JPH06114511A - Method for heating molten steel in tundish - Google Patents

Method for heating molten steel in tundish

Info

Publication number
JPH06114511A
JPH06114511A JP4268652A JP26865292A JPH06114511A JP H06114511 A JPH06114511 A JP H06114511A JP 4268652 A JP4268652 A JP 4268652A JP 26865292 A JP26865292 A JP 26865292A JP H06114511 A JPH06114511 A JP H06114511A
Authority
JP
Japan
Prior art keywords
molten steel
tundish
heating
magnetic field
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4268652A
Other languages
Japanese (ja)
Inventor
Nagayasu Bessho
永康 別所
Kenichi Tanmachi
健一 反町
Yuji Miki
祐司 三木
Satoshi Idokawa
聡 井戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4268652A priority Critical patent/JPH06114511A/en
Publication of JPH06114511A publication Critical patent/JPH06114511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To prevent the short-circuit flow along the bottom part of a tundish, improve the heat efficiency in the heating and advantageously achieve the float-up of inclusion in molten steel by utilizing electromagnetic force caused by mutual action between DC current and static magnetic field. CONSTITUTION:A static magnetic field generating device 12 is fitted to the bottom part of the tundish under a heating box 6 and the magnetic field B having the direction orthogonally crossing flowing direction of molten steel in parallel with the bottom surface of the tundish. In the molten steel, by a cathode 7 and an anode 8 generating plasma arc for heating, the DC current having the direction orthogonally crossing the magnetic field B is generated. By this mutual action between the DC current and the static magnetic field, the electromagnetic force F having the reverse direction to the short-circuit flow of the molten steel is generated in the molten steel. By this method, the short-circuit flow along the bottom part of the tundish is prevented, and as the flowing speed on the surface of the molten steel is increased, the heating efficiency by the plasma arc is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造に供するタン
ディッシュ内溶鋼の加熱方法に関し、特に、タンディッ
シュ内に収容した溶鋼にプラズマアーク加熱を施すとと
もに、このタンディッシュに直流電流を流しかつ静磁場
を印加することにより、溶鋼の効率的な加熱と非金属介
在物(以下、単に「介在物」という)の浮上分離とを促
進させて、清浄な鋼を製造しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating molten steel in a tundish to be used for continuous casting, and more particularly, it applies plasma arc heating to the molten steel contained in the tundish and applies a direct current to the tundish. By applying a static magnetic field, efficient heating of molten steel and levitation separation of non-metallic inclusions (hereinafter simply referred to as "inclusions") are promoted to produce clean steel.

【0002】[0002]

【従来の技術】溶鋼を連続鋳造するに当たり、タンディ
ッシュ内溶鋼の加熱度を制御し、溶鋼の低温化によるノ
ズル詰まりやモールド湯面の皮張り防止および凝固シェ
ルへの介在物・気泡の捕捉をそれぞれ防止するために、
直流プラズマアークによるタンディッシュ内溶鋼の加熱
が行われている。
2. Description of the Related Art When continuously casting molten steel, the heating degree of the molten steel in the tundish is controlled to prevent nozzle clogging due to low temperature of the molten steel, to prevent skinning of the mold surface and to trap inclusions and bubbles in the solidified shell. To prevent each
The molten steel in the tundish is heated by a DC plasma arc.

