JPH061688B2 - White pulse light generator - Google Patents

White pulse light generator

Info

Publication number
JPH061688B2
JPH061688B2 JP26788290A JP26788290A JPH061688B2 JP H061688 B2 JPH061688 B2 JP H061688B2 JP 26788290 A JP26788290 A JP 26788290A JP 26788290 A JP26788290 A JP 26788290A JP H061688 B2 JPH061688 B2 JP H061688B2
Authority
JP
Japan
Prior art keywords
light
white
electron
emitting metal
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26788290A
Other languages
Japanese (ja)
Other versions
JPH04144053A (en
Inventor
利昭 伊藤
光夫 平松
広次 村木
伊助 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP26788290A priority Critical patent/JPH061688B2/en
Publication of JPH04144053A publication Critical patent/JPH04144053A/en
Publication of JPH061688B2 publication Critical patent/JPH061688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は高輝度の白色パルス光を得るための白色パルス
光発生装置に関するものである。
The present invention relates to a white pulse light generator for obtaining white pulse light with high brightness.

「従来の技術」 電圧を印加していないキセノンランプの電極(カソー
ド)に、例えばYAGレーザの基本波(1064nm)を照射する
と、高輝度の白色パルス光を発生することが知られてい
る。この白色パルス光は、例えば、ストリークカメラを
検出器とした時間分解吸収測定装置におけるプローブ光
として利用される。
“Prior Art” It is known that when the electrode (cathode) of a xenon lamp to which no voltage is applied is irradiated with the fundamental wave (1064 nm) of a YAG laser, white pulsed light with high brightness is generated. This white pulsed light is used, for example, as probe light in a time-resolved absorption measuring device using a streak camera as a detector.

この種の時間分解吸収装置は、第5図に示すように、レ
ーザパルスの励起光(9)を試料(10)に照射し、この試料
(10)に生じる励起種、反応中間体のスペクトルとその強
度の変化を白色プローブ光(11)により追跡するもので、
このプローブ光(11)はスペクトルが連続的な白色光を用
い、このプローブ光(11)の強度変化をストリークカメラ
(12)で検出することにより、過度吸収スペクトルとその
強度変化を観察するものである。
This type of time-resolved absorption apparatus irradiates a sample (10) with laser pulse excitation light (9) as shown in FIG.
Excited species generated in (10), the spectrum of the reaction intermediate and the change in its intensity are tracked by white probe light (11),
This probe light (11) uses white light with a continuous spectrum, and changes the intensity of this probe light (11) with a streak camera.
By detecting in (12), the excessive absorption spectrum and its intensity change are observed.

しかるに、前記白色プローブ光(11)の発生装置は、第5
図に示すように、光強度の大きな光、例えばYAGレーザ
の基本波(1064nm)(2)をレンズ(1)で、被照射手段として
のキセノンランプ(3)のカソード(4)の正面に集光させて
白色光(5)を発生させ、発生した白色光(5)を取出して、
レンズ(6)で集光して光ファイバ(7)を介して試料(10)へ
送るようにしている。
However, the device for generating the white probe light (11) is
As shown in the figure, light with high light intensity, for example, the fundamental wave (1064 nm) (2) of a YAG laser is collected by the lens (1) in front of the cathode (4) of the xenon lamp (3) as the irradiated means. Light it to generate white light (5), take out the generated white light (5),
The lens (6) collects the light and sends it to the sample (10) through the optical fiber (7).

「発明が解決しようとする課題」 前述のように、入射レーザ(2)をキセノンランプ(3)のカ
ソード(4)に集光すると、このカソード(4)から白色パル
ス光が発生する。特に、レーザ(2)の入射経路と略同一
経路の面(13)(図中斜線部分)に強く放射する。ところ
が、従来は、レーザ(2)の入射経路と同一経路からとり
出すのが構造上無理なため、止むを得ず、第5図のよう
に、側方からとり出していた。
[Problems to be Solved by the Invention] As described above, when the incident laser (2) is focused on the cathode (4) of the xenon lamp (3), white pulsed light is generated from the cathode (4). In particular, the light is strongly radiated to the surface (13) (hatched portion in the figure) of the substantially same path as the incident path of the laser (2). However, in the past, it was structurally impossible to take out from the same path as the incident path of the laser (2), so it was unavoidable that the laser (2) was taken out from the side as shown in FIG.

本発明の目的は、光強度の大きな光の入射経路と略同一
の強く放射するところから高効率の白色パルス光をとり
出せる装置を得ることである。また、その結果として、
光の入射による損傷を与えないようなものを得ることで
ある。
An object of the present invention is to obtain an apparatus capable of extracting white pulsed light with high efficiency from a strong emission substantially the same as the incident path of light having high light intensity. Also, as a result,
The point is to obtain something that does not cause damage by the incidence of light.

