JPH06171910A - Formation of boron nitride in vapor phase - Google Patents

Formation of boron nitride in vapor phase

Info

Publication number
JPH06171910A
JPH06171910A JP35333292A JP35333292A JPH06171910A JP H06171910 A JPH06171910 A JP H06171910A JP 35333292 A JP35333292 A JP 35333292A JP 35333292 A JP35333292 A JP 35333292A JP H06171910 A JPH06171910 A JP H06171910A
Authority
JP
Japan
Prior art keywords
combustion
boron nitride
gas
nitrogen
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35333292A
Other languages
Japanese (ja)
Inventor
Masaaki Yanagisawa
正明 柳沢
Kunio Komaki
邦雄 小巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP35333292A priority Critical patent/JPH06171910A/en
Publication of JPH06171910A publication Critical patent/JPH06171910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To industrially and advantageously form boron nitride having a high content of c-BN by supplying a gas contg. N and B into the combustion zone of the combustion gas contg. H atom and blowing the combustion flame directly against a substrate. CONSTITUTION:Gas contg. nitrogen and boron is supplied into the combustion zone of the combustion gas contg. hydrogen atom, the combustion flame is blown directly against the substrate, and the desired boron nitride is formed. The gaseous mixture of at least one kind selected from acetylene, ethylene and propane and oxygen is preferably used as the gas contg. hydrogen atom. The combustion temp. is preferably controlled to >=1900 deg.C at which hydrogen becomes free radical. The excitating source is controlled to about 3000 deg.C while considering that the substrate temp. is easily controlled. Gaseous nitrogen and diborane are preferably used as the gases contg. nitrogen and boron.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気相法により主として立
方晶窒化ホウ素(以下、c−BNと略称する)からなる
窒化ホウ素を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming boron nitride mainly composed of cubic boron nitride (hereinafter abbreviated as c-BN) by a vapor phase method.

【0002】[0002]

【従来の技術】窒化ホウ素には、六方晶窒化ホウ素(以
下、h−BNと略称する)とc−BNがある。h−BN
は軟質で潤滑性に優れ、c−BNは硬質で熱伝導性およ
び電気絶縁性に優れているため、それぞれの特性を活か
した分野で広く用いられている。
2. Description of the Related Art Boron nitride includes hexagonal boron nitride (hereinafter abbreviated as h-BN) and c-BN. h-BN
Is soft and has excellent lubricity, and c-BN is hard and has excellent thermal conductivity and electrical insulation properties, and is therefore widely used in fields that make use of their respective properties.

【0003】気相法による窒化ホウ素の合成方法には化
学的蒸着法(以下、CVDと略称する)と物理的蒸着法
(以下、PVDと略称する)がある。CVDは、ホウ素
および窒素を含むガスを反応容器内で、熱励起などの手
段を用いて分解し、活性化し基板上に堆積させる方法で
ある。励起手段の具体例としてはプラズマ(特開昭57
−196710)およびプラズマ+熱フィラメント(特
開平2−250969)などが知られている。PVD
は、窒素ガスプラズマ中でホウ素を蒸発させ、基板上に
堆積させる方法である。蒸発の手段の具体例としては電
子ビーム(特開昭52−42480)およびレーザー
(特開昭63−35767)などが考案されている。
There are a chemical vapor deposition method (hereinafter abbreviated as CVD) and a physical vapor deposition method (hereinafter abbreviated as PVD) as a method for synthesizing boron nitride by a vapor phase method. CVD is a method in which a gas containing boron and nitrogen is decomposed in a reaction container by means such as thermal excitation, activated, and deposited on a substrate. As a concrete example of the exciting means, plasma (Japanese Patent Laid-Open No.
196710) and plasma + hot filament (JP-A-2-250969) are known. PVD
Is a method of evaporating boron in a nitrogen gas plasma and depositing it on a substrate. An electron beam (Japanese Patent Laid-Open No. 52-42480), a laser (Japanese Patent Laid-Open No. 63-35767) and the like have been devised as specific examples of the means of evaporation.