【0003】例えば、図1に示すように、取鍋1内の溶
鋼は、ロングノズル2を介してタンディッシュ3に供給
され、ここで直流プラズマアークによる加熱を経て、浸
漬ノズル4を介して鋳型5内に注湯される。この装置に
おける直流プラズマアーク加熱は、ロングノズル2から
注湯口(浸漬ノズル4)に向かう溶鋼流動経路の途中に
当たる位置に配設した加熱ボックス6内において、陰極
7と陽極8との間でプラズマアークを発生させ、この加
熱ボックス6内を流動する溶鋼9を加熱するものであ
る。なお、陰極7にはW合金またはCu合金を、また陽極
8にはカーボン入りれんがまたは鋼などを用いる。
For example, as shown in FIG. 1, molten steel in a ladle 1 is supplied to a tundish 3 via a long nozzle 2, where it is heated by a direct current plasma arc and then a dipping nozzle 4 to mold it. 5 is poured. The direct current plasma arc heating in this device is performed by plasma arc between the cathode 7 and the anode 8 in the heating box 6 arranged at a position corresponding to the molten steel flow path from the long nozzle 2 to the pouring port (immersion nozzle 4). Is generated, and the molten steel 9 flowing in the heating box 6 is heated. The cathode 7 is made of W alloy or Cu alloy, and the anode 8 is made of carbon-containing brick or steel.

【0004】しかしながら、上記の加熱方法は、次の
およびに述べるような問題点を抱えていた。 被加熱域が加熱ボックス6内の溶鋼表面のみに限られ
ており、上方からの加熱(以下、これを「上熱」とい
う)であるため、熱効率が悪い。 ロングノズル2からの溶鋼の落下流は、タンディッシ
ュ底部に沿って浸漬ノズルに向かって短絡的に流れる短
絡流Aを形成し、タンディッシュ内溶鋼中の介在物の浮
上を困難にしている。
However, the above heating method has the following problems. Since the area to be heated is limited to only the surface of the molten steel in the heating box 6 and is heated from above (hereinafter, this is referred to as “upper heat”), the thermal efficiency is poor. The falling flow of the molten steel from the long nozzle 2 forms a short-circuit flow A that flows along the bottom of the tundish toward the immersion nozzle in a short-circuited manner, making it difficult to float inclusions in the molten steel in the tundish.

【0005】そこで、これらの問題点を解決するため、
タンディッシュ内の加熱帯に、吹き込みプラグ10からガ
スを吹き込んで溶鋼の攪拌を促進する方法(特開昭59−
107755号公報および図2参照)、またタンディッシュ内
に堰11を設け、短絡流の形成を防ぐとともに、加熱帯内
溶鋼を攪拌する方法(図3参照)、が提案された。
Therefore, in order to solve these problems,
A method in which a gas is blown from a blowing plug 10 into a heating zone in a tundish to accelerate the stirring of molten steel (Japanese Patent Laid-Open No. 59-
No. 107755 and FIG. 2), and a method of providing a weir 11 in the tundish to prevent the formation of a short circuit flow and stirring the molten steel in the heating zone (see FIG. 3) has been proposed.

【0006】前者の方法において、例えばArガスをタン
ディッシュ底部から吹き込むと、鋼浴中の微細なガスの
全てが浮上しないで、一部がモールド内に侵入して凝固
シェルに付着し、却って鋳片の内部または表面の欠陥を
引き起こすことになる。
In the former method, for example, when Ar gas is blown from the bottom of the tundish, all of the fine gas in the steel bath does not float up, and a part of it penetrates into the mold and adheres to the solidified shell. This will cause defects inside or on the surface of the piece.

【0007】一方、後者の方法は、堰の形状が維持され
ている間は有効であるが、耐火物で施工された堰の寿命
は短いため、タンディッシュの連々ヒート数が増加する
と、堰が溶損または破損して、堰の効果が消失する不利
があり、また堰の寿命が短いため、耐火物コストは当然
高くなる。さらに、タンディッシュ内の残鋼を排出する
際に堰があると、残鋼の排出が難しくなる上、残鋼量が
増加する。
On the other hand, the latter method is effective as long as the shape of the weir is maintained, but since the life of the weir constructed of refractory is short, the weir will continue to rise as the number of heats in the tundish increases. The cost of refractory is naturally high because of the disadvantage that the effect of the weir disappears due to melting or damage and the life of the weir is short. Furthermore, if there is a weir when discharging the residual steel in the tundish, it becomes difficult to discharge the residual steel and the amount of residual steel increases.

