JPH06172894A - Sliding contact point material and its production - Google Patents

Sliding contact point material and its production

Info

Publication number
JPH06172894A
JPH06172894A JP5089129A JP8912993A JPH06172894A JP H06172894 A JPH06172894 A JP H06172894A JP 5089129 A JP5089129 A JP 5089129A JP 8912993 A JP8912993 A JP 8912993A JP H06172894 A JPH06172894 A JP H06172894A
Authority
JP
Japan
Prior art keywords
sliding contact
contact material
phase
contact point
agcu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5089129A
Other languages
Japanese (ja)
Inventor
Takao Asada
敬雄 麻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Mabuchi Motor Co Ltd
Original Assignee
Tanaka Kikinzoku Kogyo KK
Mabuchi Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Mabuchi Motor Co Ltd filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP5089129A priority Critical patent/JPH06172894A/en
Publication of JPH06172894A publication Critical patent/JPH06172894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To provide a working method for a sliding contact point material where wear resistance is improved and the generation of wear particle and the occurrence of noise is prevented. CONSTITUTION:This material is a contact point material where a Cu alpha phase of <=2mum average grain size is finely and uniformly dispersed in an Agalpha phase in an AgCu alloy containing 0.1-8wt.% Cu and which further contains at least one or more elements selected from Ge, Ni, Sn, In, Zn, Mg, Mn, Sb, Pb, and Bi by 0.1-2wt.%. The contact point material is held at a temp. not higher than the solidus temp. in the AgCu binary system phase diagram of the composition and not lower than the solubility curve temp., cooled rapidly, cold-worked at >=50% draft, heat-treated at 200-600 deg.C for 0.1-1hr, and then cold-worked at >=30% draft.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、摺動接点材料及びその
加工方法に係り、特にマイクロモータに好適なコミテー
タ材料及び加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding contact material and a processing method thereof, and more particularly to a commutator material and a processing method suitable for a micromotor.

【0002】[0002]

【従来の技術】従来より摺動接点材料の1つとしてAg
Cu合金が用いられてきたが、AgCu合金はその金属
組織が十分にコントロールされておらず加工条件によっ
てはCu原子がAgα相中に一部固溶し、残部はCuα
相としてAgα相中に分散していた。このCu粒子は摺
動時に酸化され、酸化物粒子となって潤滑剤となるが、
その量は十分ではなかった。またAgα相へのCu原子
の固溶量も少ない為、固溶体硬化が小さく、その結果摺
動時に起こる材料の軟化に伴う摩耗を軽減させる効果が
不十分となっていた。従って、製造時の金属組織のばら
つきによって摺動時に早く摩耗するものが発生し、耐摩
耗性が不十分であった。しかもこの材料でコミテータを
製作したマイクロモータの場合には刷子接点との摺動に
より摩耗粉が多量に発生し、ノイズの原因となってい
た。
2. Description of the Related Art Ag has been conventionally used as one of sliding contact materials.
Although a Cu alloy has been used, the metal structure of the AgCu alloy is not sufficiently controlled, and some Cu atoms are solid-solved in the Agα phase depending on processing conditions, and the rest is Cuα.
It was dispersed in the Agα phase as a phase. These Cu particles are oxidized during sliding and become oxide particles to serve as a lubricant.
That amount was not enough. Further, since the solid solution amount of Cu atoms in the Agα phase is small, the solid solution hardening is small, and as a result, the effect of reducing the wear caused by the softening of the material during sliding is insufficient. Therefore, some of the materials wear rapidly during sliding due to variations in the metal structure during manufacturing, and the wear resistance was insufficient. In addition, in the case of a micromotor whose commutator is made of this material, a large amount of abrasion powder is generated due to sliding with the brush contact, which causes noise.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明は、耐摩
耗性を向上させ、摩耗粉の発生を軽減しノイズの発生を
抑えるようにした摺動接点材料及びその加工方法を提供
しようとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention is intended to provide a sliding contact material having improved wear resistance, reduced generation of abrasion powder and suppressed generation of noise, and a method of processing the same. Is.

【0004】[0004]

【問題を解決するための手段】上記課題を解決するため
の本発明の摺動接点材料の1つは、Cuを 0.1〜8重量
%含有するAgCu合金において、Cuα相が2μm以
下の平均粒径でAgα相中に均一微細に分散しているこ
とを特徴とする。
One of the sliding contact materials of the present invention for solving the above-mentioned problems is an AgCu alloy containing 0.1 to 8% by weight of Cu and having an average particle size of Cuα phase of 2 μm or less. And is uniformly dispersed in the Agα phase.

