JPS63162841A - Free cutting alloy having low thermal expandability - Google Patents

Free cutting alloy having low thermal expandability

Info

Publication number
JPS63162841A
JPS63162841A JP30801486A JP30801486A JPS63162841A JP S63162841 A JPS63162841 A JP S63162841A JP 30801486 A JP30801486 A JP 30801486A JP 30801486 A JP30801486 A JP 30801486A JP S63162841 A JPS63162841 A JP S63162841A
Authority
JP
Japan
Prior art keywords
alloy
thermal expansion
graphite
low thermal
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30801486A
Other languages
Japanese (ja)
Other versions
JPH0258337B2 (en
Inventor
Takuo Handa
卓雄 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chuzo Co Ltd
Original Assignee
Nippon Chuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chuzo Co Ltd filed Critical Nippon Chuzo Co Ltd
Priority to JP30801486A priority Critical patent/JPS63162841A/en
Publication of JPS63162841A publication Critical patent/JPS63162841A/en
Publication of JPH0258337B2 publication Critical patent/JPH0258337B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the machinability and castability of an iron alloy and to reduce the thermal expandability, by specifying the amts. of C, Si, Mn, Ni, Co, Mg, S and P in the alloy and uniformly dispersing a proper amt. of graphite in the matrix. CONSTITUTION:The compsn. of an alloy is composed of, by weight, 0.2-0.8% C, <1.0% Si, <=1.0% Mn, 30.0-34.0% Ni, 4.0-6.0% Co, <=0.5% Mg, <=0.5% S, <=0.5% P and the balance Fe with inevitable impurities. The matrix structure of the alloy is that of low carbon Super invar and contains about 1vol% uniformly and finely distributed graphite. Since the alloy has high machinability and low thermal expandability, it can be used to manufacture various precision instruments.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、熱膨張が小さいことを要求される精密機械部
品等の用途に適した、快削性に優れ、低コストの低熱膨
張合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a low thermal expansion alloy that has excellent free machinability and is low cost, suitable for use in precision mechanical parts that require low thermal expansion. It is something.

[従来の技術] 現在、低熱膨張を目的として利用される実用金属材料の
中でスーパーインバー及びインバーは、20〜100℃
の温度範囲での熱膨張係数αが、2.0×10/℃以下
であり、熱膨張が非常に少ないという特性をもっている
[Prior Art] Among the practical metal materials currently used for the purpose of low thermal expansion, Super Invar and Invar are
The coefficient of thermal expansion α in the temperature range is 2.0×10/° C. or less, and it has the property of having very little thermal expansion.

これらは、主として塑性加工によって成形され、線、板
、棒等の素材で供給されている。
These are mainly formed by plastic working and are supplied as materials such as wires, plates, and rods.

従って完成部品とするには、多くの機械加工が必要とな
るが、切削性が低く、多大の費用を要するため、利用範
囲が制限されている。
Therefore, a lot of machining is required to make a finished part, but the machinability is low and the cost is high, so the scope of use is limited.

スーパーインバー及びインバーの切削性が低いのは、1
)高切削抵抗による発熱のため、11)工具寿命が短い
、111)切り屑処理性が低い、iv)加工硬化しやす
い等によるものと考えられる。
The reason why Super Invar and Invar have low machinability is 1.
) This is thought to be due to heat generation due to high cutting resistance, 11) short tool life, 111) poor chip disposal, and iv) easy work hardening.

この問題を解決する手段として、S、Ca、Pb。As a means to solve this problem, S, Ca, Pb.

Zr、Se等を添加し、快削性を付与した材料が提供さ
れているが、機械的性質の低下、熱膨張係数の増加、製
造法の複雑化を伴なうという欠点がある。  。
Although materials have been provided that have free machinability by adding Zr, Se, etc., they have the disadvantages of lowering mechanical properties, increasing coefficient of thermal expansion, and complicating the manufacturing method. .

一方、スーパーインバーに鋳造性を付与した特公昭80
−51547号公報記載の材料や、同じくインバーに鋳
造性を付与したASTM、A−438、Type5及び
同A−439、TypeD−5等は、凝固過程で組織中
に黒鉛を生ずるため、スーパーインバー及びインバー弓 に比較して切削性が改善されているが、3.0X10/
”C前後の熱膨張係数の増大を伴い、尚一層の高精度を
要求される用途に対しては不十分である。
On the other hand, in the 1980s, special public interest was given to Super Invar, which gave it castability.
The material described in Publication No. 51547 and ASTM, A-438, Type 5, A-439, Type D-5, etc., which are also invar with castability, produce graphite in the structure during the solidification process, so super invar and Cutting performance is improved compared to Invar bow, but 3.0X10/
It is accompanied by an increase in the coefficient of thermal expansion around C, and is insufficient for applications requiring even higher precision.