【0004】[0004]

【発明が解決しようとする課題】従来のCVDあるいは
PVDでは、基板上に形成する窒化ホウ素は多くがh−
BNでc−BNはほとんど含まれていない。従って、高
硬度の窒化ホウ素皮膜を形成しようとするには、従来の
気相法は適当でなかった。本発明の目的は、c−BNを
高割合で含む窒化ホウ素を工業的有利に形成することが
できる、気相法による窒化ホウ素の形成方法を提供する
ことにある。
In conventional CVD or PVD, most of the boron nitride formed on the substrate is h-.
BN contains almost no c-BN. Therefore, the conventional vapor phase method is not suitable for forming a high-hardness boron nitride film. It is an object of the present invention to provide a method for forming boron nitride by a vapor phase method, which is capable of industrially forming boron nitride containing a high proportion of c-BN.

【0005】[0005]

【課題を解決するための手段(1)】上記の目的は、水
素原子を含む燃焼ガスの燃焼領域中に、窒素およびホウ
素を含むガスを供給しながら、その燃焼炎を基板上に直
接吹き付けることを特徴とする窒化ホウ素を形成する方
法によって達成される。
Means for Solving the Problem (1) The above object is to blow a combustion flame directly onto a substrate while supplying a gas containing nitrogen and boron into a combustion region of a combustion gas containing hydrogen atoms. Is achieved by a method of forming boron nitride.

【0006】[0006]

【作用】本発明者らは、従来の方法でc−BNを多く含
む窒化ホウ素が形成しないのは以下の2つの理由に基づ
くとの知見を得た。(1)励起されたホウ素、窒素ラジ
カルが基板まで効率よく輸送されていない。(2)c−
BNと同時に析出したh−BNの除去がされていない。
The present inventors have found that the conventional method does not form boron nitride containing a large amount of c-BN based on the following two reasons. (1) Excited boron and nitrogen radicals are not efficiently transported to the substrate. (2) c-
The h-BN deposited at the same time as BN was not removed.

【0007】本発明の方法によれば上記(1)、(2)
の理由が除去されると考えられる。すなわち、本発明の
方法のように、水素原子を含む燃焼ガスの燃焼領域中
に、窒素およびホウ素を含むガスを供給しながら、その
燃焼炎中で分解、励起されたホウ素、窒素ラジカルを基
板上に直接吹き付けると、温度勾配が大きくなり、励起
されたホウ素、窒素ラジカルが効率よく基板上に輸送さ
れてc−BNを高速に形成し、また同時に、水素原子を
含む燃焼炎中にはh−BNをガス化により除去できる水
素ラジカルが多量に存在するため、析出したh−BNが
水素ラジカルにより効率よく除去されて、c−BNを高
割合で含む窒化ホウ素が析出するものと考えられる。
According to the method of the present invention, the above (1) and (2)
It is thought that the reason for is removed. That is, like the method of the present invention, while supplying a gas containing nitrogen and boron into the combustion region of a combustion gas containing hydrogen atoms, the boron and nitrogen radicals decomposed and excited in the combustion flame are excited on the substrate. When it is directly sprayed onto the substrate, the temperature gradient becomes large, the excited boron and nitrogen radicals are efficiently transported onto the substrate to form c-BN at high speed, and at the same time, in the combustion flame containing hydrogen atoms, h- Since a large amount of hydrogen radicals that can remove BN by gasification exist, it is considered that the precipitated h-BN is efficiently removed by the hydrogen radicals, and boron nitride containing a high proportion of c-BN is precipitated.

【0008】[0008]

【課題を解決するための手段(2)】本発明の方法にお
いては、水素原子を含む燃焼ガスの燃焼炎を利用する。
燃焼ガスの具体例としては、アセチレン、エチレン、メ
チルアセチレン、メタン、プロパン、ブタン、水素など
が挙げられ、これらのいずれか1種以上と支燃性ガスと
しての酸素とからなる混合ガスが用いられる。特にアセ
チレン、エチレンおよびプロパンの中から選ばれた少く
とも一種と酸素とからなる混合ガスが好ましい。
Means for Solving the Problems (2) The method of the present invention utilizes a combustion flame of a combustion gas containing hydrogen atoms.
Specific examples of the combustion gas include acetylene, ethylene, methylacetylene, methane, propane, butane, hydrogen, and the like, and a mixed gas containing any one or more of these and oxygen as a combustion supporting gas is used. . Particularly preferred is a mixed gas of at least one selected from acetylene, ethylene and propane and oxygen.