【0008】[0008]

【発明が解決しようとする課題】本発明は、このような
不利をまねくことなしに、加熱の熱効率を向上し、また
溶鋼中介在物の浮上を有利に達成する技術について提案
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to propose a technique for improving the thermal efficiency of heating and for advantageously achieving the floating of inclusions in molten steel without causing such disadvantages. To do.

【0009】[0009]

【課題を解決するための手段】本発明は、連続鋳造用タ
ンディッシュ内の溶鋼をプラズマアークによって加熱す
る方法において、タンディッシュ内溶鋼の流動経路の途
中に、直流電流通路を形成するとともに該電流通路に静
電磁場を印加することにより、溶鋼流の向きを制御する
ことを特徴とするタンディッシュ内溶鋼の加熱方法であ
る。そして、本発明においては、溶鋼の加熱を、プラズ
マアーク発生に伴って形成される直流電流通路中に静電
磁場を印加することが好ましい。
SUMMARY OF THE INVENTION The present invention is a method for heating molten steel in a tundish for continuous casting by a plasma arc. A method for heating molten steel in a tundish characterized by controlling the direction of molten steel flow by applying an electrostatic magnetic field to the passage. Further, in the present invention, it is preferable that the molten steel is heated and an electrostatic magnetic field is applied in the direct current passage formed with the generation of the plasma arc.

【0010】[0010]

【作用】次に、本発明の構成および作用について、図4
および5に従って具体的に説明する。図4(a),(b) は、
本発明にかかる溶鋼の加熱方法に用いる装置の一例を示
すものである。この例では、加熱ボックス6下のタンデ
ィッシュ3底部に、静磁界発生装置12を装着し、タンデ
ィッシュ底面と平行の溶鋼流動方向と直交する向きの磁
界Bを発生させる。なお、この静磁界を発生させる手段
としては、永久磁石を用いてもよいが、電磁石を使用す
ることがより好ましい。
Next, the structure and operation of the present invention will be described with reference to FIG.
A detailed description will be given in accordance with 5 and 5. 4 (a) and (b) are
1 shows an example of an apparatus used in a method for heating molten steel according to the present invention. In this example, a static magnetic field generator 12 is attached to the bottom of the tundish 3 below the heating box 6 to generate a magnetic field B parallel to the bottom of the tundish and orthogonal to the molten steel flow direction. A permanent magnet may be used as the means for generating the static magnetic field, but it is more preferable to use an electromagnet.

【0011】さらに、溶鋼には、その加熱のためのプラ
ズマアークを発生させる陰極7と陽極8によって、磁界
Bと直交する向きIの直流電流が流れているため、この
直流電流と静磁場との相互作用により、溶鋼中に、フレ
ミングの左手の法則に従って、溶鋼の短絡流とは逆向き
の電磁力Fが発生し、タンディッシュ底部に沿う短絡流
Aを防止し、溶鋼表面流速が増加するため、プラズマア
ークによる加熱効率を上昇させることができる上、介在
物の浮上も実現される。なお、上記の例は、直流プラズ
マアーク発生回路をそのまま直流電流通路とした場合に
ついて述べたが、このプラズマ発生回路とは別に直流電
流通路を設けてもよい。
Further, in the molten steel, a direct current in the direction I orthogonal to the magnetic field B flows through the cathode 7 and the anode 8 which generate a plasma arc for heating the molten steel. Due to the interaction, according to Fleming's left-hand rule, an electromagnetic force F opposite to the short-circuit flow of the molten steel is generated in the molten steel to prevent the short-circuit flow A along the bottom of the tundish, and the molten steel surface flow velocity increases. The heating efficiency of the plasma arc can be increased, and the inclusion can be levitated. In the above example, the DC plasma arc generating circuit is used as it is as a DC current passage, but a DC current passage may be provided separately from the plasma generating circuit.

