JPH06172879A - Method for generating bubbles in molten metal - Google Patents

Method for generating bubbles in molten metal

Info

Publication number
JPH06172879A
JPH06172879A JP34094492A JP34094492A JPH06172879A JP H06172879 A JPH06172879 A JP H06172879A JP 34094492 A JP34094492 A JP 34094492A JP 34094492 A JP34094492 A JP 34094492A JP H06172879 A JPH06172879 A JP H06172879A
Authority
JP
Japan
Prior art keywords
bubbles
molten metal
nozzle
gas
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34094492A
Other languages
Japanese (ja)
Inventor
Hideaki Yamamura
英明 山村
Yoshimasa Mizukami
義正 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34094492A priority Critical patent/JPH06172879A/en
Publication of JPH06172879A publication Critical patent/JPH06172879A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To generate fine bubbles in a molten metal by controlling the size of bubbles formed in the molten metal by blowing a gas. CONSTITUTION:The bubbles 9 are generated in the molten metal 2 by blowing the gas G into the molten metal 2. In this method, the diameter of bubbles 9 generated, by blowing the gas G through the gas blowing nozzle 3 is controlled by heating a part where the bubbles 9 are generated. Thus, gaseous components such as hydrogen, nitrogen and impurities such as carbon, non metallic inclusions in the molten metal 2 can be efficiently removed by the fine bubbles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶融金属中に発生させる
気泡を微細化することを可能にする気泡発生方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bubble generating method which makes it possible to miniaturize bubbles generated in a molten metal.

【0002】[0002]

【従来の技術】溶融金属中の水素、窒素などのガス成分
や炭素、非金属介在物を取り除く手段として溶融金属中
にガス気泡を吹き込むことが行われる。気泡の吹き込み
による除去効果を活発に行わせるには微細な気泡を吹き
込むことが有効である。微細な気泡を作る手段として特
公平3−30456号公報に示されているような、印加
方向が水平方向でかつ互いが直交する静磁場と交流電流
を溶融金属に印加して変動する電磁力を発生させてガス
を吹き込む多孔体の表面に作用する見かけ圧を変動させ
る方法が提案されている。
2. Description of the Related Art Gas bubbles are blown into a molten metal as a means for removing gas components such as hydrogen and nitrogen, carbon and non-metallic inclusions in the molten metal. It is effective to blow fine bubbles in order to actively perform the removal effect by blowing bubbles. As a means for forming fine bubbles, a static magnetic field and an alternating current, which are applied in a horizontal direction and are orthogonal to each other, as shown in Japanese Patent Publication No. 30456/1993, are used to apply a varying electromagnetic force to a molten metal. A method has been proposed in which the apparent pressure that acts on the surface of a porous body that is generated and blows gas is varied.

【0003】[0003]

【発明が解決しようとする課題】特公平3−30456
号公報に示されている方法では、見かけの圧力を変化さ
せるためには溶鋼高さ方向に広く静磁場および交流電流
を印加する必要があり、静磁場発生装置や電極が大きく
なり設備費や電極費用が高くなる。また、例えば取鍋の
ように大きな容器に適用する場合には磁極および電極の
間隔が大きくなるために、磁場が減衰するために効果を
得るには強い磁場を発生する装置が必要となり、電流は
電流の流れるパスが不安定となり安定した効果が得られ
にくい。さらに、例えば連続鋳造におけるタンディッシ
ュのような流路に適用する場合には流路壁と直角の方向
に電極または磁極のどちらかを必ず設置することにな
り、流路を遮るように設置しなければならず適用が困難
である。したがって、費用が低くかつ大きな容器や流路
への適用が簡易な方法が必要となる。
[Problems to be Solved by the Invention] Japanese Patent Publication No.
In the method disclosed in the publication, it is necessary to widely apply a static magnetic field and an alternating current in the molten steel height direction in order to change the apparent pressure. The cost is high. In addition, when applied to a large container such as a ladle, the gap between the magnetic pole and the electrode becomes large, and therefore a device for generating a strong magnetic field is required to obtain the effect because the magnetic field is attenuated, and the current is The path through which the current flows becomes unstable, making it difficult to obtain a stable effect. Furthermore, for example, when applied to a channel such as a tundish in continuous casting, either the electrode or the magnetic pole must be installed in the direction perpendicular to the channel wall, and it must be installed so as to block the channel. It is difficult to apply because it must be done. Therefore, there is a need for a method that is low in cost and easy to apply to large containers and flow paths.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に本発明は、 1 溶融金属内にガスを吹き込み、該溶融金属中に気泡
を発生させる方法において、気泡が発生する部分を加熱
することにより発生する気泡の径を制御することを特徴
とする溶融金属中の気泡発生方法および、 2 気泡発生部を加熱するために、ガスを吹き込むノズ
ルまたは多孔体を導電性の抵抗体で構成し、通電するこ
とを特徴とする溶融金属中の気泡発生方法、に関するも
のである。
In order to solve the above problems, the present invention provides: 1. In a method of blowing gas into a molten metal to generate bubbles in the molten metal, heating a portion where bubbles are generated. A method of generating bubbles in molten metal, characterized in that the diameter of the bubbles generated by the above is controlled, and a nozzle or a porous body for blowing gas to heat the bubble generating part is constituted by a conductive resistor, The present invention relates to a method for generating bubbles in a molten metal, which is characterized by applying electricity.