【0009】燃焼炎は、燃焼ガス中の水素原子含有燃焼
ガス成分と酸素との混合比によって還元炎、中性炎、酸
化炎に分かれる。窒化ホウ素の形成には中性炎付近の混
合比のものが好ましい。酸化炎では基板上に析出した窒
化ホウ素が分解されやすくなるため成長速度が低下し、
還元炎では窒化ホウ素中に炭素が混入し質が低下する傾
向がある。具体的には、燃焼ガスの酸素に対する体積比
率としてアセチレン、メタンは0.9〜1.2、エチレ
ンは0.7〜1.0、メチルアセチレンは0.5〜0.
8、プロパンは0.3〜0.6、水素は1.4〜1.
7、一酸化炭素は1.5〜1.8が好ましい。
The combustion flame is classified into a reducing flame, a neutral flame and an oxidizing flame depending on the mixing ratio of the hydrogen atom-containing combustion gas component in the combustion gas and oxygen. For forming boron nitride, a mixture having a mixing ratio near neutral flame is preferable. In an oxidizing flame, the boron nitride deposited on the substrate is easily decomposed, so the growth rate decreases,
In a reducing flame, carbon tends to be mixed in boron nitride and the quality tends to deteriorate. Specifically, as a volume ratio of combustion gas to oxygen, acetylene and methane are 0.9 to 1.2, ethylene is 0.7 to 1.0, and methylacetylene is 0.5 to 0.
8, propane is 0.3 to 0.6, hydrogen is 1.4 to 1.
7, carbon monoxide is preferably 1.5 to 1.8.

【0010】燃焼温度は水素がラジカル化する1900
℃以上が好ましい。特に、基板温度の制御のし易さから
みて励起源の温度が3000°前後であることが望まし
い。燃焼ガス中に水蒸気を混入させることによりh−B
Nのエッチング効果を高めたり、また、不活性ガスを混
入させることによりホウ素、窒素、水素のラジカル化を
促進することが可能である。不活性ガスとしてはアルゴ
ンおよびヘリウムの中から選ばれた少くとも一種を用い
ることが好ましい。水蒸気および不活性ガスの混入量は
炎の温度を下げないために、水素原子を含む燃焼ガスに
対する体積比が水蒸気で3%以下、不活性ガスで10%
以下が好ましい。
The combustion temperature is 1900 at which hydrogen radicalizes.
C. or higher is preferable. In particular, it is desirable that the temperature of the excitation source is around 3000 ° from the viewpoint of easy control of the substrate temperature. By mixing water vapor into the combustion gas, hB
It is possible to promote radicalization of boron, nitrogen, and hydrogen by enhancing the etching effect of N and mixing an inert gas. As the inert gas, it is preferable to use at least one selected from argon and helium. The mixing ratio of steam and inert gas does not lower the temperature of the flame, so the volume ratio to the combustion gas containing hydrogen atoms is 3% or less for steam and 10% for inert gas.
The following are preferred.

【0011】燃焼ガスの燃焼領域に供給する、窒素およ
びホウ素を含むガスの具体例としては、窒素源として窒
素ガスおよびアンモニアガス、酸化窒素などの窒素含有
化合物ガスが挙げられ、また、ホウ素源としてジボラ
ン、ホウ酸およびホウ酸エステルなどが挙げられる。こ
れらの中でも窒素ガスとジボランが好ましい。これらの
ガスの導入量は水素原子を含む燃焼ガスに対する体積比
として0.1〜10%が好ましい。また、窒素ガスまた
は窒素含有化合物ガスとホウ素含有化合物ガスの導入体
積比は前者/後者=0.1〜10の範囲が好ましい。
Specific examples of the gas containing nitrogen and boron to be supplied to the combustion region of the combustion gas include nitrogen gas and ammonia gas, nitrogen-containing compound gas such as nitric oxide as the nitrogen source, and boron source. Examples include diborane, boric acid, borate esters and the like. Among these, nitrogen gas and diborane are preferable. The introduction amount of these gases is preferably 0.1 to 10% as a volume ratio with respect to the combustion gas containing hydrogen atoms. Further, the introduction volume ratio of the nitrogen gas or the nitrogen-containing compound gas and the boron-containing compound gas is preferably in the range of the former / latter = 0.1 to 10.