「課題を解決するための手段」 本発明は、被照射手段のガス入り透明容器内に、電子の
放出し易い金属を設け、この電子放出金属に光強度の大
きな光を照射し、この電子放出金属から所定の白色パル
ス光を発生せしめるようにした装置において、前記光強
度の大きな光の入射方向と略同一方向に、前記電子放出
金属から放射された白色パルス光を分離する分離手段を
設けてなるものである。
[Means for Solving the Problem] The present invention provides a metal containing a gas that is easy to emit electrons in a gas-containing transparent container of a means to be irradiated, and irradiates the electron-emitting metal with light having a high light intensity to emit the electrons. In a device adapted to generate a predetermined white pulsed light from a metal, a separating means for separating the white pulsed light emitted from the electron emitting metal is provided in substantially the same direction as the incident direction of the light having a high light intensity. It will be.

「作用」 光強度の大きな光としてレーザを用いた場合、入射する
レーザは、最初はできるだけビーム径の広がった状態と
しておく。このビーム径の大きなレーザは、焦点距離の
短かなレンズを介在させることにより、キセノンランプ
のガラス面の部分はできるだけビーム径の大きな状態で
透過することにより、ガラス面部分の損傷を最小限にす
る。透過したレーザはキセノンランプのカソードに集光
され、このカソードで白色光を発生する。発生した白色
パルス光のうちレーザの入射経路と略同一経路に放射さ
れた白色パルス光だけが分離手段で分離され、光ファイ
バを経て次段へ伝送される。
"Operation" When a laser is used as light having a high light intensity, the incident laser is initially in a state where the beam diameter is as wide as possible. This laser with a large beam diameter allows the glass surface of the xenon lamp to pass through with a beam diameter as large as possible by interposing a lens with a short focal length to minimize damage to the glass surface. . The transmitted laser is focused on the cathode of the xenon lamp, and white light is generated at this cathode. Of the generated white pulsed light, only the white pulsed light emitted in the substantially same path as the laser incident path is separated by the separating means and transmitted to the next stage through the optical fiber.

「実施例」 以下、本発明の一実施例を図面に基き説明する。[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図において、(2)は光強度の大きな光で、例えばN
d:YAGレーザ装置にて発生する基本波の1064nm、30ps、
30mJレーザパルスとする。このレーザ(2)を電子放出金
属であるカソード(4)へ入射し、このカソード(4)で発光
した光は前記レーザ(2)と分離する分離手段、すなわち
ダイクロイックミラーなどのビームサンプラー(8)に送
られる。このビームサンプラー(8)は、石英基板に16層
程度のZrO2、SiO2を蒸着したもので、第2図のように、
1064nm付近を、略100%反射し、可視光領域を略100%透過
するような特性をもち、さらに光損傷しきい値が高くな
るように作られる。このビームサンプラー(8)で反射し
たレーザ(2)はレンズ(1)を通して被照射手段のキセノン
ランプ(3)の電極(カソード)(4)に照射される。このと
き、キセノンランプ(3)のガラス面(14)の半径が大きけ
れば、このガラス面(14)の損傷の問題はない。しかし、
ガラス面(14)の半径が小さければレンズ(1)は非球面で
焦点距離を短かくし、かつできるだけキセノンランプ
(3)に近づけることによってレーザ(2)のビーム径を最初
は広くしてキセノンランプ(3)のガラス面(14)を透過さ
せて、このガラス面(14)の損傷を可及的に防止する。レ
ーザ(2)がキセノンランプ(3)のカソード(4)に集光され
ると、このカソード(4)の略全周で白色パルス光(5)が発
生する。発生した白色パルス光(5)のうち、レーザ(2)の
入射面と同じ面の白色パルス光(5)が最も強く放射する
ため、この入射経路と同じ経路の白色パルス光(5)を集
光する。これが再び前記レンズ(1)を通って平行光線と
なる。ビームサンプラー(8)は白色パルス光(5)の可視光
領域を略100%透過し、透過した白色パルス光(5)はさら
にレンズ(6)で光ファイバ(7)に集光されて、この光ファ
イバ(7)により次段へ伝送される。
In FIG. 1, (2) is light with high light intensity, for example N
d: 1064nm, 30ps of fundamental wave generated by YAG laser device,
30mJ laser pulse. The laser (2) is incident on the cathode (4) which is an electron emitting metal, and the light emitted from the cathode (4) is separated from the laser (2) by a separating means, that is, a beam sampler (8) such as a dichroic mirror. Sent to. This beam sampler (8) is made by depositing about 16 layers of ZrO 2 and SiO 2 on a quartz substrate, and as shown in FIG.
It has characteristics that approximately 100% is reflected in the vicinity of 1064 nm and approximately 100% is transmitted in the visible light region, and it is made to have a higher optical damage threshold value. The laser (2) reflected by the beam sampler (8) is applied to the electrode (cathode) (4) of the xenon lamp (3) of the irradiated means through the lens (1). At this time, if the radius of the glass surface (14) of the xenon lamp (3) is large, there is no problem of damage to the glass surface (14). But,
If the glass surface (14) has a small radius, the lens (1) is an aspherical surface with a short focal length and a xenon lamp as much as possible.
By making it closer to (3), the beam diameter of the laser (2) is initially widened to allow it to pass through the glass surface (14) of the xenon lamp (3) and prevent damage to this glass surface (14) as much as possible. To do. When the laser (2) is focused on the cathode (4) of the xenon lamp (3), white pulsed light (5) is generated almost all around the cathode (4). Of the generated white pulsed light (5), the white pulsed light (5) on the same surface as the incident surface of the laser (2) emits the strongest light, so the white pulsed light (5) on the same path as this incident path is collected. Glow. This again passes through the lens (1) and becomes a parallel ray. The beam sampler (8) transmits almost 100% of the visible light region of the white pulsed light (5), and the transmitted white pulsed light (5) is further focused on the optical fiber (7) by the lens (6). It is transmitted to the next stage by the optical fiber (7).