【0012】また、図5(a),(b) に示す例は、静磁場を
タンディッシュ底部と平行の溶鋼流動方向と平行の静磁
場を発生させるとともに、陰極7と陽極8との相互位置
をタンディッシュの幅方向にずらして直流電流Iを流す
ようにする。すると、静磁場通電によって、タンディッ
シュ内溶鋼の流れは、図6に示すように、タンディッシ
ュの高さ方向断面内において円運動するように流動す
る。この流れにより、タンディッシュ内の短絡流Aの形
成は防止される、かつ、鋼浴の運動により加熱効率が向
上する。
Further, in the examples shown in FIGS. 5 (a) and 5 (b), the static magnetic field is generated in parallel with the molten steel flow direction parallel to the bottom of the tundish, and the mutual position of the cathode 7 and the anode 8 is Is shifted in the width direction of the tundish so that the direct current I flows. Then, when the static magnetic field is applied, the flow of the molten steel in the tundish flows so as to make a circular motion within the cross section in the height direction of the tundish, as shown in FIG. This flow prevents the formation of short-circuit flow A in the tundish, and the movement of the steel bath improves the heating efficiency.

【0013】[0013]

【実施例】取鍋精錬にて、鋼中酸素濃度を45〜55ppm に
調整して、表1の鋳造条件で、下記の4種類のタンディ
ッシュを用いて連続鋳造を行った。なお、本発明法1お
よび2の静磁界の磁束密度は、2000ガウスとした。
[Examples] Oxygen concentration in steel was adjusted to 45 to 55 ppm by ladle refining, and continuous casting was performed under the casting conditions shown in Table 1 using the following four types of tundish. The magnetic flux density of the static magnetic field in the methods 1 and 2 of the present invention was 2000 gauss.

【0014】記 (1) 従来法1 (図1参照) (2) 従来法2(Arガス吹き込み有) (図2参照) (3) 従来法3(一重堰有) (図3参照) (4) 本発明法1 (図4参照) (5) 本発明法2 (図5参照)(1) Conventional method 1 (see FIG. 1) (2) Conventional method 2 (with Ar gas injection) (see FIG. 2) (3) Conventional method 3 (with single weir) (see FIG. 3) (4) ) Inventive method 1 (see FIG. 4) (5) Inventive method 2 (see FIG. 5)

【0015】[0015]

【表1】 [Table 1]