【0012】本発明の方法の実施に用いる装置の一例を
図1に示す。アセチレン、その他の水素原子含有可燃性
ガス(ボンベ6)と酸素(ボンベ7)がトーチ1に供給
され、燃焼炎2を形成する。この燃焼炎2の中に、ジボ
ランその他のホウ素含有化合物(ボンベ8)、窒素ガス
またはアンモニアなどの窒素含有成分(ボンベ9)、な
らびに、所望によりアルゴンその他の不活性ガス(ボン
ベ10)および水蒸気(水蒸気発生器11)が、ガス混
合器5にて混合され、トーチ1に供給される。燃焼炎は
析出基板3上に直接吹き付けられる。析出基板3は、循
環水12により冷却されている水冷基板台4上に載置さ
れて所定温度に保持されており、析出基板3上に吹付け
られた燃焼炎からc−BNを主成分とする窒化ホウ素が
基板上に析出して膜を形成する。
An example of an apparatus used to carry out the method of the present invention is shown in FIG. Acetylene and other combustible gas containing hydrogen atoms (cylinder 6) and oxygen (cylinder 7) are supplied to the torch 1 to form a combustion flame 2. In this combustion flame 2, diborane or other boron-containing compound (cylinder 8), nitrogen-containing component such as nitrogen gas or ammonia (cylinder 9), and if desired, argon or other inert gas (cylinder 10) and steam ( The steam generator 11) is mixed in the gas mixer 5 and supplied to the torch 1. The combustion flame is blown directly onto the deposition substrate 3. The deposition substrate 3 is placed on a water-cooled substrate table 4 cooled by the circulating water 12 and is maintained at a predetermined temperature, and c-BN is contained as a main component from a combustion flame sprayed on the deposition substrate 3. Boron nitride is deposited on the substrate to form a film.

【0013】[0013]

【実施例】以下、実施例について本発明を具体的に説明
する。実施例1 図1に示す装置を用いて本発明の方法を実施した。アセ
チレンを2リットル/分、酸素ガスを2リットル/分、
それぞれに供給して燃焼炎を形成した。燃焼炎中に混入
させる原料ガスとして窒素ガス(N2 )50cc/分と
ジボラン(B26 )10cc/分を用いた。上記の条
件で形成した炎の内部に、水冷して温度を1000℃に
保った12.7×12.7×4mm大の超硬合金基板
(WC,Co8%)を火口からの距離20mmの位置に
設置し、1時間合成を行った。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 The method of the present invention was carried out using the apparatus shown in FIG. 2 l / min of acetylene, 2 l / min of oxygen gas,
Each was fed to form a combustion flame. Nitrogen gas (N 2 ) of 50 cc / min and diborane (B 2 H 6 ) of 10 cc / min were used as raw material gases mixed into the combustion flame. Inside the flame formed under the above conditions, a 12.7 × 12.7 × 4 mm-sized cemented carbide substrate (WC, Co8%) cooled with water and maintained at 1000 ° C. was placed at a distance of 20 mm from the crater. And was synthesized for 1 hour.

【0014】合成後基板上を観察したところ、厚さ1.
5μm、析出領域約8mmφの膜状の析出物が形成され
ていた。FT−IR法を用いた分析結果を図2に示す。
同図にみられるように、1100cm-1付近にc−BN
に由来する大きな吸収ピークがあり、800,1400
cm-1付近にh−BNに由来する小さな吸収ピークがあ
る。この結果から析出物はc−BNを多く含む窒化ホウ
素膜であることがわかった。
After the synthesis, the substrate was observed to have a thickness of 1.
A film-like precipitate having a size of 5 μm and a deposition area of about 8 mmφ was formed. The analysis result using the FT-IR method is shown in FIG.
As can be seen in the figure, c-BN near 1100 cm -1.
Has a large absorption peak derived from
There is a small absorption peak derived from h-BN near cm -1 . From this result, it was found that the precipitate was a boron nitride film containing a large amount of c-BN.