【0005】本発明の摺動接点材料の他の1つは、前記
摺動接点材料において、さらにGe、Ni、Sn、I
n、Zn、Mg、Mn、Sb、Pb及びBiより選択さ
れる少なくとも1種以上を 0.1〜2重量%含有している
ことを特徴とするものである。
Another one of the sliding contact materials of the present invention is the above sliding contact material, further comprising Ge, Ni, Sn and I.
It is characterized by containing 0.1 to 2 wt% of at least one selected from n, Zn, Mg, Mn, Sb, Pb and Bi.

【0006】本発明の摺動接点材料の製造方法は、前記
2つの摺動接点材料のいずれかを、その組成におけるA
gCu二元系状態図での固相線温度以下及び溶解度曲線
温度以上の温度に保持した後急冷し、その後50%以上の
加工率で冷間加工を行ない、次いで 200〜 600℃にて
0.1〜1時間熱処理を行ない、然る後30%以上の加工率
で冷間加工を行なうことを特徴とするものである。
In the method for producing a sliding contact material of the present invention, one of the above two sliding contact materials is used in the composition A
Hold at temperatures below the solidus temperature and above the solubility curve temperature in the gCu binary system diagram, then quench, then cold work at a working rate of 50% or more, and then at 200-600 ℃
It is characterized in that heat treatment is carried out for 0.1 to 1 hour, and then cold working is carried out at a working rate of 30% or more.

【0007】[0007]

【作用】上記のように、本発明の摺動接点材料の1つ
は、Agα相中に平均粒径で2μm以下のCu粒子が均
一微細に分散しているので、このCu粒子が摺動中に酸
化して酸化物粒子となり、これが潤滑剤として働くので
摩耗が軽減される。ここでCu粒子の粒径を2μm以下
としたのは、2μmより大きくなると潤滑効果がなくな
るという問題があるためである。
As described above, one of the sliding contact materials of the present invention is that the Cu particles having an average particle diameter of 2 μm or less are uniformly and finely dispersed in the Agα phase. Oxidize into oxide particles, which act as a lubricant to reduce wear. Here, the particle size of the Cu particles is set to 2 μm or less because there is a problem that the lubricating effect is lost when the particle size is larger than 2 μm.

【0008】さらに上記摺動接点材料は、Ge、Ni、
Sn、In、Zn、Mg、Mn、Sb、Pb及びBiよ
り選択される少なくとも1種以上を 0.1〜2重量%の範
囲で含有させることにより、摩耗を軽減させる効果がさ
らに向上する。ここで含有させる範囲を 0.1〜2重量%
としたのは、 0.1重量%未満では添加による摩耗軽減効
果が発揮できず、2重量%を超えると接触抵抗が高くな
りすぎるという問題が生じてしまうためである。
Further, the above sliding contact materials are Ge, Ni,
By containing at least one selected from Sn, In, Zn, Mg, Mn, Sb, Pb and Bi in the range of 0.1 to 2% by weight, the effect of reducing wear is further improved. The range of inclusion here is 0.1 to 2% by weight
The reason is that if it is less than 0.1% by weight, the effect of reducing wear by addition cannot be exhibited, and if it exceeds 2% by weight, the contact resistance becomes too high.

【0009】さらに本発明の摺動接点材料の製造方法
は、AgCu合金材料を溶体化処理し、Cuの析出粒子
を一担固溶させ、その後冷間加工、熱処理を行なうこと
により、Agα相中にCu粒子を均一微細に析出させる
ことができる。溶体化処理後の冷間加工を加工率50%以
上としたのは、50%未満ではその後に行なう熱処理によ
るCuの析出が不均一になってしまうためである。また
仕上げの冷間加工を加工率30%以上で行なうのは、熱処
理により軟化した材料を加工硬化させるためであり、30
%未満の加工率では加工硬化が充分得られないものであ
る。このようにして製造された本発明の摺動接点材料は
耐摩耗性が大変改善され、例えばこの材料でコミテータ
を製作したマイクロモータの場合、刷子接点との摺動時
の摩耗が軽減され、摩耗粉により起こるノイズを軽減す
ることができるものである。
Further, according to the method for producing a sliding contact material of the present invention, the AgCu alloy material is subjected to solution treatment, the precipitated particles of Cu are supported and solid-solved, and then cold working and heat treatment are carried out, whereby the Agα phase is formed. Cu particles can be uniformly and finely deposited. The cold working after the solution treatment is set to a working rate of 50% or more because if it is less than 50%, the precipitation of Cu will be non-uniform due to the subsequent heat treatment. The reason that cold working for finishing is performed at a working rate of 30% or more is to work-harden the material softened by heat treatment.
If the processing rate is less than%, sufficient work hardening cannot be obtained. The sliding contact material of the present invention produced in this way has a significantly improved wear resistance. The noise caused by the powder can be reduced.

