = 36 to 38 (%) (14) From the relation with the above equations (14) and (12),
The optimum Ni amount is calculated to be 29 to 33% and the optimum Co amount is calculated to be 4 to 7%, and the component composition is set in this range.

【0064】またマグネシウムは、黒鉛を球状化して晶
出させるために必要な元素であり、その含有量は0.1
重量%以下に設定される。含有量は0.1%をこえる
と、炭化物を形成するため好ましくない。したがってマ
グネシウム含有量は0.04〜0.1%の範囲が好まし
い。
Magnesium is an element necessary for spheroidizing and crystallizing graphite, and its content is 0.1.
It is set to be less than or equal to weight%. If the content exceeds 0.1%, carbides are formed, which is not preferable. Therefore, the magnesium content is preferably in the range of 0.04 to 0.1%.

【0065】[0065]

【実施例】次に本発明の実施例について図表を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0066】(実施例1)第4図,第5図に示すような
CFRP用成形金型を鋳造した。
Example 1 A CFRP molding die as shown in FIGS. 4 and 5 was cast.

【0067】この金型は縦70cm、横65cm、厚さ
6cm、重量130kgである。溶解は300kg容量
の高周波電気炉を用い、下記の表2に示す材料を溶解し
た。
This mold has a length of 70 cm, a width of 65 cm, a thickness of 6 cm, and a weight of 130 kg. For melting, a high-frequency electric furnace having a capacity of 300 kg was used to melt the materials shown in Table 2 below.

【0068】[0068]

【表2】 成分組成は下記の表3に示すように、炭素2.0%、ケ
イ素0.15%、マンガン0.03%、ニッケル30
%、コバルト6%、マグネシウム0.05%、残部が不
純物を含むオ−ステナイト系鋳鉄である。
[Table 2] As shown in Table 3 below, the composition of the components is as follows: carbon 2.0%, silicon 0.15%, manganese 0.03%, nickel 30
%, Cobalt 6%, magnesium 0.05%, and the balance is an austenitic cast iron containing impurities.

【0069】また、1インチのキ−ルブロック用砂鋳型
にて試験片を採取し、各特性値を測定した結果を表4に
示す。表4において熱膨張係数は1.5×10-6/℃、
引張強さ40kgf/mm2 、伸び22%、ヤング率1
2000kgf/mm2 が得られた。
Table 4 shows the results of measuring the respective characteristic values by collecting test pieces with a 1-inch sand mold for a key block. In Table 4, the coefficient of thermal expansion is 1.5 × 10 −6 / ° C.,
Tensile strength 40kgf / mm 2 , elongation 22%, Young's modulus 1
2000 kgf / mm 2 was obtained.

【0070】この得られた金型はCFRPの予備成形体
を200℃で加熱しながらプレス成形する工程に使用さ
れる。CFRPの熱膨張係数は1.0〜1.5×10-6
/℃であるため、この係数値に近い本実施例の金型を使
用することによりCFRP製品の寸法精度を大幅に向上
することができた。
The obtained mold is used in a step of press-molding a CFRP preform while heating it at 200 ° C. The thermal expansion coefficient of CFRP is 1.0 to 1.5 × 10 -6
Since it is / ° C, the dimensional accuracy of the CFRP product could be significantly improved by using the mold of this example having a value close to this coefficient value.

【0071】以上のように、本実施例の成分組成による
鋳鉄によれば、ほぼ一般鋳鉄と同程度の鋳造性、被削
性、機械的性質を同時に満足し、かつインバ−合金に近
い低膨張係数を得ることができる。
As described above, according to the cast iron having the component composition of this embodiment, the castability, machinability and mechanical properties which are almost the same as those of general cast iron are satisfied at the same time, and the low expansion close to that of the invar alloy is achieved. The coefficient can be obtained.

