JPH06172907A - Aluminum alloy excellent in strength at high temperature and its molding - Google Patents

Aluminum alloy excellent in strength at high temperature and its molding

Info

Publication number
JPH06172907A
JPH06172907A JP35185792A JP35185792A JPH06172907A JP H06172907 A JPH06172907 A JP H06172907A JP 35185792 A JP35185792 A JP 35185792A JP 35185792 A JP35185792 A JP 35185792A JP H06172907 A JPH06172907 A JP H06172907A
Authority
JP
Japan
Prior art keywords
alloy
strength
aluminum alloy
high temperature
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35185792A
Other languages
Japanese (ja)
Inventor
Hiroshi Isaki
博 伊崎
Masanori Yoshino
正規 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP35185792A priority Critical patent/JPH06172907A/en
Publication of JPH06172907A publication Critical patent/JPH06172907A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Al alloy having more excellent strength at high temp. than the conventional strength and to provide a molding of the Al alloy. CONSTITUTION:This powdery Al alloy consists of 15-25wt.%, in total, of one of >=2 kinds among Fe, Mn, Ni and Cr as transition metals and the balance essentially Al and contains a fine lump transition metal-Al compd, dispersed uniformly in a matrix. Among the transition metals, Fe is preferable because it is less expensive than Al and raw material for Fe is easily available, as well. This Al alloy may contain <=3wt.%, in total, of one or >=2 kinds among Mo, V, Ti and Zr besides the above-mentioned alloying components. This Al alloy is formed into the objective prescribed molding by hot plastic working.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温強度に優れたアル
ミニウム合金及びその成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy excellent in high temperature strength and a molded product thereof.

【0002】[0002]

【従来の技術】自動車や自動二輪車等の内燃機関に使用
される部品、例えばピストンや連節棒あるいはブレーキ
ロータ等は、高温下での激しい運動に耐える強度を有す
るものでなければならない。一方、近年、自動車等の軽
量化や省エネルギーの見地から部品の軽量化が望まれて
いる。このため、前記高温強度が要求される部品につい
てもアルミニウム合金(JIS 2000番系列の高力アルミニ
ウム合金) が使用されている。
2. Description of the Related Art Parts used in internal combustion engines such as automobiles and motorcycles, such as pistons, connecting rods, brake rotors, and the like, must have strength to withstand vigorous motion at high temperatures. On the other hand, in recent years, weight reduction of parts has been desired from the viewpoint of weight reduction of automobiles and energy saving. For this reason, aluminum alloys (JIS 2000 series high-strength aluminum alloys) are also used for parts requiring high-temperature strength.

【0003】溶製合金は合金含有量に限度があり、高温
強度にも限度があるため、更に、高温強度の向上を目指
して、Feを過飽和に含有したFe−アルミニウム合金
(Al合金)粉末の熱間塑性加工材であるFe−Al合
金が研究開発されつつある。かかる粉末によって熱間成
形された押出材や鍛造材は、溶製材では具備することの
ない優れた材質特性を有し、耐熱性機械部品等の素材と
して好適である。
Since the ingot alloy has a limit in alloy content and a limit in high temperature strength, further, in order to improve high temperature strength, a Fe-aluminum alloy (Al alloy) powder containing Fe in a supersaturated state is prepared. Fe-Al alloys, which are hot plastic working materials, are being researched and developed. The extruded material and the forged material which are hot-formed by such a powder have excellent material properties that the ingot material does not have, and are suitable as materials for heat-resistant mechanical parts and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Al合
金中のFeの含有量は10wt%が限度であると言われてい
る。従来、Al合金粉末はガスアトマイズ法により製造
されているが、冷却能に優れたHe ガスを噴霧媒として
用いても、10wt%を越えると、針状のFe−Al化合物
(FeAl3)が生成し、この針状化合物が原因となって、押
出材や鍛造材の高温強度を低下させるようになるからで
ある。
However, it is said that the Fe content in the Al alloy is limited to 10% by weight. Conventionally, Al alloy powder has been produced by a gas atomizing method, but even if He gas, which has excellent cooling ability, is used as a spray medium, if it exceeds 10 wt%, needle-like Fe-Al compound (FeAl 3 ) is produced. This is because the needle-shaped compound causes a decrease in the high temperature strength of the extruded material or the forged material.

【0005】本発明はかかる問題に鑑みなされたもの
で、従来よりも優れた高温強度を有するAl合金及びそ
の成形体を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an Al alloy having a high-temperature strength superior to conventional ones and a molded body thereof.

【0006】[0006]

【課題を解決するための手段】本発明のAl合金粉末
は、Fe、Mn、Ni、Crからなる遷移金属の一種又
は二種以上を総計で15〜25wt%含有し、残部が実質的に
Alからなり、基地中に微細な塊状の遷移金属−Al化
合物が均一に分散している。前記遷移金属の内でFeは
Alに比して安価で、原料の入手も容易であるので好適
である。また、前記合金成分に加えてMo、V、Ti、
Zrの一種又は二種以上を総計で 3wt%以下含有するこ
とができる。上記のAl合金は熱間押出や熱間鍛造等の
熱間塑性加工により所定の成形体に成形される。
The Al alloy powder of the present invention contains a total of 15 to 25 wt% of one or more transition metals consisting of Fe, Mn, Ni and Cr, and the balance is substantially Al. The fine lump-shaped transition metal-Al compound is uniformly dispersed in the matrix. Of the above transition metals, Fe is cheaper than Al, and the raw material is easily available, which is preferable. In addition to the above alloy components, Mo, V, Ti,
One or two or more types of Zr can be contained in a total amount of 3 wt% or less. The above Al alloy is formed into a predetermined compact by hot plastic working such as hot extrusion and hot forging.

【0007】[0007]

【作用】本発明のAl合金は、Fe、Mn、Ni、Cr
からなる遷移金属の一種又は二種以上を総計で15〜25wt
%含有しているため、基地中にFe−Al化合物等の遷
移金属−Al化合物が多量に生成し、高温強度の向上が
図られる。15%未満ではAl化合物量が少なく、従来に
比して高温強度の顕著な向上が望めない。一方25%を越
えるとAl化合物量が過多となり、材質が脆くなると共
に化合物の形状が針状化し、強度の劣化を生じる。Al
合金中に生成したAl化合物の形態は、微細な塊状であ
るため、基地中に多量に生成しても、強度の劣化が生じ
難い。また、前記合金成分に加えてMo、V、Ti、Z
rの一種又は二種以上を総計で 3wt%以下含有すること
により、高温強度をより一層向上させることができる。
これらの金属は高融点材であるので、Al合金粉末原料
の溶解の容易性を考慮して3%以下に止められる。尚、
Crも単体では高融点材であるが、Alと合金化すると
融点の低下が著しく、Fe等と同様に取り扱われる。因
みに、Al−15wt%Feの融点は975 ℃、Al−15wt%
Crのそれは980 ℃である。
The Al alloy of the present invention is made of Fe, Mn, Ni, Cr.
15 to 25 wt in total of one or more transition metals consisting of
%, A large amount of transition metal-Al compound such as Fe-Al compound is generated in the matrix, and the high temperature strength is improved. If it is less than 15%, the amount of Al compound is small, and a remarkable improvement in high temperature strength cannot be expected as compared with the conventional case. On the other hand, if it exceeds 25%, the amount of Al compound becomes excessive, the material becomes brittle, and the shape of the compound becomes acicular, resulting in deterioration of strength. Al
Since the form of the Al compound formed in the alloy is a fine lump, even if a large amount is formed in the matrix, the strength is unlikely to deteriorate. In addition to the above alloy components, Mo, V, Ti, Z
By containing one or two or more of r in a total amount of 3 wt% or less, the high temperature strength can be further improved.
Since these metals are high melting point materials, they can be kept at 3% or less in consideration of the ease of melting the Al alloy powder raw material. still,
Cr is also a high-melting point material by itself, but when alloyed with Al, the melting point is remarkably lowered, and it is handled like Fe. By the way, the melting point of Al-15wt% Fe is 975 ℃, Al-15wt%
That of Cr is 980 ° C.

【0008】本発明合金にかかる遷移金属過飽和の原料
粉末を得るには、冷却速度を105℃/秒以上に高くす
る必要がある。かかる冷却速度により、遷移金属−Al
化合物の形態が塊状になり、その大きさも数μm 程度の
微細なものとなる。
In order to obtain the transition metal supersaturated raw material powder according to the alloy of the present invention, it is necessary to increase the cooling rate to 10 5 ° C / sec or more. Due to such cooling rate, transition metal-Al
The morphology of the compound becomes a lump, and its size becomes a fine particle of about several μm.

【0009】[0009]

【実施例】旋回水流法あるいはArガスアトマイズ法に
より、表1の組成を有する、平均粒径200 μm のAl合
金粉末を製造した。回転水流法とは、特開平4−176
05号公報に開示されているように、冷却用筒体の内周
面に旋回しながら流下する冷却水層を形成し、該冷却水
層に溶融金属流の噴流を供給し、これを旋回する冷却液
層によって分断し、急冷凝固させて金属粉末を得る方法
である。該製造法によると、平均粒径が200 μm という
ような比較的大きな粒子でも、105 ℃/sec以上の冷却
速度が容易に得られる。
EXAMPLE An Al alloy powder having an average particle size of 200 μm and having the composition shown in Table 1 was produced by a swirling water flow method or an Ar gas atomizing method. The rotary water flow method is disclosed in JP-A-4-176.
As disclosed in Japanese Patent Laid-Open No. 05-2005, a cooling water layer that flows down while swirling is formed on the inner peripheral surface of a cooling cylinder, and a jet of a molten metal flow is supplied to the cooling water layer and swirling this. This is a method of obtaining a metal powder by dividing the material into cooling liquid layers and rapidly solidifying. According to this production method, a cooling rate of 10 5 ° C / sec or more can be easily obtained even with relatively large particles having an average particle diameter of 200 µm.

【0010】[0010]

【表1】 [Table 1]

【0011】前記回転水流法により製造したFe15%の実
施例1のFe−Al合金粉末の組織写真( 倍率3300倍)
を図1に示す。同図より、基地中には針状のFe−Al
化合物は認められず、微細な塊状の同化合物が基地中に
凝集した状態で略均一に分散している様子が観察され
る。
Microstructure photograph of the Fe-Al alloy powder of Example 1 containing 15% of Fe produced by the rotating water flow method (magnification: 3300)
Is shown in FIG. From the figure, needle-like Fe-Al is present in the base.
No compound was observed, and it was observed that the compound in the form of fine lumps was dispersed in the matrix in a substantially uniform manner.

【0012】上記Al合金粉末を540 ℃に加熱し、押出
比4で押し出した。押出温度は高温に加熱するとFe−
Al化合物が針状のものに変態するので、550 ℃以下に
止めておくのがよい。押出材より引張試験片を採取し、
室温及び各種高温における機械的強度を調べた。その結
果を表2に示す。従来例と比較例1より、ガスアトマイ
ズではFe含有量を増やしても常温強度はそれほど向上
しないことが分かる。これに対して、冷却速度が大きい
実施例では、Fe、Ni等の遷移金属含有量が増えるほ
ど、またMo、V等の元素が含有されるほど、強度が向
上している。また、同じFe含有量でも実施例1は比較
例1に対して著しく高強度であることが分かる。また、
実施例は300 ℃における高温強度も238 MPa (24.2kgf/m
m2) 以上であり、優れた高温強度を有している。また、
Siを含有した比較例2及び3では、Feを15%含有さ
せても、強度が低く、伸びが少なく、耐衝撃性を期待し
にくい。もっとも、Si含有合金については、かかる耐
衝撃性を要求されないものに対しては使用可能であろ
う。
The Al alloy powder was heated to 540 ° C. and extruded at an extrusion ratio of 4. When the extrusion temperature is raised to a high temperature, Fe-
Since the Al compound is transformed into a needle-shaped one, it is preferable to keep it at 550 ° C or lower. Take a tensile test piece from the extruded material,
The mechanical strength at room temperature and various high temperatures was investigated. The results are shown in Table 2. From the conventional example and the comparative example 1, it can be seen that in gas atomization, the room temperature strength does not improve so much even if the Fe content is increased. On the other hand, in Examples having a high cooling rate, the strength is improved as the content of transition metals such as Fe and Ni is increased and the content of elements such as Mo and V is contained. Further, it can be seen that even with the same Fe content, Example 1 has significantly higher strength than Comparative Example 1. Also,
In the example, the high temperature strength at 300 ° C is also 238 MPa (24.2 kgf / m
m 2 ) or more, and has excellent high temperature strength. Also,
In Comparative Examples 2 and 3 containing Si, even if 15% Fe is contained, the strength is low, the elongation is small, and the impact resistance is difficult to expect. However, Si-containing alloys can be used for those that do not require such impact resistance.

【0013】[0013]

【表2】 [Table 2]

【0014】また、押出材より硬度試験片を採取し、所
定温度に加熱し、昇温状態における表面硬度(ビッカー
ス硬度)を測定した。その結果を表3に示す。表3よ
り、実施例では400 ℃程度に加熱しても、常温における
従来例程度の硬度は確保されており、実施例は耐熱性も
良好であることが分かる。Fe含有量が同じ実施例1と
比較例2及び3を比べると、Siが含有された比較例の
方が耐熱性は概ね良好であるが、既述の通り、耐衝撃性
が期待しにくい。
Further, a hardness test piece was sampled from the extruded material, heated to a predetermined temperature, and the surface hardness (Vickers hardness) in a temperature rising state was measured. The results are shown in Table 3. It can be seen from Table 3 that in the examples, even when heated to about 400 ° C., the hardness of the conventional example is maintained at room temperature, and the examples have good heat resistance. Comparing Example 1 and Comparative Examples 2 and 3 having the same Fe content, the comparative example containing Si has generally better heat resistance, but as described above, it is difficult to expect impact resistance.

【0015】[0015]

【表3】 [Table 3]

【0016】次に、押出材より硬度試験片を採取し、熱
安定性を調べるため、保持温度を種々変えて所定時間保
持した後、冷却後の室温における硬度(ビッカース硬
度)を測定した。その結果を表4に示す。表4より、実
施例1では500 ℃、100 hrまで加熱しても硬度はHv11
0 以上と非常に高く、この値は従来例の常温硬度以上で
あり、また従来例に比して硬度の低下率も低く、熱安定
性に優れていることが分かる。因みに、500 ℃、100 h
r保持の場合、従来例の硬度は常温時の67%であるのに
対し、実施例1では84%である。
Next, a hardness test piece was sampled from the extruded material, and in order to examine the thermal stability, the holding temperature was variously changed and the sample was held for a predetermined time, and then the hardness at room temperature after cooling (Vickers hardness) was measured. The results are shown in Table 4. From Table 4, in Example 1, the hardness is Hv11 even when heated to 500 ° C. and 100 hr.
It is very high as 0 or more, which is equal to or higher than the room temperature hardness of the conventional example, the rate of decrease in hardness is lower than that of the conventional example, and the thermal stability is excellent. By the way, 500 ℃, 100 h
In the case of holding r, the hardness of the conventional example is 67% at room temperature, whereas it is 84% in Example 1.

【0017】[0017]

【表4】 [Table 4]

【0018】前記熱安定性の硬度試験において、Fe15%
の実施例1に係るFe−Al合金粉末の押出材を500 ℃
で2時間保持した後の同材の金属組織写真( 倍率3300
倍) を図2に示す。同写真より、凝集していたFe−A
l化合物が1〜3μm の微細な大きさで基地中に均一に
分散している様子が観察される。また、本実施例では、
500 ℃というような高温で保持しても、針状のFe−A
l化合物が析出しておらず、硬度低下が生じ難いことが
分かる。
In the heat stability hardness test, Fe 15%
Of the extruded material of Fe-Al alloy powder according to Example 1 of
Photograph of the metal structure of the same material after holding for 2 hours (magnification 3300
2) is shown in FIG. From the same picture, Fe-A that had aggregated
It is observed that the 1-compound is uniformly dispersed in the matrix with a fine size of 1 to 3 μm. Further, in this embodiment,
Needle-like Fe-A even when kept at a high temperature of 500 ° C
It can be seen that the l-compound is not deposited and the hardness is less likely to decrease.

【0019】[0019]

【発明の効果】以上説明した通り、本発明のアルミニウ
ム合金は、Fe、Ni等の特定の遷移金属をを15〜25wt
%含有し、必要によりMo、Ti等の元素を3 wt%以下
含有し、残部が実質的にAlからなり、基地中に微細な
塊状の遷移金属−Al化合物が均一に分散しているの
で、基地中に多量のAl化合物を生成させることがで
き、しかもその形態が微細な塊状であるため、強度低下
を招来することなく、優れた高温強度を確保することが
できる。
As described above, the aluminum alloy of the present invention contains 15 to 25 wt% of a specific transition metal such as Fe or Ni.
%, Optionally containing elements such as Mo and Ti in an amount of 3 wt% or less, and the balance substantially consisting of Al, and since a fine lumpy transition metal-Al compound is uniformly dispersed in the matrix, It is possible to generate a large amount of Al compound in the matrix, and since the form is a fine lump, it is possible to secure excellent high-temperature strength without causing a decrease in strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係るFe−Al合金粉末の金属組織写
真( 倍率3300倍) である。
FIG. 1 is a photograph of a metal structure of a Fe—Al alloy powder according to an example (magnification: 3300 times).

【図2】Fe15%の実施例に係るFe−Al合金粉末
を用いて押し出された押出材を500℃で2時間保持し
た後の同材の金属組織写真( 倍率3300倍) である。
FIG. 2 is a metallographic photograph (magnification: 3300 times) of an extruded material extruded using an Fe—Al alloy powder according to an example containing 15% of Fe, which was held at 500 ° C. for 2 hours.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Feを15〜25wt%含有し、残部が実質的
にAlからなり、基地中に微細な塊状のFe−Al化合
物が均一に分散していることを特徴とする高温強度に優
れたアルミニウム合金。
1. An excellent high temperature strength characterized by containing 15 to 25 wt% of Fe, the balance being substantially Al, and fine lumped Fe-Al compounds uniformly dispersed in the matrix. Aluminum alloy.
【請求項2】 Fe、Mn、Ni、Crからなる遷移金
属の一種又は二種以上を総計で15〜25wt%含有し、残部
が実質的にAlからなり、基地中に微細な塊状の遷移金
属−Al化合物が均一に分散していることを特徴とする
高温強度に優れたアルミニウム合金。
2. A fine lumpy transition metal in a matrix, containing one or two or more kinds of transition metals consisting of Fe, Mn, Ni and Cr in a total amount of 15 to 25 wt%, and the balance substantially consisting of Al. An aluminum alloy excellent in high-temperature strength, characterized in that an Al compound is uniformly dispersed.
【請求項3】 Fe、Mn、Ni、Crからなる遷移金
属の一種又は二種以上を総計で15〜25wt%、及びMo、
V、Ti、Zrの一種又は二種以上を総計で3wt%以下
含有し、残部が実質的にAlからなり、基地中に微細な
塊状の遷移金属−Al化合物が均一に分散していること
を特徴とする高温強度に優れたアルミニウム合金。
3. A total of 15 to 25 wt% of one or more transition metals consisting of Fe, Mn, Ni and Cr, and Mo,
V, Ti, or Zr is contained in a total amount of 3 wt% or less, and the balance substantially consists of Al, and a fine lump of transition metal-Al compound is uniformly dispersed in the matrix. Aluminum alloy with excellent high temperature strength.
【請求項4】 請求項1、2又は3に記載したアルミニ
ウム合金を用いて熱間塑性加工により所定形状に成形さ
れたことを特徴とするアルミニウム合金成形体。
4. An aluminum alloy compact formed by hot plastic working using the aluminum alloy according to claim 1, 2 or 3.
JP35185792A 1992-12-07 1992-12-07 Aluminum alloy excellent in strength at high temperature and its molding Pending JPH06172907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35185792A JPH06172907A (en) 1992-12-07 1992-12-07 Aluminum alloy excellent in strength at high temperature and its molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35185792A JPH06172907A (en) 1992-12-07 1992-12-07 Aluminum alloy excellent in strength at high temperature and its molding