【0005】[0005]

【作用】本発明の実施例を図1に示す。取鍋1に溶鋼2
を満たし、底部に耐火物ノズル3を設置し、ガスGを吹
き込むとノズルより気泡9が溶鋼中に生じる。ノズルの
周りに設置したヒーター7によりノズルを加熱する。こ
のようなヒーターを設けるとガスはノズル内部で膨張す
る。こうすることによりガス供給元の流量は変わらない
が、見かけ上ノズルからのガス流量が増加し、気泡発生
頻度が高くなる。ガスの膨張は温度が高いほど大きくな
るので、加熱温度を変化させることにより気泡離脱間隔
を変化させて気泡径を制御することが可能となる。
FIG. 1 shows an embodiment of the present invention. Molten steel 2 in ladle 1
When the refractory nozzle 3 is installed at the bottom and gas G is blown, bubbles 9 are generated in the molten steel from the nozzle. The nozzle is heated by the heater 7 installed around the nozzle. When such a heater is provided, the gas expands inside the nozzle. By doing so, the flow rate of the gas supply source does not change, but the gas flow rate from the nozzle apparently increases, and the frequency of bubble generation increases. Since the expansion of gas increases as the temperature rises, it becomes possible to control the bubble diameter by changing the heating temperature and changing the bubble separation interval.

【0006】加熱する方法としては、上記方法のように
ノズルの近傍にヒーターを設置する方法の他に、ノズル
自体を導電性の抵抗体として通電して直接加熱する方法
がある。ノズル自体より発熱することにより、ノズル先
端部のガスを効率よく加熱することができ、有効であ
る。このため溶鋼に適用する場合にはノズルをグラファ
イト系やホウ化ジルコニウム系の導電性耐火物とするこ
とが望ましい。また、ガスを吹き込む手段としては単管
や複数管のノズルでも多孔体質の耐火物でもよい。
As a heating method, in addition to the method of installing a heater near the nozzle as in the above method, there is a method of directly heating the nozzle by energizing it as a conductive resistor. By generating heat from the nozzle itself, the gas at the tip of the nozzle can be efficiently heated, which is effective. Therefore, when applied to molten steel, it is desirable that the nozzle is made of a graphite-based or zirconium boride-based conductive refractory. The means for blowing gas may be a single-tube or multi-tube nozzle or a porous refractory material.

【0007】[0007]

【実施例】【Example】

(実施例1)本発明の実施例を図1に示す。300kg
の溶鋼2を底面が15cm角で高さが20cmの取鍋1
に満たし、底部に外径が1.0cmの耐火物製のノズル
3を設置し、ガスGを吹き込んだ。取鍋底部のノズルの
周りに設置した電気ヒーター7によりノズルを加熱し
た。この結果を表1に示すが、加熱温度に応じて気泡9
の径が変化する様子が観察された。
(Embodiment 1) An embodiment of the present invention is shown in FIG. 300 kg
Ladle 1 of molten steel 2 whose bottom is 15 cm square and whose height is 20 cm
Nozzle 3 made of refractory and having an outer diameter of 1.0 cm was installed at the bottom, and gas G was blown thereinto. The nozzle was heated by an electric heater 7 installed around the nozzle at the bottom of the ladle. The results are shown in Table 1, and the bubbles 9 are formed depending on the heating temperature.
It was observed that the diameter of the was changed.