【0016】上記の各鋳造方法における熱効率について
調査した結果を表2に、また各鋳造方法のタンディッシ
ュ内の脱酸効率および製品欠陥比率について調べた結果
を表3に、それぞれ示す。なお、熱効率は、ロングノズ
ル近傍と浸漬ノズル直上との溶鋼温度を測定して評価し
た。脱酸効率は、浸漬ノズル吐出口近傍のモールド内の
鋼浴よりシリカチューブを用いて、溶鋼をサンプリング
して分析評価し、製品欠陥は鋳片を熱間および冷間圧延
にて1.0mm の厚みにして評価した。いずれの結果も、タ
ンディッシュ連々20ヒート(1ヒート300 t)の平均値
を示したものである。
Table 2 shows the results of the investigation of the thermal efficiency in each of the above casting methods, and Table 3 shows the results of the investigation of the deoxidizing efficiency and the product defect ratio in the tundish of each casting method. The thermal efficiency was evaluated by measuring the molten steel temperature near the long nozzle and immediately above the immersion nozzle. Deoxidation efficiency was evaluated by sampling and analyzing molten steel using a silica tube from the steel bath in the mold near the discharge nozzle of the dipping nozzle.Product defects were 1.0 mm thick when hot and cold rolled. And evaluated. All the results show the average value of 20 heats (one heat of 300 t) in succession in the tundish.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】表2および3に示すように、従来法1は、
加熱帯に攪拌手段がなく上熱となるため、熱効率は60%
と低く、また脱酸効率および製品品質も低かった。従来
法2では、Ar吹き込みによりモールド内に侵入する気泡
の数が増加して製品欠陥が多くなるため、ガス吹き込み
量は最大40Nl/minとしたが、従来法1と同程度の結果と
なった。従来法3では、堰の寿命は6ヒート足らずであ
り、ここまでは熱効率、脱酸効率および製品品質は良好
であったが、7ヒート以降は堰の効果が薄れて、20ヒー
トまでの平均値は、6ヒートまでの成績よりもいずれも
低下してしまった。これらの従来法に対して、本発明法
1および2はともに、熱効率、脱酸効率および製品品質
のいずれにおいても著しい改善が成されていることがわ
かる。
As shown in Tables 2 and 3, the conventional method 1 is
Heat efficiency is 60% because there is no stirring means in the heating zone and heat is generated
And the deoxidation efficiency and product quality were also low. In Conventional method 2, the number of bubbles that penetrate into the mold increases due to Ar blowing, and product defects increase, so the gas blowing rate was set to 40 Nl / min at the maximum, but the result was similar to Conventional method 1. . In Conventional Method 3, the life of the weir was less than 6 heats, and the heat efficiency, deoxidation efficiency and product quality were good up to this point, but the effect of the weir diminished after 7 heats, and the average value up to 20 heats. Fell below the results for the 6th heat. It can be seen that, compared with these conventional methods, both the methods 1 and 2 of the present invention significantly improve thermal efficiency, deoxidizing efficiency, and product quality.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
直流電流と静磁場との相互作用による電磁力を利用する
ことにより、タンディッシュ底部に沿う短絡流を防止
し、加熱帯内の溶鋼を撹拌できるため、プラズマアーク
による加熱効率の上昇と介在物の浮上とを実現し得る。
As described above, according to the present invention,
By utilizing the electromagnetic force due to the interaction between the direct current and the static magnetic field, the short-circuit flow along the bottom of the tundish can be prevented and the molten steel in the heating zone can be agitated. You can realize surfacing.

【図面の簡単な説明】[Brief description of drawings]

【図1】直流プラズマによるタンディッシュ内溶鋼の加
熱方法を示す模式図である。
FIG. 1 is a schematic diagram showing a method for heating molten steel in a tundish with direct current plasma.

【図2】直流プラズマによるタンディッシュ内溶鋼の加
熱においてArガス吹き込みを行う手法を示す模式図であ
る。
FIG. 2 is a schematic diagram showing a method of blowing Ar gas in heating molten steel in a tundish with direct current plasma.

【図3】直流プラズマによるタンディッシュ内溶鋼の加
熱において堰を用いる手法を示す模式図である。
FIG. 3 is a schematic diagram showing a method of using a weir in the heating of molten steel in a tundish by direct current plasma.

【図4】本発明のタンディッシュ内溶鋼の加熱方法を示
す模式図である。
FIG. 4 is a schematic diagram showing a method for heating molten steel in a tundish according to the present invention.

【図5】本発明に従う別のタンディッシュ内溶鋼の加熱
方法を示す模式図である。
FIG. 5 is a schematic diagram showing another method for heating molten steel in a tundish according to the present invention.

【図6】溶鋼の流れを示す模式図である。FIG. 6 is a schematic diagram showing the flow of molten steel.

【符号の説明】[Explanation of symbols]