Publications (1)

Publication Number Publication Date
JPH06172907A true JPH06172907A (en) 1994-06-21

Family

ID=18420084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35185792A Pending JPH06172907A (en) 1992-12-07 1992-12-07 Aluminum alloy excellent in strength at high temperature and its molding

Country Status (1)

Country Link
JP (1) JPH06172907A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130451A (en) * 1984-04-04 1986-06-18 アライド・コ−ポレ−シヨン Aluminum/iron/vanadium alloy having high strength at high temperature
JPS6233738A (en) * 1985-08-07 1987-02-13 Toyo Alum Kk Heat resistant aluminum alloy for powder metallurgical processing and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130451A (en) * 1984-04-04 1986-06-18 アライド・コ−ポレ−シヨン Aluminum/iron/vanadium alloy having high strength at high temperature
JPS6233738A (en) * 1985-08-07 1987-02-13 Toyo Alum Kk Heat resistant aluminum alloy for powder metallurgical processing and its manufacture

Similar Documents

Publication Publication Date Title
US4359352A (en) Nickel base superalloys which contain boron and have been processed by a rapid solidification process
JP4923498B2 (en) High strength and low specific gravity aluminum alloy
JP3142659B2 (en) High strength, heat resistant aluminum base alloy
JPH03257133A (en) High strength heat resistant aluminum-based alloy
US6074497A (en) Highly wear-resistant aluminum-based composite alloy and wear-resistant parts
JP4764094B2 (en) Heat-resistant Al-based alloy
JPH0116292B2 (en)
JP2798841B2 (en) High-strength and heat-resistant aluminum alloy solidified material and method for producing the same
JPH0153342B2 (en)
EP0171798B1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JP2019183191A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor
JP2711296B2 (en) Heat resistant aluminum alloy
JPH06172907A (en) Aluminum alloy excellent in strength at high temperature and its molding
WO2019193985A1 (en) Compressor part for transport aircraft having excellent mechanical properties at high temperature and manufacturing method thereof
JP2790774B2 (en) High elasticity aluminum alloy with excellent toughness
JP3485961B2 (en) High strength aluminum base alloy
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JPH10298684A (en) Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
JPH1143729A (en) Manufacture of aluminum composite excellent in high temperature strength
JP4699787B2 (en) Heat-resistant Al-based alloy with excellent wear resistance and rigidity
JP3234380B2 (en) Heat resistant aluminum powder alloy
EP0336981A1 (en) Heat-resistant aluminum alloy and process for its production
JP3234379B2 (en) Heat resistant aluminum powder alloy
JP2798840B2 (en) High-strength aluminum-based alloy integrated solidified material and method for producing the same