【0008】(実施例2)図1においてノズル3の材質
をグラファイト質の耐火物とし、このノズルに電源を接
続し、交流電流を流した。この結果を表1に示すが実施
例1に較べて加熱効率がよく気泡の径が制御可能となっ
た。
Example 2 In FIG. 1, a graphite refractory was used as the material of the nozzle 3, and a power source was connected to this nozzle to pass an alternating current. The results are shown in Table 1. The heating efficiency was better than in Example 1, and the bubble diameter could be controlled.

【0009】(実施例3)本発明を流路に適用した実施
例を図2に示す。鋼の連続鋳造における幅40cm、深
さ80cmのタンディッシュ12において取鍋1からロ
ングノズル13を通して注入された低炭素アルミキルド
鋼の溶鋼2を浸漬ノズル14から鋳型15へ鋳造した。
タンディッシュ12の底部に電極6を埋め込んだ外径
1.0cmのグラファイト質の耐火物製のノズル3を設
置し、ガスGを吹き込んだ。溶鋼内に挿入した電極6′
とタンディッシュ12の底部のノズル3に交流電流を流
し通電加熱した。この結果を表1に示すが、電流値に応
じて気泡9の径が変化する様子が観察された。
(Embodiment 3) An embodiment in which the present invention is applied to a flow path is shown in FIG. In a tundish 12 having a width of 40 cm and a depth of 80 cm in continuous casting of steel, molten steel 2 of low carbon aluminum killed steel injected from a ladle 1 through a long nozzle 13 was cast from a dipping nozzle 14 into a mold 15.
A nozzle 3 made of a graphite refractory having an outer diameter of 1.0 cm and having an electrode 6 embedded in the bottom of the tundish 12 was installed, and a gas G was blown therein. Electrode 6'inserted in molten steel
An alternating current was passed through the nozzle 3 at the bottom of the tundish 12 to heat it by energization. The results are shown in Table 1, and it was observed that the diameter of the bubble 9 changed depending on the current value.

【0010】(比較例)比較例を図3に示す。300k
gの溶鋼2を取鍋1に満たし、底部に外径1.0cmの
耐火物製のノズル3を設置し、ガスGを吹き込んだ。取
鍋の側壁面に幅がノズルの直径の1.5倍で高さが10
cmの一対の永久磁石4、5をN極とS極が対抗するよ
うに設置した。この磁石によって生成される磁場と直交
するように電流が流れるように取鍋の側壁面に設置した
幅、高さが磁石とおなじ電極10、11によって周波数
が30〜60Hzの交流電流を溶鋼中に流した。この結
果を表1に併せて示すが、電流の周波数に応じて気泡9
の径が変化する様子が観察できたが、磁場が弱い場合や
電流密度が低い場合には効果が認められなかった。
Comparative Example A comparative example is shown in FIG. 300k
Molten steel 2 of g was filled in a ladle 1, a refractory nozzle 3 having an outer diameter of 1.0 cm was installed at the bottom, and gas G was blown therein. The width of the side wall of the ladle is 1.5 times the diameter of the nozzle and the height is 10
A pair of permanent magnets 4 and 5 having a size of 1 cm are installed so that the N pole and the S pole face each other. An alternating current with a frequency of 30 to 60 Hz was applied to the molten steel by the electrodes 10 and 11 having the same width and height as the magnets, which were installed on the side wall surface of the ladle so that the current could flow perpendicularly to the magnetic field generated by this magnet. Shed The results are also shown in Table 1, and the air bubbles 9 are generated according to the frequency of the current.
Although it was observed that the diameter of the particles changed, the effect was not observed when the magnetic field was weak or when the current density was low.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【発明の効果】本発明によれば溶融金属中に微細な気泡
を吹き込むことができ、本発明によって作った微細な気
泡によって溶融金属中の水素、窒素などのガス成分や炭
素、非金属介在物等の不純物を効率的に取り除くことが
可能となる。
According to the present invention, fine bubbles can be blown into the molten metal, and the fine bubbles produced by the present invention cause gas components such as hydrogen and nitrogen in the molten metal, carbon, and non-metallic inclusions. It is possible to efficiently remove impurities such as.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す説明図、FIG. 1 is an explanatory view showing an embodiment of the present invention,

【図2】本発明を流路に適用した実施例を示す図、FIG. 2 is a diagram showing an embodiment in which the present invention is applied to a flow channel,

【図3】比較例を示す説明図。FIG. 3 is an explanatory diagram showing a comparative example.