【0010】[0010]

【実施例】本発明の摺動接点材料及びその製造方法の実
施例を比較例、従来例と共に説明する。下記の表1の成
分組成の実施例1の材料は 750℃にて、1時間保持した
後、水冷しその後51%の加工率で伸線加工を行ない、さ
らに 400℃で1時間熱処理し、さらにその後49%の加工
率で伸線加工を行った。実施例2〜12および比較例1〜
2の材料は、 700℃にて30分間保持した後、水冷し、そ
の後51%の加工率で伸線加工を行ない、さらに 300℃で
1時間熱処理し、さらにその後49%の加工率で伸線加工
を行なった。また従来例の材料は 550℃にて1時間保持
した後、空冷し、その後49%の加工率で伸線加工を行っ
た。
EXAMPLES Examples of the sliding contact material of the present invention and a method for producing the same will be described together with comparative examples and conventional examples. The material of Example 1 having the composition shown in Table 1 below was held at 750 ° C. for 1 hour, cooled with water, and then wire-drawn at a working rate of 51%, and further heat treated at 400 ° C. for 1 hour. After that, wire drawing was performed at a processing rate of 49%. Examples 2-12 and Comparative Examples 1-
Material No. 2 is kept at 700 ° C for 30 minutes, cooled with water, then drawn at a working rate of 51%, heat-treated at 300 ° C for 1 hour, and then drawn at a working rate of 49%. Processing was performed. The material of the conventional example was held at 550 ° C. for 1 hour, air-cooled, and then drawn at a working rate of 49%.

【0011】[0011]

【表1】 [Table 1]

【0012】このようにして製作した材料のAgα相の
格子定数は実施例1で 4.077Å、実施例2で 4.083Å、
従来例で 4.063Åであった。Vegard則により実施
例1、実施例2及び従来例におけるCuの固溶量はそれ
ぞれ 1.2重量%、0.39重量%及び3重量%であった。
The lattice constant of the Agα phase of the material thus manufactured was 4.077Å in Example 1, 4.083Å in Example 2,
It was 4.063Å in the conventional example. According to Vegard's law, the solid solution amounts of Cu in Examples 1, 2 and the conventional example were 1.2% by weight, 0.39% by weight and 3% by weight, respectively.

【0013】然して上記組成の実施例1〜12、比較例1
〜2及び従来例の試験材料として直径2mmの丸棒を用
い、同径のAg−Pd50%の丸棒と十字交差させて、下
記の試験条件にて摺動試験を行ない、摩耗量と接触抵抗
を求めた処、下記の表2に示すような結果を得た。
However, Examples 1 to 12 and Comparative Example 1 having the above composition
As a test material of ~ 2 and the conventional example, a round bar having a diameter of 2 mm was used, and a cross bar was crossed with a round bar of Ag-Pd50% having the same diameter, and a sliding test was performed under the following test conditions, and the wear amount and contact resistance Was obtained, the results shown in Table 2 below were obtained.

【0014】 試験条件 電流 DC 170mA 摺動接点 20mm/sec 荷重 25g テスト時間 333分 温度 25℃ 湿度 50%RHTest conditions Current DC 170mA Sliding contact 20mm / sec Load 25g Test time 333 minutes Temperature 25 ° C Humidity 50% RH

【0015】[0015]

【表2】 [Table 2]

【0016】上記の表2で明らかなように実施例1〜12
の摺動接点材料は従来例の摺動接点材料に比べ摩耗量が
著しく少なく、接触抵抗が著しく低いことが判る。また
比較例1の摺動接点材料は接触抵抗が低いかわりに摩耗
量が多く、比較例2では、摩耗量が少ないかわりに接触
抵抗が高いという問題点があり、実施例1〜12の摺動接
点材料に比べて劣るものである。
As can be seen in Table 2 above, Examples 1-12
It can be seen that the sliding contact material of (1) has a significantly smaller amount of wear than the sliding contact material of the conventional example, and the contact resistance is significantly low. The sliding contact material of Comparative Example 1 has a large amount of wear in spite of low contact resistance, and the Comparative Example 2 has a problem of high contact resistance in spite of a small amount of wear. It is inferior to contact materials.