前記実施例では、キセノンランプ(3)のカソード(4)にレ
ーザ(2)を照射して白色パルス光(5)を得る例を示した
が、これに限られるものではない。すなわち、ガラス管
は密閉した透明容器とし、内部にキセノンその他の不活
性ガスを充填し、また、内部の電子の放出しやすい金属
は、例えば、バリウム、トリウムなどのアルカリ金属、
アルカリ土類金属入りのタングステンとする。さらに、
前記照射光源はレーザでなくとも、光強度の大きな光で
あればよい。また、管内に充填するガスはキセノン以外
に、クリプトンであってもよい。ただし、クリプトンを
用いるとやや赤みの付いたパルス光となる。
In the above-mentioned embodiment, the example in which the cathode (4) of the xenon lamp (3) is irradiated with the laser (2) to obtain the white pulsed light (5) is shown, but the invention is not limited to this. That is, the glass tube is a closed transparent container, the inside is filled with an inert gas such as xenon, and the internal electron-prone metal is, for example, an alkali metal such as barium or thorium,
Tungsten containing alkaline earth metal. further,
The irradiation light source does not have to be a laser as long as it has high light intensity. The gas filled in the tube may be krypton instead of xenon. However, if krypton is used, the pulsed light will be slightly reddish.

前記実施例では、光強度の大きな光を電子放出金属(4)
に入射するように屈折させ、かつ、白色パルス光(5)を
透過する分離手段としてビームサンプラー(8)を用いた
が、その他の例を第3図および第4図により説明する。
In the above-mentioned embodiment, light having a high light intensity is emitted from the electron-emitting metal (4).
The beam sampler (8) was used as a separating means for refracting the light so as to be incident on and also for transmitting the white pulsed light (5), but another example will be described with reference to FIGS. 3 and 4.

第3図において、分離手段は平面反射鏡(8)とレンズ(6)
からなり、光強度の大きな光は平面反射鏡(8)の中心に
通過孔(15)を通して透明容器(14)の電子放出金属(4)に
照射される。このとき、ビーム径が小さいので、透明容
器(14)の通過時にガラス面(14)に損傷を与えない場合に
用いられる。発生した白色パルス光(5)は平面反射鏡(8)
で反射され、レンズ(6)で光ファイバ(7)へ集光される。
In FIG. 3, the separating means is a flat reflecting mirror (8) and a lens (6).
The light having a high light intensity is applied to the electron-emitting metal (4) of the transparent container (14) through the passage hole (15) at the center of the flat reflecting mirror (8). At this time, since the beam diameter is small, it is used when the glass surface (14) is not damaged when passing through the transparent container (14). The generated white pulsed light (5) is a flat mirror (8)
Is reflected by and is condensed on the optical fiber (7) by the lens (6).

なお、平面反射鏡(8)とレンズ(6)からなる分離手段は、
は第4図のように、凹面鏡(8)に代えることができる。
Incidentally, the separating means consisting of the flat reflecting mirror (8) and the lens (6) is
Can be replaced by a concave mirror (8) as shown in FIG.