[発明の解決すべき問題点] 本発明は、前述のスーパーインバー、インバー及び低熱
膨張鋳鉄等の諸問題即ち、 1)スーパーインバー及びインバーにおける、I)切削
性が低い it)素材形状に制限がある。
[Problems to be Solved by the Invention] The present invention solves the aforementioned problems of Super Invar, Invar, and low thermal expansion cast iron, etc., namely: 1) In Super Invar and Invar, I) Low machinability it) Limitations on the shape of the material be.

2)低熱膨張鋳鉄における熱膨張係数が高い。2) High thermal expansion coefficient in low thermal expansion cast iron.

等の問題点を解決することを目的としたものであり、本
発明は、快削性、熱膨張性、鋳造性のいずれの面にも優
れた低熱膨張合金を提供するものである。
It is an object of the present invention to provide a low thermal expansion alloy that is excellent in all aspects of free machinability, thermal expansion property, and castability.

[問題点を解決するための手段] 本発明は、重量基準にて、C:0.2%以上0.8%未
満、Si:1.0%未満、Mn:1゜0%以下、Ni 
:30.0〜34.0%、Co:4.0〜6.0%、M
g:  0.5%以下、S:0.5%以下、P:Q、5
%以下、残部不可避不純物を含む鉄からなることを特徴
とする快削性低熱膨張合金である。
[Means for solving the problems] The present invention provides, on a weight basis, C: 0.2% or more and less than 0.8%, Si: less than 1.0%, Mn: 1°0% or less, Ni
:30.0~34.0%, Co:4.0~6.0%, M
g: 0.5% or less, S: 0.5% or less, P: Q, 5
It is a free-machining, low-thermal-expansion alloy characterized by being made of iron, with the remainder containing unavoidable impurities.

[作用] 本発明は、快削性と低熱膨張性を両立させるために最適
な組成範囲と熱処理条件を見出だしたものである。
[Function] The present invention has discovered the optimum composition range and heat treatment conditions in order to achieve both free machinability and low thermal expansion.

即ち、低炭素のスーパーインバーを基地組織とし、その
中に、適正量の黒鉛が均一に分布した状態を実現するこ
とにより、快削性と低熱膨張性が同時に得られる。
That is, by using low carbon Super Invar as the base structure and achieving a state in which an appropriate amount of graphite is uniformly distributed, free machinability and low thermal expansion properties can be obtained at the same time.

通常、鋳鉄は重量比で2〜4%の炭素を含有し、基地の
炭素固溶度を越える炭素は黒鉛として析出している。
Usually, cast iron contains 2 to 4% carbon by weight, and carbon that exceeds the solid solubility of carbon in the matrix is precipitated as graphite.

例えば、低熱膨張鋳鉄であるASTM、A−439、T
ypeD−5では、黒鉛の体積率は概ね4〜7%である
For example, ASTM, A-439, T, which is a low thermal expansion cast iron.
In ypeD-5, the volume fraction of graphite is approximately 4 to 7%.

該材料は、スーパーインバー及びインバーと比較すると
切削性が改善されているが、これは組織中に存在する黒
鉛により、工具との接触抵抗が小さくなり、また切り屑
がつながることなく細く分断されるためである。
This material has improved machinability compared to Super Invar and Invar, but this is due to the graphite present in the structure, which reduces the contact resistance with the tool and allows chips to be broken into thin pieces without joining. It's for a reason.

本発明者は、切削性と黒鉛体積率の関係を調べた結果切
削性向上に対して必要な黒鉛体積率は、1%程度であり
、かつ均一微細に分布させればよいとの知見を得た。
As a result of investigating the relationship between machinability and graphite volume fraction, the present inventor found that the graphite volume fraction required to improve machinability is about 1%, and that it is sufficient to distribute it uniformly and finely. Ta.

得られた知見は以下の通りである。即ち、1)従来の低
熱膨張鋳鉄では、快削性に対して必要以上の黒鉛が存在
しており、仕上げ面の精度や外観の劣化の原因となって
いる。
The findings obtained are as follows. That is, 1) In conventional low thermal expansion cast iron, graphite is present in an amount more than necessary for free machinability, which causes deterioration of finished surface accuracy and appearance.