【0017】[0017]

【発明の効果】以上の通り本発明の摺動接点材料は、A
gα相中にCu粒子が均一微細に分散しているので、こ
のCu粒子が摺動中に酸化して酸化物粒子となり、これ
が潤滑剤として働くので、摩耗が軽減される。またさら
にGe、Ni、Sn、In、Zn、Mg、Mn、Sb、
Pb及びBiの内少なくとも1種以上を添加することに
より、摩耗が軽減されている。また溶体化処理を行なっ
た材料をそのまま熱処理すると、Cu粒子がAgα相の
結晶粒界から不連続に析出するため、非常に不均一にな
ってしまうが、本発明の摺動接点材料の製造方法のよう
に溶体化処理と熱処理の間に、加工率50%以上の冷間加
工工程を入れることによって、Cu粒子の析出が非常に
微細でかつ均一になる。また熱処理後加工率30%以上の
冷間加工を行うことによって、加工硬化し、耐摩耗性を
向上させるものである。
As described above, the sliding contact material of the present invention is
Since the Cu particles are uniformly and finely dispersed in the gα phase, the Cu particles oxidize during sliding to become oxide particles, which serve as a lubricant, which reduces wear. Furthermore, Ge, Ni, Sn, In, Zn, Mg, Mn, Sb,
Wear is reduced by adding at least one of Pb and Bi. Further, if the solution-treated material is heat-treated as it is, Cu particles are discontinuously precipitated from the grain boundaries of the Agα phase, resulting in very unevenness. However, the method for producing the sliding contact material of the present invention By including a cold working step with a working ratio of 50% or more between the solution treatment and the heat treatment as described above, the precipitation of Cu particles becomes extremely fine and uniform. Further, by performing cold working at a working rate of 30% or more after heat treatment, work hardening is performed and wear resistance is improved.

【0018】従ってこの材料で製作した摺動接点は刷子
接点との摺動時摩耗が軽減され、摩耗粉からくるノイズ
を著しく軽減できる。
Therefore, the sliding contact made of this material can reduce the abrasion during sliding with the brush contact, and can significantly reduce the noise caused by the abrasion powder.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Cuを 0.1〜8重量%含有するAgCu
合金において、Cuα相が2μm以下の平均粒径でAg
α相中に均一微細に分散していることを特徴とする摺動
接点材料。
1. AgCu containing 0.1 to 8% by weight of Cu
In the alloy, the Cuα phase has an average grain size of 2 μm or less
A sliding contact material characterized by being uniformly and finely dispersed in the α phase.
【請求項2】 上記接点材料において、さらにGe、N
i、Sn、In、Zn、Mg、Mn、Sb、Pb及びB
iより選択される少なくとも1種以上を0.1〜2重量%
含有していることを特徴とする請求項1に記載の摺動接
点材料。
2. The contact material further comprises Ge, N
i, Sn, In, Zn, Mg, Mn, Sb, Pb and B
0.1 to 2% by weight of at least one selected from i
The sliding contact material according to claim 1, wherein the sliding contact material is contained.
【請求項3】 Cuを 0.1〜8重量%含有するAgCu
合金を、その組成におけるAgCu二元系状態図での固
相線温度以下および溶解度曲線温度以上の温度に保持し
た後急冷し、その後50%以上の加工率で冷間加工を行な
い、次いで200〜 600℃にて 0.1〜1時間熱処理を行な
い、然る後30%以上の加工率で冷間加工を行なうことを
特徴とする摺動接点材料の製造方法。
3. AgCu containing 0.1 to 8% by weight of Cu
The alloy is maintained at a temperature below the solidus temperature and above the solubility curve temperature in the AgCu binary system phase diagram in that composition, then quenched, then cold worked at a working rate of 50% or more, and then 200- A method for producing a sliding contact material, which comprises performing heat treatment at 600 ° C for 0.1 to 1 hour and then cold working at a working rate of 30% or more.
【請求項4】 上記AgCu合金が、さらにGe、N
i、Sn、In、Zn、Mg、Mn、Sb、Pb及びB
iより選択される少なくとも1種以上を 0.1〜2重量%
含有することを特徴とする、請求項3に記載の摺動接点
材料の製造方法。
4. The AgCu alloy further comprises Ge, N
i, Sn, In, Zn, Mg, Mn, Sb, Pb and B
0.1 to 2% by weight of at least one selected from i
The method for producing a sliding contact material according to claim 3, wherein the sliding contact material is contained.
JP5089129A 1992-03-25 1993-03-24 Sliding contact point material and its production Pending JPH06172894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5089129A JPH06172894A (en) 1992-03-25 1993-03-24 Sliding contact point material and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-98693 1992-03-25
JP9869392 1992-03-25
JP5089129A JPH06172894A (en) 1992-03-25 1993-03-24 Sliding contact point material and its production