【0072】(実施例2)表3に示すように、全C量を
2.8%、Si量を0.4%とした。この組成の鋳鉄は
振動吸収能を追及した場合のものである。すなわち全C
量を2.8%と高めることにより減衰能(Specific Dam
ping Capacity )は17%が得られ、一般鋳鉄の4〜5
倍の振動吸収能を示す。また、堅さがHB125〜13
5程度となり、アルミニウム合金と同程度の軟かさを示
す。これは、黒鉛による潤滑効果と併せて、相手材を傷
付けることなく接合や捕捉する治具部材として有用であ
り、超高精度を要求される半導体、電子製造装置に使用
できる。
(Example 2) As shown in Table 3, the total C content was 2.8% and the Si content was 0.4%. The cast iron of this composition is one in the case of pursuing vibration absorbing ability. Ie all C
By increasing the amount to 2.8%, the damping capacity (Specific Dam
Ping Capacity) is 17%, which is 4 ~ 5 of general cast iron.
The vibration absorption capacity is doubled. Also, the hardness is HB125-13
It is about 5, which is as soft as an aluminum alloy. This is useful as a jig member for joining and capturing the mating material without damaging the mating material, in addition to the lubricating effect of graphite, and can be used for semiconductor and electronic manufacturing equipment that requires ultra-high accuracy.

【0073】以上のように、一般鋳鉄(FC30材)の
4〜5倍の振動吸収能が得られ、かつアルミニウム合金
並の軟かさを得ることができる。
As described above, it is possible to obtain a vibration absorbing ability 4 to 5 times that of general cast iron (FC30 material) and obtain the same softness as an aluminum alloy.

【0074】(実施例3)表3に示すように、炭素含有
量を1.20%と低く設定した。他の成分は上記実施例
と近似させた。
Example 3 As shown in Table 3, the carbon content was set as low as 1.20%. The other components were similar to those in the above example.

【0075】この場合には微小ながら黒鉛晶出がみら
れ、表4に示すように、加工性は許容できる範囲であっ
た。
In this case, crystallization of graphite was observed although it was small, and as shown in Table 4, the workability was in an allowable range.

【0076】(実施例4)表3に示すように、シリコン
含有量を0.9%と高く設定した。他の成分は上記実施
例と近似させた。
Example 4 As shown in Table 3, the silicon content was set as high as 0.9%. The other components were similar to those in the above example.

【0077】この場合は表4に示すように、熱膨張係数
がやや高くなるが許容範囲内であった。
In this case, as shown in Table 4, the coefficient of thermal expansion was slightly high, but within the allowable range.

【0078】(実施例5)表3に示すように、マンガン
含有量を高めに0.9%に設定した。他の成分は上記実
施例と近似させた。
(Example 5) As shown in Table 3, the manganese content was set to a high 0.9%. The other components were similar to those in the above example.

【0079】この場合は表4に示すように、熱膨張係数
がやや高くなるが許容範囲内であった。
In this case, as shown in Table 4, the coefficient of thermal expansion was slightly high, but within the allowable range.

【0080】(実施例6)表3に示すように、マンガン
含有量を0.7%に設定した。他の成分は上記実施例と
近似させた。
(Example 6) As shown in Table 3, the manganese content was set to 0.7%. The other components were similar to those in the above example.

【0081】この場合にも、熱膨張係数が許容範囲内と
なった。
In this case as well, the coefficient of thermal expansion was within the allowable range.

【0082】なお、上記各実施例以外にも、本発明の範
囲内で種々実施したところ、上記同様に良好な特性が認
められた。
In addition to the above-mentioned examples, various experiments were carried out within the scope of the present invention, and the same good characteristics as above were observed.

【0083】(比較例1)表3に示すように、炭素含有
量を0.71%と極めて低く設定した。他の成分は上記
実施例と近似させた。
Comparative Example 1 As shown in Table 3, the carbon content was set to 0.71%, which was extremely low. The other components were similar to those in the above example.

【0084】この場合には、表4に示すように、加工
性、鋳造性および振動吸収能が悪い。
In this case, as shown in Table 4, the workability, castability and vibration absorbing ability are poor.

【0085】(比較例2)表3に示すように、炭素含有
量を3.6%と高く設定した。他の成分は上記実施例と
近似させた。
Comparative Example 2 As shown in Table 3, the carbon content was set as high as 3.6%. The other components were similar to those in the above example.

【0086】この場合には表4に示すように、伸び、強
度が低下し、また鋳造欠陥が多い。
In this case, as shown in Table 4, elongation and strength are lowered, and casting defects are large.

【0087】(比較例3)表3に示すように、シリコン
含有量を1.2%と高く設定した。他の成分は上記実施
例と近似させた。
Comparative Example 3 As shown in Table 3, the silicon content was set as high as 1.2%. The other components were similar to those in the above example.

【0088】この場合には表4に示すように、熱膨張係
数が高過ぎる。
In this case, as shown in Table 4, the coefficient of thermal expansion is too high.

【0089】(比較例4)表3に示すように、ニッケル
含有量を28.0%と低く設定した。他の成分は上記実
施例と近似させた。
(Comparative Example 4) As shown in Table 3, the nickel content was set as low as 28.0%. The other components were similar to those in the above example.

【0090】この場合には表4に示すように、熱膨張係
数が高くなる。
In this case, as shown in Table 4, the coefficient of thermal expansion becomes high.

【0091】(比較例5)表3に示すように、ニッケル
の含有量を37.0%と高くした。他の成分は上記実施
例と近似させた。
(Comparative Example 5) As shown in Table 3, the content of nickel was increased to 37.0%. The other components were similar to those in the above example.

【0092】この場合には表4に示すように、熱膨張係
数が高くなる。
In this case, as shown in Table 4, the coefficient of thermal expansion becomes high.

【0093】(比較例6)表3に示すように、コバルト
の含有量を3.5%と低くした。他の含有量は上記実施
例と近似させた。
(Comparative Example 6) As shown in Table 3, the content of cobalt was lowered to 3.5%. The other contents were similar to those in the above example.

【0094】この場合は表4に示すように、熱膨張係数
が高くなる。
In this case, as shown in Table 4, the coefficient of thermal expansion becomes high.

【0095】(比較例7)表3に示すように、コバルト
含有量を8.2%と高くした。他の成分は上記実施例と
近似させた。
Comparative Example 7 As shown in Table 3, the cobalt content was increased to 8.2%. The other components were similar to those in the above example.

【0096】この場合は表4に示すように、熱膨張係数
が高くなる。
In this case, as shown in Table 4, the coefficient of thermal expansion becomes high.

【0097】(比較例8)表3に示すように、ニッケル
とコバルトとの合計含有量を42.5%と高くした。他
の成分は上記実施例と近似させた。
Comparative Example 8 As shown in Table 3, the total content of nickel and cobalt was increased to 42.5%. The other components were similar to those in the above example.

【0098】この場合は表4に示すように、熱膨張係数
が高くなる。
In this case, as shown in Table 4, the coefficient of thermal expansion becomes high.

【0099】[0099]

【表3】 [Table 3]

【0100】[0100]

【表4】 [Table 4]

【0101】[0101]

【発明の効果】以上のように、本発明の工作機械、精密
測定機器および成形用金型は、機械的強度を損なうこと
なく熱膨張係数が1.5〜3.0×10-6/℃の低熱膨
張特性、ならびに一般鋳鉄と同程度の鋳造性、被削性を
有し、かつ、必要に応じて一般鋳鉄の4〜5倍にまで高
めることができる振動吸収能、アルミニウム合金なみの
軟かさを兼ね備える鋳鉄から構成されるため、機器の高
精度化、高機能化に十分対応可能となり極めて有用であ
る。
As described above, the machine tool, the precision measuring instrument and the molding die of the present invention have a coefficient of thermal expansion of 1.5 to 3.0 × 10 -6 / ° C without impairing the mechanical strength. Has low thermal expansion characteristics, as well as castability and machinability comparable to general cast iron, and can absorb vibrations up to 4 to 5 times that of general cast iron, if necessary, softening like aluminum alloy. Since it is composed of cast iron that also has bulk, it is extremely useful because it can sufficiently cope with higher precision and higher functionality of equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ni含有量と熱膨張係数との関係を示す図であ
る。
FIG. 1 is a diagram showing a relationship between a Ni content and a coefficient of thermal expansion.

【図2】Ni鋳鉄におけるNiとCoとの合計量をパラ
メ−タとし、温度と熱膨張係数との関係を示す図であ
る。
FIG. 2 is a diagram showing the relationship between temperature and coefficient of thermal expansion, with the total amount of Ni and Co in Ni cast iron as a parameter.

【図3】全炭素量と固溶炭素量との関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the total amount of carbon and the amount of solute carbon.

【図4】実施例1で鋳造したCFRP成形用金型の形状
を示す図である。
4 is a diagram showing the shape of a CFRP molding die cast in Example 1. FIG.

【図5】図4におけるIVb−IVb矢視断面図である。5 is a sectional view taken along the line IVb-IVb in FIG.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 オ−ステナイト基地鉄中に黒鉛組織を有
する鋳鉄において、重量%で表示した成分組成として固
溶炭素を0.09%以上0.43%以下、ケイ素1.0
%未満、ニッケル29%以上34%以下、コバルト4%
以上8%以下を含み残部鉄から成り、0〜200℃の温
度範囲における熱膨張係数が4×10-6/℃以下である
低熱膨張鋳鉄を用いたことを特徴とする工作機械。
1. In cast iron having a graphite structure in austenitic base iron, solid solution carbon is 0.09% or more and 0.43% or less, and silicon 1.0
%, Nickel 29% to 34%, cobalt 4%
A machine tool characterized by using a low thermal expansion cast iron having a thermal expansion coefficient of 4 × 10 −6 / ° C. or less in the temperature range of 0 to 200 ° C., which is composed of the balance iron including 8% or less.
【請求項2】 成分組成としてマンガン1.0%以下、
マグネシウム0.1%以下を含む低熱膨張鋳鉄を用いた
請求項1記載の工作機械。
2. The composition of manganese is 1.0% or less,
The machine tool according to claim 1, wherein low thermal expansion cast iron containing 0.1% or less of magnesium is used.
【請求項3】 オ−ステナイト基地鉄中に黒鉛組織を有
する鋳鉄において、重量%で表示した成分組成として固
溶炭素を0.09%以上0.43%以下、ケイ素1.0
%未満、ニッケル29%以上34%以下、コバルト4%
以上8%以下を含み残部鉄から成り、0〜200℃の温
度範囲における熱膨張係数が4×10-6/℃以下である
低熱膨張鋳鉄を用いたことを特徴とする精密測定機器。
3. In cast iron having a graphite structure in austenite base iron, solid solution carbon is 0.09% or more and 0.43% or less and silicon 1.0
%, Nickel 29% to 34%, cobalt 4%
A precision measuring instrument characterized by using a low thermal expansion cast iron having a thermal expansion coefficient of 4 × 10 −6 / ° C. or less in the temperature range of 0 to 200 ° C., which is composed of the balance iron including 8% or less.
【請求項4】 成分組成としてマンガン1.0%以下、
マグネシウム0.1%以下を含む低熱膨張鋳鉄を用いた
請求項3記載の精密測定機器。
4. The composition of manganese is 1.0% or less,
The precision measuring device according to claim 3, wherein low thermal expansion cast iron containing 0.1% or less of magnesium is used.
【請求項5】 オ−ステナイト基地鉄中に黒鉛組織を有
する鋳鉄において、重量%で表示した成分組成として固
溶炭素を0.09%以上0.43%以下、ケイ素1.0
%未満、ニッケル29%以上34%以下、コバルト4%
以上8%以下を含み残部鉄から成り、0〜200℃の温
度範囲における熱膨張係数が4×10-6/℃以下である
低熱膨張鋳鉄を用いたことを特徴とする成形用金型。
5. In cast iron having graphite structure in austenitic base iron, solid solution carbon is 0.09% or more and 0.43% or less, and silicon is 1.0 as a component composition expressed in% by weight.
%, Nickel 29% to 34%, cobalt 4%
A molding die characterized by using a low thermal expansion cast iron having a thermal expansion coefficient of 4 × 10 −6 / ° C. or less in a temperature range of 0 to 200 ° C., which is composed of the balance iron including 8% or less.
【請求項6】 成分組成としてマンガン1.0%以下、
マグネシウム0.1%以下を含む低熱膨張鋳鉄を用いた
請求項5記載の成形用金型。
6. Manganese 1.0% or less as a component composition,
The molding die according to claim 5, wherein low thermal expansion cast iron containing 0.1% or less of magnesium is used.
JP4343300A 1988-11-02 1992-11-30 Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron Expired - Lifetime JP2568022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4343300A JP2568022B2 (en) 1988-11-02 1992-11-30 Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63276045A JPH0699777B2 (en) 1988-11-02 1988-11-02 Low thermal expansion cast iron manufacturing method
JP4343300A JP2568022B2 (en) 1988-11-02 1992-11-30 Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63276045A Division JPH0699777B2 (en) 1988-11-02 1988-11-02 Low thermal expansion cast iron manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1174396A Division JPH08232039A (en) 1996-01-26 1996-01-26 Low thermal expansion cast iron