2)又、熱膨張特性の面からも、過剰な黒鉛の存在は熱
膨張係数αを微増させる。
2) Also, in terms of thermal expansion characteristics, the presence of excessive graphite slightly increases the thermal expansion coefficient α.

3)更に、過大な炭素の含有は、基地中への炭素の過飽
和な固溶を促し、熱膨張係数αの増加の原因となる。即
ち、固溶炭素が0.1%増すと熱膨張係数αが0.6 
X 10/ ’C増加し、また、黒鉛が1%増すと熱膨
張係数αが約0.05X 10/ ”C増加する。
3) Furthermore, excessive carbon content promotes supersaturated solid solution of carbon into the matrix, causing an increase in the coefficient of thermal expansion α. In other words, when the solute carbon increases by 0.1%, the thermal expansion coefficient α increases by 0.6.
When the amount of graphite increases by 1%, the thermal expansion coefficient α increases by about 0.05X 10/'C.

4)更に、本発明のような炭素濃度においてシリ=6 コンは、1%当り熱膨張係数αが1.3 XIO/ ”
C増加する。
4) Furthermore, at the carbon concentration of the present invention, silicon = 6 silicon has a thermal expansion coefficient α of 1.3 XIO/ 1%.
C increases.

5)又、熱膨張係数αを低下させる手段として、600
〜1000℃の温度から急冷処理すればよい。
5) Also, as a means to reduce the thermal expansion coefficient α, 600
What is necessary is just to carry out the rapid cooling treatment from a temperature of ~1000°C.

即ち、上記温度に加熱急冷すると、過飽和に固溶してい
た基地中の炭素が、微細黒鉛として析出して基地中の炭
素が低下するとともに、ニッケルのミクロ偏析が緩和し
て熱膨張率αが小さくなることによることが走査型電子
顕微鏡での定量により分かった。
In other words, when heated and rapidly cooled to the above temperature, the supersaturated carbon in the base precipitates as fine graphite, reducing the carbon content in the base, and the micro-segregation of nickel is relaxed, increasing the coefficient of thermal expansion α. Quantification using a scanning electron microscope revealed that this was due to the decrease in size.

次に、本発明の低熱膨張合金の成分の限定理由について
述べる。
Next, the reasons for limiting the components of the low thermal expansion alloy of the present invention will be described.

C:炭素はこの種合金の基地中に約0.2%まで固溶す
るため、快削性物質である黒鉛を得るには固溶限である
0、2%以上必要である。また炭素は溶解温度を下げ、
鋳造性を改善する。0.8%超では快削性向上が頭打ち
となり、更に過飽和な炭素の固溶量が増して熱膨張係数
αを増大させるので0.2%以上、0.8%未満とした
C: Since carbon is dissolved as a solid solution in the matrix of this type of alloy up to about 0.2%, it is necessary to contain 0.2% or more, which is the solid solubility limit, in order to obtain graphite, which is a free-cutting material. Carbon also lowers the melting temperature,
Improves castability. If it exceeds 0.8%, the improvement in free machinability will reach a plateau, and the amount of solid solution of supersaturated carbon will increase, increasing the coefficient of thermal expansion α, so it is set to be 0.2% or more and less than 0.8%.

Si:シリコンは、鋳造性の改善と脱酸効果のため加え
る元素であるが、1.0%を越えると熱膨張係数αの増
加が無視できないので1.0%未満とした。
Si: Silicon is an element added to improve castability and deoxidize, but if it exceeds 1.0%, the increase in the coefficient of thermal expansion α cannot be ignored, so it is set to less than 1.0%.

Mn:マンガンは、偏析を生じ易く、かつ炭化物の生成
を促進して熱膨張係数αの増大を招き、1.0%を越え
るとその影響が大きいのでその値を上限とした。
Mn: Manganese tends to cause segregation and promotes the formation of carbides, leading to an increase in the coefficient of thermal expansion α.If it exceeds 1.0%, the effect is significant, so this value was set as the upper limit.