【0015】実施例2 実施例1と同様の条件下に窒化ホウ素を合成した。但
し、燃焼ガス中にさらにアルゴンを100cc/分混入
させた。合成中の炎の形状を観察したところ実施例1に
比べて若干炎が広がるのが観察された。合成後基板上を
観察したところ、厚さ1.8μm、析出領域約9.5m
mφの膜状の析出物が形成した。FT−IR法を用いた
分析結果を図3に示す。実施例1にくらべ膜質の変化は
みられないが、析出領域、析出量が向上している。
Example 2 Boron nitride was synthesized under the same conditions as in Example 1. However, 100 cc / min of argon was further mixed in the combustion gas. When the shape of the flame during synthesis was observed, it was observed that the flame slightly spread as compared with Example 1. Observation on the substrate after synthesis showed a thickness of 1.8 μm and a deposition area of about 9.5 m.
A film-shaped precipitate of mφ was formed. The analysis results using the FT-IR method are shown in FIG. Although no change in film quality was observed in Example 1, the deposition area and deposition amount were improved.

【0016】実施例3 実施例1と同様の条件下に窒化ホウ素を合成した。但
し、水蒸気発生器を用いて燃焼ガス中にさらに水蒸気を
3cc/分混入させた。合成後基板上を観察したとこ
ろ、厚さ1.1μm、析出領域約8mmφの膜状の析出
物が形成した。FT−IR法を用いた分析結果を図4に
示す。実施例1にくらべ1100cm-1付近のc−BN
に由来する吸収ピーク若干大きくなり、800,140
0cm-1付近のh−BNに由来する吸収ピークが低下し
て膜質が向上していることがわかる。析出量は実施例1
に比べ若干低下した。
Example 3 Boron nitride was synthesized under the same conditions as in Example 1. However, steam was further mixed into the combustion gas at 3 cc / min using a steam generator. When the substrate was observed after the synthesis, a film-like precipitate having a thickness of 1.1 μm and a deposition region of about 8 mmφ was formed. The analysis result using the FT-IR method is shown in FIG. Compared to Example 1, c-BN around 1100 cm -1
The absorption peak due to
It can be seen that the absorption peak derived from h-BN near 0 cm −1 is lowered and the film quality is improved. The amount of precipitation is Example 1
It was slightly lower than.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の実施例に用いる装置の一例であ
る。
FIG. 1 is an example of an apparatus used for an embodiment of the method of the present invention.

【図2】実施例1で合成された窒化ホウ素膜のFT−I
Rスペクトルを示す。
2 is an FT-I of the boron nitride film synthesized in Example 1. FIG.
The R spectrum is shown.

【図3】実施例2で合成された窒化ホウ素膜のFT−I
Rスペクトルを示す。
FIG. 3 FT-I of the boron nitride film synthesized in Example 2
The R spectrum is shown.

【図4】実施例3で合成された窒化ホウ素膜のFT−I
Rスペクトルを示す。
FIG. 4 FT-I of the boron nitride film synthesized in Example 3
The R spectrum is shown.

【符号の説明】[Explanation of symbols]

1 トーチ 2 炎 3 析出基板 4 水冷基板台 5 ガス混合器 6 アセチレンボンベ 7 酸素ボンベ 8 ジボランボンベ 9 窒素ボンベ 10 アルゴンボンベ 11 水蒸気発生器 12 冷却水 1 Torch 2 Flame 3 Precipitation Substrate 4 Water-cooled Substrate 5 Gas Mixer 6 Acetylene Cylinder 7 Oxygen Cylinder 8 Diborane Cylinder 9 Nitrogen Cylinder 10 Argon Cylinder 11 Steam Generator 12 Cooling Water