「発明の効果」 本発明は上述のように構成したので、最も強く放射する
個所から白色パルス光を高効率で集光することができ
る。また、短い焦点距離のレンズを介在すれば、ガラス
面を径の広いビームが透過し、ガラス面に損傷を与える
ことを防止できる。
"Effects of the Invention" Since the present invention is configured as described above, it is possible to collect white pulsed light with high efficiency from the most intensely radiating portion. Further, by interposing a lens having a short focal length, it is possible to prevent a beam having a large diameter from passing through the glass surface and damaging the glass surface.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による白色パルス光発生装置の第1実施
例を示す説明図、第2図はビームサンプラーの波長特性
図、第3図は本発明による白色パルス光発生装置の第2
実施例を示す説明図、第4図は本発明による白色パルス
光発生装置の第3実施例を示す説明図、第5図は従来装
置の説明図である。 (1)…レンズ、(2)…光強度の大きな光、(3)…被照射手
段、(4)…電子放出金属、(5)…白色パルス光、(6)…レ
ンズ、(7)…光ファイバ、(8)…入射光と出射光の分離手
段、(9)…励起光、(10)…試料、(11)…白色プローブ
光、(12)…ストリークカメラ、(14)…透明容器(ガラス
面)、(15)…通過孔。
FIG. 1 is an explanatory view showing a first embodiment of a white pulsed light generator according to the present invention, FIG. 2 is a wavelength characteristic diagram of a beam sampler, and FIG. 3 is a second part of a white pulsed light generator according to the present invention.
FIG. 4 is an explanatory view showing an embodiment, FIG. 4 is an explanatory view showing a third embodiment of the white pulse light generating device according to the present invention, and FIG. 5 is an explanatory view of a conventional device. (1) ... lens, (2) ... light with high light intensity, (3) ... irradiated means, (4) ... electron emitting metal, (5) ... white pulsed light, (6) ... lens, (7) ... Optical fiber, (8) ... Separation means for incident light and emitted light, (9) ... Excitation light, (10) ... Sample, (11) ... White probe light, (12) ... Streak camera, (14) ... Transparent container (Glass surface), (15) ... Passage hole.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】被照射手段のガス入り透明容器内に、電子
の放出し易い金属を設け、この電子放出金属に光強度の
大きな光を照射し、この電子放出金属から所定の白色パ
ルス光を発生せしめるようにした装置において、前記光
強度の大きな光の入射方向と略同一方向に、前記電子放
出金属から放射された白色パルス光を分離する分離手段
を設けてなることを特徴とする白色パルス光発生装置。
1. A transparent container containing a gas, which is a means to be irradiated, is provided with a metal from which electrons are easily emitted. The electron emitting metal is irradiated with light having a high light intensity, and a predetermined white pulse light is emitted from the electron emitting metal. In the device for generating the white pulse, a separating means for separating the white pulse light emitted from the electron-emitting metal is provided in substantially the same direction as the incident direction of the light having high light intensity. Light generator.
【請求項2】分離手段は、電子放出金属に照射する光強
度の大きな光を反射し、電子放出金属で発生した白色パ
ルス光を透過するビームサンプラーからなる請求項(1)
記載の白色パルス光発生装置。
2. The separation means comprises a beam sampler that reflects light with high light intensity applied to the electron-emitting metal and transmits white pulsed light generated by the electron-emitting metal.
The white pulsed light generator described.
【請求項3】ビームサンプラーは石英基板にZrO2、SiO2
を蒸着し、光強度の大きな光としての1064nmのレーザを
略100%反射し、発生した白色パルス光を略100%透過する
ものからなる請求項(2)記載の白色パルス光発生装置。
3. The beam sampler comprises a quartz substrate and ZrO 2 , SiO 2
The white pulse light generator according to claim (2), which is formed by vapor-depositing, and reflects substantially 100% of a 1064 nm laser as light having a high light intensity and transmits substantially 100% of the generated white pulse light.
【請求項4】分離手段と被照射手段の間に、光強度の大
きな光を電子放出金属に集光するための短い焦点距離の
レンズを挿入してなる請求項(1)、(2)または(3)記載の
白色パルス光発生装置。
4. A lens having a short focal length for condensing light having a high light intensity on an electron emitting metal is inserted between the separating means and the irradiated means. (3) The white pulsed light generator as described above.
【請求項5】分離手段は、電子放出金属に照射する光強
度の大きな光を通過する通過孔を有し、かつ発生した白
色パルス光を反射する反射鏡からなる請求項(1)記載の
白色パルス光発生装置。
5. The white color as claimed in claim 1, wherein the separating means comprises a reflecting mirror having a passage hole for passing light having a high light intensity for irradiating the electron emitting metal and reflecting the generated white pulse light. Pulsed light generator.
JP26788290A 1990-10-05 1990-10-05 White pulse light generator Expired - Fee Related JPH061688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26788290A JPH061688B2 (en) 1990-10-05 1990-10-05 White pulse light generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26788290A JPH061688B2 (en) 1990-10-05 1990-10-05 White pulse light generator