Ni:ニッケルは、熱膨張係数αに最も影響を与える元
素で、コバルト量を加減しても30%未満、34%を越
えると熱膨張率αが著しく増大するため、30.0〜3
4.0%の範囲とした。
Ni: Nickel is the element that has the greatest effect on the coefficient of thermal expansion α, and even if the amount of cobalt is adjusted, it will still be less than 30%, and if it exceeds 34%, the coefficient of thermal expansion α will increase significantly, so it will be 30.0 to 3.
The range was set at 4.0%.

co=コバルトは、ニッケル含量30.0〜34.0%
との組合わせに対して、4%未満、6x超では、熱膨張
係数αが増大するため、その範囲を480〜8.0%と
した。
co=cobalt has a nickel content of 30.0 to 34.0%
When the combination is less than 4% and more than 6x, the thermal expansion coefficient α increases, so the range is set to 480 to 8.0%.

Mg:本発明組成において特に球状化剤を加えなくても
黒鉛形態は、点状の独立した分布をなすが、機械的性質
改善のため球状化を図る場合に添加する。
Mg: In the composition of the present invention, even without adding a spheroidizing agent, the graphite forms a dot-like independent distribution, but is added when spheroidizing is desired to improve mechanical properties.

その目的に対して0.5X超では清浄度を劣化するため
、その量を0.5%以下とした。
For that purpose, if it exceeds 0.5X, the cleanliness deteriorates, so the amount was set to 0.5% or less.

P、S:燐及びイオウは、不可避的に混入する元素であ
り、0.5%を越えると脆化が著しいので夫々その量を
0.5%以下とした。゛ 残部は不可避的不純物を含む鉄より構成される。
P, S: Phosphorus and sulfur are elements that are unavoidably mixed, and if they exceed 0.5%, embrittlement is significant, so the amount of each is set to 0.5% or less. ``The remainder consists of iron containing unavoidable impurities.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例] 30 KVA高周波電気炉により、次の第1表に示す化
学組成の供試材料を溶解し、COL珪砂型で、JIS 
G−51228号テストピースとフラン珪砂型で、φ1
00關x (200〜400)+mmの加工試験片を鋳
造した。
[Example] A sample material having the chemical composition shown in Table 1 below was melted in a 30 KVA high-frequency electric furnace, and was melted in a COL silica sand mold according to JIS
G-51228 test piece and furan silica sand mold, φ1
Processed specimens of 00 x (200 to 400) + mm were cast.

φ7.5 +mm X L501111(7)熱膨張係
数a 測定片ヲ加工し、20〜100℃の熱膨張係数α
を押棒式熱膨張計を用いて測定し、第2表に示す熱膨張
係数の結果を得た。
φ7.5 +mm
was measured using a push rod type thermal dilatometer, and the results of the thermal expansion coefficient shown in Table 2 were obtained.

試験に1〜4の発明合金は、いずれも焼鈍状態−&4 で2.OXIO/”C,急冷状態では1.5 XIO/
’Cより小さい熱膨張係数を示した。
Inventive alloys 1 to 4 were tested in the annealed state -&4. OXIO/”C, 1.5 XIO/ in quenched state
It showed a coefficient of thermal expansion smaller than 'C.

更に本発明の合金組成範囲内の適当な組成を選べば、鋼
糸の鋳造スーパーインバーに匹敵する熱膨張係数α<1
.OXIO/’Cが得られることがわかった。
Furthermore, if an appropriate composition is selected within the alloy composition range of the present invention, the coefficient of thermal expansion α<1 can be achieved, which is comparable to super invar cast steel thread.
.. It was found that OXIO/'C was obtained.

il、it  供試材の化学組成(重量%ン第2表 熱
膨張係数a(20〜100℃平均X+O/’C)次に示
す如く、切削試験を行い、工具寿命、切削抵抗、切屑処
理性等を夫々調べた。
il, it Chemical composition of the sample material (wt%) Table 2 Coefficient of thermal expansion a (20-100°C average We investigated each of these.

第1図及び第2図は、比較材として従来材及び本発明合
金のミクロ組織(X100)を夫々示す金属顕微鏡写真
で、同写真よりスーパーインバーと略同−のオーステナ
イト基地中に、微細な黒鉛が均一に分布していることが
明らかである。
Figures 1 and 2 are metallurgical micrographs showing the microstructures (X100) of a conventional material and an alloy of the present invention as comparative materials, respectively. It is clear that the distribution is uniform.

第3図は、切屑の断面のミクロ組織の金属顕微鏡写真で
、工具の力で加工物組織が流動し、それに伴って黒鉛が
延伸し、シャープな切り欠きとなって切屑処理性を高め
たことが分かる。
Figure 3 is a metallurgical micrograph of the microstructure of a cross section of a chip, showing that the workpiece structure flows due to the force of the tool, and as a result, the graphite stretches, forming a sharp notch and improving chip disposal. I understand.

第4図は、本発明合金と従来の比較材との切削速度(m
/分)と比切削抵抗(kg / m♂)との関係グラフ
、第5図は、本発明合金と従来の比較材との切削速度(
m/分)と工具寿命との関係グラフであり、本発明合金
の特性が優れていることは明らかである。
Figure 4 shows the cutting speed (m) of the present invention alloy and the conventional comparative material.
Figure 5 is a graph showing the relationship between the cutting force (kg/m♂) and specific cutting force (kg/m♂).
This is a graph showing the relationship between tool life (m/min) and tool life, and it is clear that the properties of the alloy of the present invention are excellent.

[発明の効果コ 本発明の快削性低熱膨張合金を、各種精密機械例えば工
作機械、計測器、半導体製造装置、光学機械等に適用す
ることにより、従来、スーパーインバー及びインバーが
用いられていた分野において、非常に低いコストで同等
の精度が得られ、関連分野に与える本発明合金の効果は
計り知れないものがある。
[Effects of the invention] By applying the free-machining, low thermal expansion alloy of the present invention to various precision machines, such as machine tools, measuring instruments, semiconductor manufacturing equipment, optical machines, etc., Super Invar and Invar, which were conventionally used, can be improved. In this field, the same precision can be obtained at a much lower cost, and the effects of the present alloy on the related fields are immeasurable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は比較材として従来材及び本発明合金
のミクロ組織を夫々示す金属顕微鏡写真、第3図は切屑
の断面の金属顕微鏡写真、第4図は本発明合金と従来の
比較材との切削速度(m7分)と比切削抵抗(kg /
 t+♂)との関係グラフ、第5図は、本発明合金と従
来の比較材との切削速度(m7分)と工具寿命との関係
グラフである。
Figures 1 and 2 are metallurgical micrographs showing the microstructures of a conventional material and the alloy of the present invention as comparison materials, Figure 3 is a metallurgical micrograph of a cross section of a chip, and Figure 4 is a comparison of the alloy of the present invention and the conventional alloy. Cutting speed with material (m7 min) and specific cutting force (kg/
t+♂) FIG. 5 is a graph showing the relationship between cutting speed (m7 minutes) and tool life between the alloy of the present invention and a conventional comparative material.

Claims (1)

【特許請求の範囲】[Claims] 重量基準にて、C:0.2%以上0.8%未満、Si:
1.0%未満、Mn:1.0%以下、Ni:30.0〜
34.0%、Co:4.0〜6.0%、Mg:0.5%
以下、S:0.5%以下、P:0.5%以下、残部不可
避不純物を含む鉄からなることを特徴とする快削性低熱
膨脹合金。
Based on weight, C: 0.2% or more and less than 0.8%, Si:
Less than 1.0%, Mn: 1.0% or less, Ni: 30.0~
34.0%, Co: 4.0-6.0%, Mg: 0.5%
Hereinafter, a free-machining, low thermal expansion alloy characterized by comprising iron containing 0.5% or less of S, 0.5% or less of P, and the remainder containing unavoidable impurities.
JP30801486A 1986-12-25 1986-12-25 Free cutting alloy having low thermal expandability Granted JPS63162841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30801486A JPS63162841A (en) 1986-12-25 1986-12-25 Free cutting alloy having low thermal expandability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30801486A JPS63162841A (en) 1986-12-25 1986-12-25 Free cutting alloy having low thermal expandability

Publications (2)

Publication Number Publication Date
JPS63162841A true JPS63162841A (en) 1988-07-06
JPH0258337B2 JPH0258337B2 (en) 1990-12-07

Family

ID=17975848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30801486A Granted JPS63162841A (en) 1986-12-25 1986-12-25 Free cutting alloy having low thermal expandability

Country Status (1)

Country Link
JP (1) JPS63162841A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172919A (en) * 1988-11-02 1994-06-21 Toshiba Corp Machine tool, precision measuring instrument and molding die using low thermal expansion cast iron
US6344095B1 (en) 1999-07-08 2002-02-05 Hitachi Metals, Ltd. Low-thermal expansion cast steel with excellent machinability
JP2008523393A (en) * 2004-12-07 2008-07-03 ハネウェル・インターナショナル・インコーポレーテッド Super Invar magnetic return path for high performance accelerometers
FR3051803A1 (en) * 2016-05-31 2017-12-01 Ferry Capitain MOLDED STEEL ALLOY, PART AND METHOD OF MANUFACTURING THE SAME

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030728A (en) * 1973-05-04 1975-03-27
JPS55119156A (en) * 1979-03-09 1980-09-12 Sumitomo Electric Ind Ltd High strength and low expansion alloy
JPS6051547A (en) * 1983-06-30 1985-03-23 ウ−ルカ,ウ−ロペエンヌ.ド.ルトレトマン.ド.カタリズ−ル Method of regenerating hydrocarbon treating catalyst
JPS60142081A (en) * 1983-12-29 1985-07-27 Hitachi Ltd Compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030728A (en) * 1973-05-04 1975-03-27
JPS55119156A (en) * 1979-03-09 1980-09-12 Sumitomo Electric Ind Ltd High strength and low expansion alloy
JPS6051547A (en) * 1983-06-30 1985-03-23 ウ−ルカ,ウ−ロペエンヌ.ド.ルトレトマン.ド.カタリズ−ル Method of regenerating hydrocarbon treating catalyst
JPS60142081A (en) * 1983-12-29 1985-07-27 Hitachi Ltd Compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172919A (en) * 1988-11-02 1994-06-21 Toshiba Corp Machine tool, precision measuring instrument and molding die using low thermal expansion cast iron
JP2568022B2 (en) * 1988-11-02 1996-12-25 株式会社東芝 Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron
US6344095B1 (en) 1999-07-08 2002-02-05 Hitachi Metals, Ltd. Low-thermal expansion cast steel with excellent machinability
JP2008523393A (en) * 2004-12-07 2008-07-03 ハネウェル・インターナショナル・インコーポレーテッド Super Invar magnetic return path for high performance accelerometers
FR3051803A1 (en) * 2016-05-31 2017-12-01 Ferry Capitain MOLDED STEEL ALLOY, PART AND METHOD OF MANUFACTURING THE SAME
EP3252175A1 (en) * 2016-05-31 2017-12-06 Ferry Capitain Molded steel alloy, corresponding part and manufacturing method

Also Published As

Publication number Publication date
JPH0258337B2 (en) 1990-12-07

Similar Documents

Publication Publication Date Title
RU2221891C1 (en) Aluminum-based alloy, article made from such alloy and method of manufacture of such article
US4904447A (en) Low thermal expansion casting alloy having excellent machinability
JPH07504711A (en) Alloy of molybdenum, rhenium and tungsten
Anglezio et al. Characterization of metallurgical grade silicon
CA3062040A1 (en) Low thermal expansion alloy
JPS63162841A (en) Free cutting alloy having low thermal expandability
JP3654899B2 (en) Manufacturing method of high strength low expansion cast iron
JP4253100B2 (en) Low thermal expansion alloy with excellent machinability and manufacturing method thereof
JPH02298236A (en) Low thermal expansion alloy
JPS62284039A (en) Low thermal expansion cast iron
JP2778891B2 (en) High-strength low-expansion cast iron, method for producing the same, and sliding parts and machine parts using the same
JP2568022B2 (en) Machine tools, precision measuring instruments, molding dies, semiconductor devices and electronic manufacturing equipment using low thermal expansion cast iron
JP3749922B2 (en) High strength and high damping capacity Fe-Cr-Mn-Co alloy and method for producing the same
JP4158337B2 (en) Method for producing chromium-zirconium-based copper alloy for continuous casting mold
US3740212A (en) Oxidation resistant austenitic ductile nickel chromium iron
JP3707825B2 (en) Low thermal expansion cast iron and method for producing the same
JPH07179984A (en) Cast iron of high strength and low expansion and its production
WO2023176791A1 (en) Iron casting and method for producing same
JP2585014B2 (en) Free-cutting high-strength low-thermal-expansion cast alloy and method for producing the same
US2169190A (en) Copper base alloy
KR102578486B1 (en) Iron-copper alloy having network structure and method for manufacturing the same
JP2897031B2 (en) Low thermal expansion casting alloy
JP3141288B2 (en) Manufacturing method of low thermal expansion cast alloy
JPS63307240A (en) High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production
KR910002871B1 (en) Low thermal expansion casting alloy having excellent machinability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term