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素原子を含む燃焼ガスの燃焼領域中
に、窒素およびホウ素を含むガスを供給しながら、その
燃焼炎を基板上に直接吹き付けることを特徴とする窒化
ホウ素を形成する方法。
1. A method for forming boron nitride, which comprises spraying a combustion flame directly onto a substrate while supplying a gas containing nitrogen and boron into a combustion region of a combustion gas containing hydrogen atoms.
【請求項2】 水素原子を含むガスとして、アセチレ
ン、エチレンおよびプロパンの中から選ばれた少くとも
一種と酸素からなる混合ガスを用いる請求項1に記載の
窒化ホウ素の形成方法。
2. The method for forming boron nitride according to claim 1, wherein a mixed gas containing at least one selected from acetylene, ethylene and propane and oxygen is used as the gas containing hydrogen atoms.
【請求項3】 窒素およびホウ素を含むガスとして、窒
素ガスとジボランとを用いる請求項1または2に記載の
窒化ホウ素の形成方法。
3. The method for forming boron nitride according to claim 1, wherein nitrogen gas and diborane are used as the gas containing nitrogen and boron.
【請求項4】 燃焼ガス中にさらに不活性ガスおよび水
蒸気の中から選ばれた少くとも一種のガスを混入する請
求項1〜3のいずれかに記載の窒化ホウ素の形成方法。
4. The method for forming boron nitride according to claim 1, wherein the combustion gas is further mixed with at least one gas selected from an inert gas and steam.
【請求項5】 不活性ガスとしてアルゴンおよびヘリウ
ムの中から選ばれた少くとも一種を用いる請求項4記載
の窒化ホウ素の形成方法。
5. The method for forming boron nitride according to claim 4, wherein at least one selected from argon and helium is used as the inert gas.
JP35333292A 1992-12-11 1992-12-11 Formation of boron nitride in vapor phase Pending JPH06171910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35333292A JPH06171910A (en) 1992-12-11 1992-12-11 Formation of boron nitride in vapor phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35333292A JPH06171910A (en) 1992-12-11 1992-12-11 Formation of boron nitride in vapor phase

Publications (1)

Publication Number Publication Date
JPH06171910A true JPH06171910A (en) 1994-06-21

Family

ID=18430131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35333292A Pending JPH06171910A (en) 1992-12-11 1992-12-11 Formation of boron nitride in vapor phase

Country Status (1)

Country Link
JP (1) JPH06171910A (en)

Similar Documents

Publication Publication Date Title
US5368897A (en) Method for arc discharge plasma vapor deposition of diamond
JPH0346436B2 (en)
JPS61158899A (en) Production of diamond film
US5381755A (en) Method of synthesizing high quality, doped diamond and diamonds and devices obtained therefrom
JPH06171910A (en) Formation of boron nitride in vapor phase
Badzian et al. Growth of diamond and nickel carbide crystals in the Ni C H system
US4981671A (en) Method for preparing diamond or diamond-like carbon by combustion flame
JPH0372038B2 (en)
JPH02221194A (en) Method for synthesizing transparent diamond in vapor phase
JP2581330B2 (en) Synthesis method of diamond by combustion flame
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPH01203297A (en) Method for synthesizing diamond with combustion flame
JP2645867B2 (en) Method of depositing diamond film
JP2752753B2 (en) Synthesis method of diamond by combustion flame
JPH0255294A (en) Method for synthesizing diamond by vapor process
JPH0667797B2 (en) Diamond synthesis method
JPH01201481A (en) Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride
JPH03208892A (en) Method and device for synthesizing diamond film
JP2754259B2 (en) Combustion Flame Synthesis Method for Transparent Diamond
Watanabe et al. Effect of bias application on c-BN synthesis by induction thermal plasmas under atmospheric pressure
JP2820604B2 (en) Method and apparatus for synthesizing vapor phase diamond
JPH02196094A (en) Method for synthesizing diamond by combustion flame
JP2619557B2 (en) Synthesis method of vapor phase diamond
Aoyama et al. Diamond deposition with Ar CO2 CH4 H2 plasma jets