Publications (2)

Publication Number Publication Date
JPH04144053A JPH04144053A (en) 1992-05-18
JPH061688B2 true JPH061688B2 (en) 1994-01-05

Family

ID=17450943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26788290A Expired - Fee Related JPH061688B2 (en) 1990-10-05 1990-10-05 White pulse light generator

Country Status (1)

Country Link
JP (1) JPH061688B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8525138B2 (en) 2006-03-31 2013-09-03 Energetiq Technology, Inc. Laser-driven light source
US7435982B2 (en) * 2006-03-31 2008-10-14 Energetiq Technology, Inc. Laser-driven light source
IL234729B (en) 2013-09-20 2021-02-28 Asml Netherlands Bv Laser-operated light source and method including mode scrambler
IL234727B (en) 2013-09-20 2020-09-30 Asml Netherlands Bv Laser-operated light source in an optical system corrected for aberrations and method of designing the optical system
JP6023355B2 (en) 2013-12-06 2016-11-09 浜松ホトニクス株式会社 Luminous envelope
US9646816B2 (en) 2013-12-06 2017-05-09 Hamamatsu Photonics K.K. Light source device
US9741553B2 (en) 2014-05-15 2017-08-22 Excelitas Technologies Corp. Elliptical and dual parabolic laser driven sealed beam lamps
US10186416B2 (en) 2014-05-15 2019-01-22 Excelitas Technologies Corp. Apparatus and a method for operating a variable pressure sealed beam lamp
EP3143638B1 (en) 2014-05-15 2018-11-14 Excelitas Technologies Corp. Laser driven sealed beam lamp
US9576785B2 (en) 2015-05-14 2017-02-21 Excelitas Technologies Corp. Electrodeless single CW laser driven xenon lamp
US10008378B2 (en) 2015-05-14 2018-06-26 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US10057973B2 (en) 2015-05-14 2018-08-21 Excelitas Technologies Corp. Electrodeless single low power CW laser driven plasma lamp
US10109473B1 (en) 2018-01-26 2018-10-23 Excelitas Technologies Corp. Mechanically sealed tube for laser sustained plasma lamp and production method for same
US11587781B2 (en) 2021-05-24 2023-02-21 Hamamatsu Photonics K.K. Laser-driven light source with electrodeless ignition

Also Published As

Publication number Publication date
JPH04144053A (en) 1992-05-18

Similar Documents

Publication Publication Date Title
JPH061688B2 (en) White pulse light generator
Bortz et al. Optical reflectivity measurements using a laser plasma light source
US8651701B2 (en) Light source device
WO1995021393A3 (en) Process and device for optically measuring a point on a sample with high local resolution
JP2018517245A (en) Electrodeless single CW laser drive xenon lamp
JPH08212952A (en) Laser irradiation type electron gun
US4182574A (en) Arrangement for carrying out laser spectral analysis
RU2001121681A (en) DEVICE FOR ELEMENT ANALYSIS BY SPECTROMETRY OF OPTICAL EMISSION ON A PLASMA OBTAINED WITH THE USE OF A LASER
JP2001142002A (en) Confocal laser scanning microscope
US4611143A (en) Composite light source
JP2020505733A (en) Electrodeless single low power CW laser driven plasma lamp
JPS5837545A (en) Spectrofluoro-measuring device
US4764674A (en) High time resolution electron microscope
TWI827582B (en) System and method for photocathode illumination inspection
US7864924B2 (en) Scanning X-ray radiation
US4692938A (en) X-ray shadow graph device
US6274970B1 (en) Arc lamp
US6236147B1 (en) Arc lamp
US4714825A (en) System for calibrating the time axis of an X-ray streak tube
JP2530591B2 (en) Pulsed laser photoexcitation electron source device suitable for high current density electron emission
JPS6049857B2 (en) Visibility measuring device
SU629455A1 (en) Device for spectro-chemical studies
WO2017212710A1 (en) Laser-driving light source device
JP3849029B2 (en) Hollow cathode array arc tube and multi-element simultaneous absorption spectrometer
JP2954963B2 (en) Electron source device using photocathode

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees