JPS63162841A - Free cutting alloy having low thermal expandability - Google Patents
Free cutting alloy having low thermal expandabilityInfo
- Publication number
- JPS63162841A JPS63162841A JP30801486A JP30801486A JPS63162841A JP S63162841 A JPS63162841 A JP S63162841A JP 30801486 A JP30801486 A JP 30801486A JP 30801486 A JP30801486 A JP 30801486A JP S63162841 A JPS63162841 A JP S63162841A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- thermal expansion
- graphite
- low thermal
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 22
- 239000000956 alloy Substances 0.000 title claims abstract description 22
- 238000005520 cutting process Methods 0.000 title description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 238000003754 machining Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 28
- 229910001374 Invar Inorganic materials 0.000 abstract description 19
- 229910002804 graphite Inorganic materials 0.000 abstract description 15
- 239000010439 graphite Substances 0.000 abstract description 15
- 229910052799 carbon Inorganic materials 0.000 abstract description 14
- 229910052717 sulfur Inorganic materials 0.000 abstract description 6
- 239000011159 matrix material Substances 0.000 abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 229910000640 Fe alloy Inorganic materials 0.000 abstract 1
- 239000000463 material Substances 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910001018 Cast iron Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 150000001721 carbon Chemical class 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、熱膨張が小さいことを要求される精密機械部
品等の用途に適した、快削性に優れ、低コストの低熱膨
張合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a low thermal expansion alloy that has excellent free machinability and is low cost, suitable for use in precision mechanical parts that require low thermal expansion. It is something.
[従来の技術]
現在、低熱膨張を目的として利用される実用金属材料の
中でスーパーインバー及びインバーは、20〜100℃
の温度範囲での熱膨張係数αが、2.0×10/℃以下
であり、熱膨張が非常に少ないという特性をもっている
。[Prior Art] Among the practical metal materials currently used for the purpose of low thermal expansion, Super Invar and Invar are
The coefficient of thermal expansion α in the temperature range is 2.0×10/° C. or less, and it has the property of having very little thermal expansion.
これらは、主として塑性加工によって成形され、線、板
、棒等の素材で供給されている。These are mainly formed by plastic working and are supplied as materials such as wires, plates, and rods.
従って完成部品とするには、多くの機械加工が必要とな
るが、切削性が低く、多大の費用を要するため、利用範
囲が制限されている。Therefore, a lot of machining is required to make a finished part, but the machinability is low and the cost is high, so the scope of use is limited.
スーパーインバー及びインバーの切削性が低いのは、1
)高切削抵抗による発熱のため、11)工具寿命が短い
、111)切り屑処理性が低い、iv)加工硬化しやす
い等によるものと考えられる。The reason why Super Invar and Invar have low machinability is 1.
) This is thought to be due to heat generation due to high cutting resistance, 11) short tool life, 111) poor chip disposal, and iv) easy work hardening.
この問題を解決する手段として、S、Ca、Pb。As a means to solve this problem, S, Ca, Pb.
Zr、Se等を添加し、快削性を付与した材料が提供さ
れているが、機械的性質の低下、熱膨張係数の増加、製
造法の複雑化を伴なうという欠点がある。 。Although materials have been provided that have free machinability by adding Zr, Se, etc., they have the disadvantages of lowering mechanical properties, increasing coefficient of thermal expansion, and complicating the manufacturing method. .
一方、スーパーインバーに鋳造性を付与した特公昭80
−51547号公報記載の材料や、同じくインバーに鋳
造性を付与したASTM、A−438、Type5及び
同A−439、TypeD−5等は、凝固過程で組織中
に黒鉛を生ずるため、スーパーインバー及びインバー弓
に比較して切削性が改善されているが、3.0X10/
”C前後の熱膨張係数の増大を伴い、尚一層の高精度を
要求される用途に対しては不十分である。On the other hand, in the 1980s, special public interest was given to Super Invar, which gave it castability.
The material described in Publication No. 51547 and ASTM, A-438, Type 5, A-439, Type D-5, etc., which are also invar with castability, produce graphite in the structure during the solidification process, so super invar and Cutting performance is improved compared to Invar bow, but 3.0X10/
It is accompanied by an increase in the coefficient of thermal expansion around C, and is insufficient for applications requiring even higher precision.
[発明の解決すべき問題点]
本発明は、前述のスーパーインバー、インバー及び低熱
膨張鋳鉄等の諸問題即ち、
1)スーパーインバー及びインバーにおける、I)切削
性が低い it)素材形状に制限がある。[Problems to be Solved by the Invention] The present invention solves the aforementioned problems of Super Invar, Invar, and low thermal expansion cast iron, etc., namely: 1) In Super Invar and Invar, I) Low machinability it) Limitations on the shape of the material be.
2)低熱膨張鋳鉄における熱膨張係数が高い。2) High thermal expansion coefficient in low thermal expansion cast iron.
等の問題点を解決することを目的としたものであり、本
発明は、快削性、熱膨張性、鋳造性のいずれの面にも優
れた低熱膨張合金を提供するものである。It is an object of the present invention to provide a low thermal expansion alloy that is excellent in all aspects of free machinability, thermal expansion property, and castability.
[問題点を解決するための手段]
本発明は、重量基準にて、C:0.2%以上0.8%未
満、Si:1.0%未満、Mn:1゜0%以下、Ni
:30.0〜34.0%、Co:4.0〜6.0%、M
g: 0.5%以下、S:0.5%以下、P:Q、5
%以下、残部不可避不純物を含む鉄からなることを特徴
とする快削性低熱膨張合金である。[Means for solving the problems] The present invention provides, on a weight basis, C: 0.2% or more and less than 0.8%, Si: less than 1.0%, Mn: 1°0% or less, Ni
:30.0~34.0%, Co:4.0~6.0%, M
g: 0.5% or less, S: 0.5% or less, P: Q, 5
It is a free-machining, low-thermal-expansion alloy characterized by being made of iron, with the remainder containing unavoidable impurities.
[作用]
本発明は、快削性と低熱膨張性を両立させるために最適
な組成範囲と熱処理条件を見出だしたものである。[Function] The present invention has discovered the optimum composition range and heat treatment conditions in order to achieve both free machinability and low thermal expansion.
即ち、低炭素のスーパーインバーを基地組織とし、その
中に、適正量の黒鉛が均一に分布した状態を実現するこ
とにより、快削性と低熱膨張性が同時に得られる。That is, by using low carbon Super Invar as the base structure and achieving a state in which an appropriate amount of graphite is uniformly distributed, free machinability and low thermal expansion properties can be obtained at the same time.
通常、鋳鉄は重量比で2〜4%の炭素を含有し、基地の
炭素固溶度を越える炭素は黒鉛として析出している。Usually, cast iron contains 2 to 4% carbon by weight, and carbon that exceeds the solid solubility of carbon in the matrix is precipitated as graphite.
例えば、低熱膨張鋳鉄であるASTM、A−439、T
ypeD−5では、黒鉛の体積率は概ね4〜7%である
。For example, ASTM, A-439, T, which is a low thermal expansion cast iron.
In ypeD-5, the volume fraction of graphite is approximately 4 to 7%.
該材料は、スーパーインバー及びインバーと比較すると
切削性が改善されているが、これは組織中に存在する黒
鉛により、工具との接触抵抗が小さくなり、また切り屑
がつながることなく細く分断されるためである。This material has improved machinability compared to Super Invar and Invar, but this is due to the graphite present in the structure, which reduces the contact resistance with the tool and allows chips to be broken into thin pieces without joining. It's for a reason.
本発明者は、切削性と黒鉛体積率の関係を調べた結果切
削性向上に対して必要な黒鉛体積率は、1%程度であり
、かつ均一微細に分布させればよいとの知見を得た。As a result of investigating the relationship between machinability and graphite volume fraction, the present inventor found that the graphite volume fraction required to improve machinability is about 1%, and that it is sufficient to distribute it uniformly and finely. Ta.
得られた知見は以下の通りである。即ち、1)従来の低
熱膨張鋳鉄では、快削性に対して必要以上の黒鉛が存在
しており、仕上げ面の精度や外観の劣化の原因となって
いる。The findings obtained are as follows. That is, 1) In conventional low thermal expansion cast iron, graphite is present in an amount more than necessary for free machinability, which causes deterioration of finished surface accuracy and appearance.
2)又、熱膨張特性の面からも、過剰な黒鉛の存在は熱
膨張係数αを微増させる。2) Also, in terms of thermal expansion characteristics, the presence of excessive graphite slightly increases the thermal expansion coefficient α.
3)更に、過大な炭素の含有は、基地中への炭素の過飽
和な固溶を促し、熱膨張係数αの増加の原因となる。即
ち、固溶炭素が0.1%増すと熱膨張係数αが0.6
X 10/ ’C増加し、また、黒鉛が1%増すと熱膨
張係数αが約0.05X 10/ ”C増加する。3) Furthermore, excessive carbon content promotes supersaturated solid solution of carbon into the matrix, causing an increase in the coefficient of thermal expansion α. In other words, when the solute carbon increases by 0.1%, the thermal expansion coefficient α increases by 0.6.
When the amount of graphite increases by 1%, the thermal expansion coefficient α increases by about 0.05X 10/'C.
4)更に、本発明のような炭素濃度においてシリ=6
コンは、1%当り熱膨張係数αが1.3 XIO/ ”
C増加する。4) Furthermore, at the carbon concentration of the present invention, silicon = 6 silicon has a thermal expansion coefficient α of 1.3 XIO/ 1%.
C increases.
5)又、熱膨張係数αを低下させる手段として、600
〜1000℃の温度から急冷処理すればよい。5) Also, as a means to reduce the thermal expansion coefficient α, 600
What is necessary is just to carry out the rapid cooling treatment from a temperature of ~1000°C.
即ち、上記温度に加熱急冷すると、過飽和に固溶してい
た基地中の炭素が、微細黒鉛として析出して基地中の炭
素が低下するとともに、ニッケルのミクロ偏析が緩和し
て熱膨張率αが小さくなることによることが走査型電子
顕微鏡での定量により分かった。In other words, when heated and rapidly cooled to the above temperature, the supersaturated carbon in the base precipitates as fine graphite, reducing the carbon content in the base, and the micro-segregation of nickel is relaxed, increasing the coefficient of thermal expansion α. Quantification using a scanning electron microscope revealed that this was due to the decrease in size.
次に、本発明の低熱膨張合金の成分の限定理由について
述べる。Next, the reasons for limiting the components of the low thermal expansion alloy of the present invention will be described.
C:炭素はこの種合金の基地中に約0.2%まで固溶す
るため、快削性物質である黒鉛を得るには固溶限である
0、2%以上必要である。また炭素は溶解温度を下げ、
鋳造性を改善する。0.8%超では快削性向上が頭打ち
となり、更に過飽和な炭素の固溶量が増して熱膨張係数
αを増大させるので0.2%以上、0.8%未満とした
。C: Since carbon is dissolved as a solid solution in the matrix of this type of alloy up to about 0.2%, it is necessary to contain 0.2% or more, which is the solid solubility limit, in order to obtain graphite, which is a free-cutting material. Carbon also lowers the melting temperature,
Improves castability. If it exceeds 0.8%, the improvement in free machinability will reach a plateau, and the amount of solid solution of supersaturated carbon will increase, increasing the coefficient of thermal expansion α, so it is set to be 0.2% or more and less than 0.8%.
Si:シリコンは、鋳造性の改善と脱酸効果のため加え
る元素であるが、1.0%を越えると熱膨張係数αの増
加が無視できないので1.0%未満とした。Si: Silicon is an element added to improve castability and deoxidize, but if it exceeds 1.0%, the increase in the coefficient of thermal expansion α cannot be ignored, so it is set to less than 1.0%.
Mn:マンガンは、偏析を生じ易く、かつ炭化物の生成
を促進して熱膨張係数αの増大を招き、1.0%を越え
るとその影響が大きいのでその値を上限とした。Mn: Manganese tends to cause segregation and promotes the formation of carbides, leading to an increase in the coefficient of thermal expansion α.If it exceeds 1.0%, the effect is significant, so this value was set as the upper limit.
Ni:ニッケルは、熱膨張係数αに最も影響を与える元
素で、コバルト量を加減しても30%未満、34%を越
えると熱膨張率αが著しく増大するため、30.0〜3
4.0%の範囲とした。Ni: Nickel is the element that has the greatest effect on the coefficient of thermal expansion α, and even if the amount of cobalt is adjusted, it will still be less than 30%, and if it exceeds 34%, the coefficient of thermal expansion α will increase significantly, so it will be 30.0 to 3.
The range was set at 4.0%.
co=コバルトは、ニッケル含量30.0〜34.0%
との組合わせに対して、4%未満、6x超では、熱膨張
係数αが増大するため、その範囲を480〜8.0%と
した。co=cobalt has a nickel content of 30.0 to 34.0%
When the combination is less than 4% and more than 6x, the thermal expansion coefficient α increases, so the range is set to 480 to 8.0%.
Mg:本発明組成において特に球状化剤を加えなくても
黒鉛形態は、点状の独立した分布をなすが、機械的性質
改善のため球状化を図る場合に添加する。Mg: In the composition of the present invention, even without adding a spheroidizing agent, the graphite forms a dot-like independent distribution, but is added when spheroidizing is desired to improve mechanical properties.
その目的に対して0.5X超では清浄度を劣化するため
、その量を0.5%以下とした。For that purpose, if it exceeds 0.5X, the cleanliness deteriorates, so the amount was set to 0.5% or less.
P、S:燐及びイオウは、不可避的に混入する元素であ
り、0.5%を越えると脆化が著しいので夫々その量を
0.5%以下とした。゛
残部は不可避的不純物を含む鉄より構成される。P, S: Phosphorus and sulfur are elements that are unavoidably mixed, and if they exceed 0.5%, embrittlement is significant, so the amount of each is set to 0.5% or less. ``The remainder consists of iron containing unavoidable impurities.
次に本発明の実施例について述べる。Next, examples of the present invention will be described.
[実施例]
30 KVA高周波電気炉により、次の第1表に示す化
学組成の供試材料を溶解し、COL珪砂型で、JIS
G−51228号テストピースとフラン珪砂型で、φ1
00關x (200〜400)+mmの加工試験片を鋳
造した。[Example] A sample material having the chemical composition shown in Table 1 below was melted in a 30 KVA high-frequency electric furnace, and was melted in a COL silica sand mold according to JIS
G-51228 test piece and furan silica sand mold, φ1
Processed specimens of 00 x (200 to 400) + mm were cast.
φ7.5 +mm X L501111(7)熱膨張係
数a 測定片ヲ加工し、20〜100℃の熱膨張係数α
を押棒式熱膨張計を用いて測定し、第2表に示す熱膨張
係数の結果を得た。φ7.5 +mm
was measured using a push rod type thermal dilatometer, and the results of the thermal expansion coefficient shown in Table 2 were obtained.
試験に1〜4の発明合金は、いずれも焼鈍状態−&4
で2.OXIO/”C,急冷状態では1.5 XIO/
’Cより小さい熱膨張係数を示した。Inventive alloys 1 to 4 were tested in the annealed state -&4. OXIO/”C, 1.5 XIO/ in quenched state
It showed a coefficient of thermal expansion smaller than 'C.
更に本発明の合金組成範囲内の適当な組成を選べば、鋼
糸の鋳造スーパーインバーに匹敵する熱膨張係数α<1
.OXIO/’Cが得られることがわかった。Furthermore, if an appropriate composition is selected within the alloy composition range of the present invention, the coefficient of thermal expansion α<1 can be achieved, which is comparable to super invar cast steel thread.
.. It was found that OXIO/'C was obtained.
il、it 供試材の化学組成(重量%ン第2表 熱
膨張係数a(20〜100℃平均X+O/’C)次に示
す如く、切削試験を行い、工具寿命、切削抵抗、切屑処
理性等を夫々調べた。il, it Chemical composition of the sample material (wt%) Table 2 Coefficient of thermal expansion a (20-100°C average We investigated each of these.
第1図及び第2図は、比較材として従来材及び本発明合
金のミクロ組織(X100)を夫々示す金属顕微鏡写真
で、同写真よりスーパーインバーと略同−のオーステナ
イト基地中に、微細な黒鉛が均一に分布していることが
明らかである。Figures 1 and 2 are metallurgical micrographs showing the microstructures (X100) of a conventional material and an alloy of the present invention as comparative materials, respectively. It is clear that the distribution is uniform.
第3図は、切屑の断面のミクロ組織の金属顕微鏡写真で
、工具の力で加工物組織が流動し、それに伴って黒鉛が
延伸し、シャープな切り欠きとなって切屑処理性を高め
たことが分かる。Figure 3 is a metallurgical micrograph of the microstructure of a cross section of a chip, showing that the workpiece structure flows due to the force of the tool, and as a result, the graphite stretches, forming a sharp notch and improving chip disposal. I understand.