Publications (2)

Publication Number Publication Date
JPH06172919A true JPH06172919A (en) 1994-06-21
JP2568022B2 JP2568022B2 (en) 1996-12-25

Family

ID=26551719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4343300A Expired - Lifetime JP2568022B2 (en) 1988-11-02 1992-11-30 Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron

Country Status (1)

Country Link
JP (1) JP2568022B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568022B2 (en) * 1988-11-02 1996-12-25 株式会社東芝 Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron
WO2000009924A1 (en) * 1998-08-11 2000-02-24 Osaka Gasu Kabushiki Kaisha Cold fluid transportation equipment
US6344095B1 (en) 1999-07-08 2002-02-05 Hitachi Metals, Ltd. Low-thermal expansion cast steel with excellent machinability
WO2010144786A3 (en) * 2009-06-11 2011-03-03 Genius Solutions Engineering Company Low cte slush molds with textured surface, and method of making and using the same
WO2021220352A1 (en) 2020-04-27 2021-11-04 新報国マテリアル株式会社 Low-thermal-expansion casting and production method for same
WO2022014544A1 (en) 2020-07-17 2022-01-20 新報国マテリアル株式会社 Low thermal expansion casting and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051547A (en) * 1983-06-30 1985-03-23 ウ−ルカ,ウ−ロペエンヌ.ド.ルトレトマン.ド.カタリズ−ル Method of regenerating hydrocarbon treating catalyst
JPS62205244A (en) * 1986-03-06 1987-09-09 Yamato Metal Kogyo Kk Low-expansion cast iron
JPS63162841A (en) * 1986-12-25 1988-07-06 Nippon Chuzo Kk Free cutting alloy having low thermal expandability
JPH01111842A (en) * 1987-10-26 1989-04-28 Toshiba Corp Cast iron with low thermal expansion
JPH01283342A (en) * 1987-08-31 1989-11-14 Shimazu Kinzoku Seiko Kk Cobalt-containing austenitic low thermal expansion cast iron
JPH01306540A (en) * 1988-05-31 1989-12-11 Shinichi Enomoto Low thermal expansion alloy iron
JPH02125837A (en) * 1988-11-02 1990-05-14 Toshiba Corp Low thermal expansion cast iron

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568022B2 (en) * 1988-11-02 1996-12-25 株式会社東芝 Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051547A (en) * 1983-06-30 1985-03-23 ウ−ルカ,ウ−ロペエンヌ.ド.ルトレトマン.ド.カタリズ−ル Method of regenerating hydrocarbon treating catalyst
JPS62205244A (en) * 1986-03-06 1987-09-09 Yamato Metal Kogyo Kk Low-expansion cast iron
JPS63162841A (en) * 1986-12-25 1988-07-06 Nippon Chuzo Kk Free cutting alloy having low thermal expandability
JPH01283342A (en) * 1987-08-31 1989-11-14 Shimazu Kinzoku Seiko Kk Cobalt-containing austenitic low thermal expansion cast iron
JPH01111842A (en) * 1987-10-26 1989-04-28 Toshiba Corp Cast iron with low thermal expansion
JPH01306540A (en) * 1988-05-31 1989-12-11 Shinichi Enomoto Low thermal expansion alloy iron
JPH02125837A (en) * 1988-11-02 1990-05-14 Toshiba Corp Low thermal expansion cast iron

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568022B2 (en) * 1988-11-02 1996-12-25 株式会社東芝 Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron
WO2000009924A1 (en) * 1998-08-11 2000-02-24 Osaka Gasu Kabushiki Kaisha Cold fluid transportation equipment
US6344095B1 (en) 1999-07-08 2002-02-05 Hitachi Metals, Ltd. Low-thermal expansion cast steel with excellent machinability
WO2010144786A3 (en) * 2009-06-11 2011-03-03 Genius Solutions Engineering Company Low cte slush molds with textured surface, and method of making and using the same
JP2012530001A (en) * 2009-06-11 2012-11-29 フォード モーター カンパニー Low thermal expansion coefficient slush mold having a textured surface, method for producing the same, and method for using the same
RU2532190C2 (en) * 2009-06-11 2014-10-27 Форд Мотор Компани Filling moulds with low thermal expansion coefficient and with textured surface and method for creation and use of such moulds
US10435780B2 (en) 2009-06-11 2019-10-08 Genius Solutions Engineering Company Low CTE slush molds with textured surface, and method of making and using the same
WO2021220352A1 (en) 2020-04-27 2021-11-04 新報国マテリアル株式会社 Low-thermal-expansion casting and production method for same
WO2022014544A1 (en) 2020-07-17 2022-01-20 新報国マテリアル株式会社 Low thermal expansion casting and method for producing same

Also Published As

Publication number Publication date
JP2568022B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
JP5355837B2 (en) Steel alloy, plastic forming tools and toughened blanks for plastic forming tools
JPH0699777B2 (en) Low thermal expansion cast iron manufacturing method
EP0343292B1 (en) Low thermal expansion casting alloy
JP2568022B2 (en) Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron
JP6846806B2 (en) Low thermal expansion alloy
KR101268160B1 (en) High-rigidity high-damping-capacity cast iron
JPS60426B2 (en) Austenitic cast iron
JPH07145444A (en) High strength spheroidal graphite case iron
JP3654899B2 (en) Manufacturing method of high strength low expansion cast iron
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
JP2703236B2 (en) Low thermal expansion cast iron and polishing platen using the same
JP2778891B2 (en) High-strength low-expansion cast iron, method for producing the same, and sliding parts and machine parts using the same
JP7237345B2 (en) Low thermal expansion casting and its manufacturing method
JPH08232039A (en) Low thermal expansion cast iron
JP2568022C (en)
JP3829177B2 (en) Aluminum-containing damping cast iron
JP7315273B2 (en) Low thermal expansion casting and its manufacturing method
JPH07179984A (en) Cast iron of high strength and low expansion and its production
WO1996038596A1 (en) High-strength spherical graphitic cast iron
US5173253A (en) Low expansion cast iron
JP2010095747A (en) Method for producing low thermal-expansion cast iron material
WO2016157574A1 (en) High-rigidity spherical graphitic cast iron
JPH08269613A (en) Low thermal expansion cast iron and production thereof
JP2005002367A (en) Non-heat-treated steel for machine structural use excellent in fracture/partition property
WO2021220352A1 (en) Low-thermal-expansion casting and production method for same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13