1 取鍋 2 ロングノズル 3 タンディッシュ 4 浸漬ノズル 5 鋳型 6 加熱ボックス 7 陰極 8 陽極 9 タンディッシュ内溶鋼 10 吹き込みプラグ 11 堰 12 静磁界発生装置 1 Ladle 2 Long Nozzle 3 Tundish 4 Immersion Nozzle 5 Mold 6 Heating Box 7 Cathode 8 Anode 9 Molten Steel in Tundish 10 Injection Plug 11 Weir 12 Static Magnetic Field Generator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三木 祐司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 井戸川 聡 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Miki 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Satoshi Idogawa 1 Kawasaki-cho, Chuo-ku, Chiba Kawasaki Steel Corporation Technical Research Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造用タンディッシュ内の溶鋼をプ
ラズマアークによって加熱する方法において、タンディ
ッシュ内溶鋼の流動経路の途中に、直流電流通路を形成
するとともに該電流通路に静電磁場を印加することによ
り、溶鋼流の向きを制御することを特徴とするタンディ
ッシュ内溶鋼の加熱方法。
1. A method for heating molten steel in a tundish for continuous casting by a plasma arc, wherein a direct current passage is formed in the flow passage of the molten steel in the tundish and an electrostatic magnetic field is applied to the current passage. A method for heating molten steel in a tundish, characterized in that the direction of the molten steel flow is controlled by.
【請求項2】 連続鋳造用タンディッシュ内の溶鋼をプ
ラズマアークによって加熱するに当たり、プラズマアー
ク発生に伴って形成される直流電流通路中に静電磁場を
印加して溶鋼流の向きを制御することを特徴とする請求
項1記載の加熱方法。
2. When the molten steel in the continuous casting tundish is heated by the plasma arc, an electrostatic magnetic field is applied to the direct current passage formed by the plasma arc to control the direction of the molten steel flow. The heating method according to claim 1, which is characterized in that.
JP4268652A 1992-10-07 1992-10-07 Method for heating molten steel in tundish Pending JPH06114511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4268652A JPH06114511A (en) 1992-10-07 1992-10-07 Method for heating molten steel in tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4268652A JPH06114511A (en) 1992-10-07 1992-10-07 Method for heating molten steel in tundish

Publications (1)

Publication Number Publication Date
JPH06114511A true JPH06114511A (en) 1994-04-26

Family

ID=17461526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4268652A Pending JPH06114511A (en) 1992-10-07 1992-10-07 Method for heating molten steel in tundish

Country Status (1)

Country Link
JP (1) JPH06114511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107774971A (en) * 2017-10-20 2018-03-09 东北大学 A kind of continuous casting production by calutron control molten metal flowing
CN112974783A (en) * 2021-02-07 2021-06-18 佛山科学技术学院 Tundish flow control device based on static magnetic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107774971A (en) * 2017-10-20 2018-03-09 东北大学 A kind of continuous casting production by calutron control molten metal flowing
CN112974783A (en) * 2021-02-07 2021-06-18 佛山科学技术学院 Tundish flow control device based on static magnetic field

Similar Documents

Publication Publication Date Title
JP2726096B2 (en) Continuous casting method of steel using static magnetic field
JPH06114511A (en) Method for heating molten steel in tundish
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
KR960005883B1 (en) Continuous casting method of steel slab
JP2019214057A (en) Continuous casting method
JPH0647506A (en) Method for cleaning molten metal in tundish and device therefor
JPH0428460A (en) Apparatus and method for preventing molten metal vortex flow
JPH0579430B2 (en)
JP2006255759A (en) Method for continuously casting steel
JP2834657B2 (en) Tundish device capable of controlling molten metal flow
JP2006000896A (en) Continuous casting method
JPH08281392A (en) Method for cleaning molten steel
CN114734005B (en) Electromagnetic braking device and method for controlling molten steel flow in tundish
JP2733991B2 (en) Steel continuous casting method
JP4419811B2 (en) Continuous casting method for molten steel
JP4220848B2 (en) Tundish for continuous casting of steel with heating function
JP2750320B2 (en) Continuous casting method using static magnetic field
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JPH06128660A (en) Method for producing bubble in molten metal
JPH07136747A (en) Continuous casting method for bloom and its device
JPH05306418A (en) Method for producing gas bubbles in molten metal
JPH0596351A (en) Method for continuously casting steel slab by traveling magnetic field and magnetostatic field
JPH06344095A (en) Method for continuously casting steel
JP3095710B2 (en) Continuous casting method using static magnetic field
JPH0584551A (en) Method for continuously casting steel using static magnetic field