【符号の説明】[Explanation of symbols]

1 取鍋 2 溶鋼 3 ノズル 4 磁場発生装置 5 磁場発生装置 6 電極 6′電極 7 ヒーター 8 交流電源 9 気泡 G ガス 10 電極 11 電極 12 タンディッシュ 13 ロングノズル 14 浸漬ノズル 15 鋳型 1 Ladle 2 Molten Steel 3 Nozzle 4 Magnetic Field Generator 5 Magnetic Field Generator 6 Electrode 6'electrode 7 Heater 8 AC Power Supply 9 Bubble G Gas 10 Electrode 11 Electrode 12 Tundish 13 Long Nozzle 14 Immersion Nozzle 15 Mold

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属内にガスを吹き込み、該溶融金
属中に気泡を発生させる方法において、気泡が発生する
部分を加熱することにより発生する気泡の径を制御する
ことを特徴とする溶融金属中の気泡発生方法。
1. A method of blowing gas into a molten metal to generate bubbles in the molten metal, wherein the diameter of the bubbles generated is controlled by heating a portion where the bubbles are generated. How to generate bubbles inside.
【請求項2】 気泡発生部を加熱するために、ガスを吹
き込むノズルまたは多孔体を導電性の抵抗体で構成し、
通電することを特徴とする請求項1記載の溶融金属中の
気泡発生方法。
2. A nozzle for blowing gas or a porous body is constituted by a conductive resistor for heating the bubble generating portion,
The method for generating bubbles in a molten metal according to claim 1, characterized in that electricity is applied.
JP34094492A 1992-11-30 1992-11-30 Method for generating bubbles in molten metal Withdrawn JPH06172879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34094492A JPH06172879A (en) 1992-11-30 1992-11-30 Method for generating bubbles in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34094492A JPH06172879A (en) 1992-11-30 1992-11-30 Method for generating bubbles in molten metal

Publications (1)

Publication Number Publication Date
JPH06172879A true JPH06172879A (en) 1994-06-21

Family

ID=18341741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34094492A Withdrawn JPH06172879A (en) 1992-11-30 1992-11-30 Method for generating bubbles in molten metal

Country Status (1)

Country Link
JP (1) JPH06172879A (en)

Similar Documents

Publication Publication Date Title
US6938674B2 (en) Device and a method for continuous casting
US3547622A (en) D.c. powered plasma arc method and apparatus for refining molten metal
US6336496B1 (en) Apparatus for continuous casting of metal
EP0878115B1 (en) Electrode for plasma generator the generator comprising same and process for treatment of solidifying liquid metal
JPH06172879A (en) Method for generating bubbles in molten metal
JPH06128660A (en) Method for producing bubble in molten metal
JPH05306418A (en) Method for producing gas bubbles in molten metal
JPH06172880A (en) Method for generating bubbles in molten metal
JPH05185182A (en) Method for developing bubbles in molten metal
US5375648A (en) Apparatus and method for continuous casting of steel
Fautrelle et al. Free surface controlled by magnetic fields
EP1433550B1 (en) A method and a device for continuous casting of metals
JPH0330456B2 (en)
Fujimoto et al. A high-powered AC plasma torch for the arc heating of molten steel in the tundish
JP4102353B2 (en) Method for melting surface layer of ferromagnetic metal material
Timelli et al. Design and realization of an experimental cold crucible levitation melting system for light alloys
JP3595529B2 (en) Continuous casting machine for molten metal
JPS59218246A (en) Prevention of clogging in molten metal charging nozzle in continuous casting
SU1166892A1 (en) Method of filling the melt
JPH06114511A (en) Method for heating molten steel in tundish
JP2000337779A (en) Floating and melting device
JP2968046B2 (en) Method and apparatus for continuous casting of molten metal
JPS6297747A (en) Method and apparatus for electromagnetic type continuous horizontal casting method
JPH10109153A (en) Method and device for pouring molten metal
KR20050064935A (en) Apparatus for rising temperature and damping vortex for molten steel in tundish, and method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201