第4図は、本発明合金と従来の比較材との切削速度(m
/分)と比切削抵抗(kg / m♂)との関係グラフ
、第5図は、本発明合金と従来の比較材との切削速度(
m/分)と工具寿命との関係グラフであり、本発明合金
の特性が優れていることは明らかである。Figure 4 shows the cutting speed (m) of the present invention alloy and the conventional comparative material.
Figure 5 is a graph showing the relationship between the cutting force (kg/m♂) and specific cutting force (kg/m♂).
This is a graph showing the relationship between tool life (m/min) and tool life, and it is clear that the properties of the alloy of the present invention are excellent.
[発明の効果コ
本発明の快削性低熱膨張合金を、各種精密機械例えば工
作機械、計測器、半導体製造装置、光学機械等に適用す
ることにより、従来、スーパーインバー及びインバーが
用いられていた分野において、非常に低いコストで同等
の精度が得られ、関連分野に与える本発明合金の効果は
計り知れないものがある。[Effects of the invention] By applying the free-machining, low thermal expansion alloy of the present invention to various precision machines, such as machine tools, measuring instruments, semiconductor manufacturing equipment, optical machines, etc., Super Invar and Invar, which were conventionally used, can be improved. In this field, the same precision can be obtained at a much lower cost, and the effects of the present alloy on the related fields are immeasurable.
第1図及び第2図は比較材として従来材及び本発明合金
のミクロ組織を夫々示す金属顕微鏡写真、第3図は切屑
の断面の金属顕微鏡写真、第4図は本発明合金と従来の
比較材との切削速度(m7分)と比切削抵抗(kg /
t+♂)との関係グラフ、第5図は、本発明合金と従
来の比較材との切削速度(m7分)と工具寿命との関係
グラフである。Figures 1 and 2 are metallurgical micrographs showing the microstructures of a conventional material and the alloy of the present invention as comparison materials, Figure 3 is a metallurgical micrograph of a cross section of a chip, and Figure 4 is a comparison of the alloy of the present invention and the conventional alloy. Cutting speed with material (m7 min) and specific cutting force (kg/
t+♂) FIG. 5 is a graph showing the relationship between cutting speed (m7 minutes) and tool life between the alloy of the present invention and a conventional comparative material.
Claims (1)
1.0%未満、Mn:1.0%以下、Ni:30.0〜
34.0%、Co:4.0〜6.0%、Mg:0.5%
以下、S:0.5%以下、P:0.5%以下、残部不可
避不純物を含む鉄からなることを特徴とする快削性低熱
膨脹合金。Based on weight, C: 0.2% or more and less than 0.8%, Si:
Less than 1.0%, Mn: 1.0% or less, Ni: 30.0~
34.0%, Co: 4.0-6.0%, Mg: 0.5%
Hereinafter, a free-machining, low thermal expansion alloy characterized by comprising iron containing 0.5% or less of S, 0.5% or less of P, and the remainder containing unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30801486A JPS63162841A (en) | 1986-12-25 | 1986-12-25 | Free cutting alloy having low thermal expandability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30801486A JPS63162841A (en) | 1986-12-25 | 1986-12-25 | Free cutting alloy having low thermal expandability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63162841A true JPS63162841A (en) | 1988-07-06 |
JPH0258337B2 JPH0258337B2 (en) | 1990-12-07 |
Family
ID=17975848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30801486A Granted JPS63162841A (en) | 1986-12-25 | 1986-12-25 | Free cutting alloy having low thermal expandability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63162841A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06172919A (en) * | 1988-11-02 | 1994-06-21 | Toshiba Corp | Machine tool, precision measuring instrument and molding die using low thermal expansion cast iron |
US6344095B1 (en) | 1999-07-08 | 2002-02-05 | Hitachi Metals, Ltd. | Low-thermal expansion cast steel with excellent machinability |
JP2008523393A (en) * | 2004-12-07 | 2008-07-03 | ハネウェル・インターナショナル・インコーポレーテッド | Super Invar magnetic return path for high performance accelerometers |
FR3051803A1 (en) * | 2016-05-31 | 2017-12-01 | Ferry Capitain | MOLDED STEEL ALLOY, PART AND METHOD OF MANUFACTURING THE SAME |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5030728A (en) * | 1973-05-04 | 1975-03-27 | ||
JPS55119156A (en) * | 1979-03-09 | 1980-09-12 | Sumitomo Electric Ind Ltd | High strength and low expansion alloy |