Publications (1)

Publication Number Publication Date
JPH06172894A true JPH06172894A (en) 1994-06-21

Family

ID=26430562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5089129A Pending JPH06172894A (en) 1992-03-25 1993-03-24 Sliding contact point material and its production

Country Status (1)

Country Link
JP (1) JPH06172894A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977294B1 (en) * 2007-12-13 2010-08-23 희성금속 주식회사 AgZnO electric contact material
KR101286292B1 (en) * 2011-03-21 2013-07-19 주식회사 에스티 Manufacturing method of Multi-layered electric contact material and Multi-layered electric contact material
JP2016065308A (en) * 2014-09-18 2016-04-28 三菱マテリアル株式会社 Ag ALLOY SPUTTERING TARGET, PRODUCTION METHOD OF Ag ALLOY SPUTTERING TARGET, Ag ALLOY FILM AND PRODUCTION METHOD OF Ag ALLOY FILM
US10378086B2 (en) 2014-12-26 2019-08-13 Tanaka Kikinzoku Kogyo K.K. Sliding contact material and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977294B1 (en) * 2007-12-13 2010-08-23 희성금속 주식회사 AgZnO electric contact material
KR101286292B1 (en) * 2011-03-21 2013-07-19 주식회사 에스티 Manufacturing method of Multi-layered electric contact material and Multi-layered electric contact material
JP2016065308A (en) * 2014-09-18 2016-04-28 三菱マテリアル株式会社 Ag ALLOY SPUTTERING TARGET, PRODUCTION METHOD OF Ag ALLOY SPUTTERING TARGET, Ag ALLOY FILM AND PRODUCTION METHOD OF Ag ALLOY FILM
JP2017128812A (en) * 2014-09-18 2017-07-27 三菱マテリアル株式会社 Ag ALLOY SPUTTERING TARGET, METHOD FOR PRODUCING Ag ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING Ag ALLOY FILM
US10060025B2 (en) 2014-09-18 2018-08-28 Mitsubishi Materials Corporation Ag alloy sputtering target, method of manufacturing Ag alloy sputtering target, Ag alloy film, and method of forming Ag alloy film
US10378086B2 (en) 2014-12-26 2019-08-13 Tanaka Kikinzoku Kogyo K.K. Sliding contact material and method for manufacturing same

Similar Documents

Publication Publication Date Title
US2842438A (en) Copper-zirconium alloys
JPH0625388B2 (en) High strength, high conductivity copper base alloy
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP6941663B2 (en) Sliding contact material and its manufacturing method
US5972131A (en) Ag-Cu alloy for a sliding contact
JPH06172894A (en) Sliding contact point material and its production
JPH06220555A (en) Sliding contact material and its production
JP2000219931A (en) Cemented carbide and its production
JP2509799B2 (en) Silver-metal oxide material used for electrical contacts
JPH07166268A (en) Stock for sliding contact and production thereof
JPH07166269A (en) Sliding contact material and production thereof
JPS60138038A (en) Aluminum alloy having superior wear resistance and machinability
US3017268A (en) Copper base alloys
JPS6338543A (en) Copper alloy for electronic appliance and its manufacture
KR960015216B1 (en) Making method of cu-zr-ce-la-nb-pd alloy
US3852121A (en) Process for making a novel copper base alloy
JPH07258809A (en) Production of sliding contact material
US3816109A (en) Copper base alloy
US3107998A (en) Copper-zirconium-arsenic alloys
JP6600401B1 (en) Method for producing age-hardening type copper alloy
JP2628235B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JPS589823B2 (en) Cu-based sintered alloy for brush materials
JP2004018879A (en) Steel for cold forging superior in swarf treatment property
JPH06346206A (en) Production of wear resistant copper alloy material
JP2929680B2 (en) Coil spring and manufacturing method thereof