JPS6051547A (en) * | 1983-06-30 | 1985-03-23 | ウ−ルカ,ウ−ロペエンヌ.ド.ルトレトマン.ド.カタリズ−ル | Method of regenerating hydrocarbon treating catalyst |
JPS60142081A (en) * | 1983-12-29 | 1985-07-27 | Hitachi Ltd | Compressor |
-
1986
- 1986-12-25 JP JP30801486A patent/JPS63162841A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5030728A (en) * | 1973-05-04 | 1975-03-27 | ||
JPS55119156A (en) * | 1979-03-09 | 1980-09-12 | Sumitomo Electric Ind Ltd | High strength and low expansion alloy |
JPS6051547A (en) * | 1983-06-30 | 1985-03-23 | ウ−ルカ,ウ−ロペエンヌ.ド.ルトレトマン.ド.カタリズ−ル | Method of regenerating hydrocarbon treating catalyst |
JPS60142081A (en) * | 1983-12-29 | 1985-07-27 | Hitachi Ltd | Compressor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06172919A (en) * | 1988-11-02 | 1994-06-21 | Toshiba Corp | Machine tool, precision measuring instrument and molding die using low thermal expansion cast iron |
JP2568022B2 (en) * | 1988-11-02 | 1996-12-25 | 株式会社東芝 | Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron |
US6344095B1 (en) | 1999-07-08 | 2002-02-05 | Hitachi Metals, Ltd. | Low-thermal expansion cast steel with excellent machinability |
JP2008523393A (en) * | 2004-12-07 | 2008-07-03 | ハネウェル・インターナショナル・インコーポレーテッド | Super Invar magnetic return path for high performance accelerometers |
FR3051803A1 (en) * | 2016-05-31 | 2017-12-01 | Ferry Capitain | MOLDED STEEL ALLOY, PART AND METHOD OF MANUFACTURING THE SAME |
EP3252175A1 (en) * | 2016-05-31 | 2017-12-06 | Ferry Capitain | Molded steel alloy, corresponding part and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0258337B2 (en) | 1990-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2221891C1 (en) | Aluminum-based alloy, article made from such alloy and method of manufacture of such article | |
US4904447A (en) | Low thermal expansion casting alloy having excellent machinability | |
JPH07504711A (en) | Alloy of molybdenum, rhenium and tungsten | |
Anglezio et al. | Characterization of metallurgical grade silicon | |
JPS63162841A (en) | Free cutting alloy having low thermal expandability | |
JP3654899B2 (en) | Manufacturing method of high strength low expansion cast iron | |
JP4253100B2 (en) | Low thermal expansion alloy with excellent machinability and manufacturing method thereof | |
JP2778891B2 (en) | High-strength low-expansion cast iron, method for producing the same, and sliding parts and machine parts using the same | |
JPH02298236A (en) | Low thermal expansion alloy | |
JPS62284039A (en) | Low thermal expansion cast iron | |
JP2568022B2 (en) | Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron | |
JP4158337B2 (en) | Method for producing chromium-zirconium-based copper alloy for continuous casting mold | |
US3740212A (en) | Oxidation resistant austenitic ductile nickel chromium iron | |
JP3707825B2 (en) | Low thermal expansion cast iron and method for producing the same | |
JPH07179984A (en) | Cast iron of high strength and low expansion and its production | |
WO2023176791A1 (en) | Iron casting and method for producing same | |
JPS6321728B2 (en) | ||
JP2585014B2 (en) | Free-cutting high-strength low-thermal-expansion cast alloy and method for producing the same | |
US2169190A (en) | Copper base alloy | |
KR102578486B1 (en) | Iron-copper alloy having network structure and method for manufacturing the same | |
JP2897031B2 (en) | Low thermal expansion casting alloy | |
JP3141288B2 (en) | Manufacturing method of low thermal expansion cast alloy | |
JPS63307240A (en) | High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production | |
KR910002871B1 (en) | Low thermal expansion casting alloy having excellent machinability | |
JPH05255730A (en) | Production of gray cast iron having high vibration damping capacity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |