JPH08212952A - Laser irradiation type electron gun - Google Patents

Laser irradiation type electron gun

Info

Publication number
JPH08212952A
JPH08212952A JP7018258A JP1825895A JPH08212952A JP H08212952 A JPH08212952 A JP H08212952A JP 7018258 A JP7018258 A JP 7018258A JP 1825895 A JP1825895 A JP 1825895A JP H08212952 A JPH08212952 A JP H08212952A
Authority
JP
Japan
Prior art keywords
electron
filament
laser
electron gun
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7018258A
Other languages
Japanese (ja)
Inventor
Takayoshi Kimoto
高義 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP7018258A priority Critical patent/JPH08212952A/en
Priority to NL1002246A priority patent/NL1002246C2/en
Priority to DE1996104272 priority patent/DE19604272A1/en
Publication of JPH08212952A publication Critical patent/JPH08212952A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06333Photo emission

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE: To produce an electron beam having high intensity by arranging a laser beam irradiation mechanism of irradiating a point end of a filament with laser beam, in a heating field emission electron gun or in a thermoelectron emission electron gun. CONSTITUTION: In laser generated from a laser generator 6, after adjusting by lenses 7a, 7b, an advancing direction is changes by reflecting mirror, and the laser, passing a laser transmitting window 9, is incident in an electron gun 18. The incident laser focuses and irradiates a point end part of a filament 12 by means of a reflecting mirror 16 or a concave mirror. In adjusting a temperature of the filament, measuring and adjusting are performed by a pyroscope 15 through an observing window 14. A large amount of electron is emitted from a point end part surface of the filament 12 and extracted by an extraction electrode 13 having plus potential. The extracted electron, after focused by an electron beam focusing electromagnet 17, is incident in a sample chamber of an electron microscope through an acceleration tube or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、レーザー照射型電子
銃に関するものである。さらに詳しくは、この発明は、
極めて高い輝度を有する電子ビームを発生させることが
でき、透過型電子顕微鏡(極低温専用高分解能電子顕微
鏡を含む)、走査型電子顕微鏡などの電子顕微鏡、また
は電子線ホログラフィー技術等の高輝度の電子ビームを
必要とする技術分野に好適に用いることのできる、新し
いレーザー照射型電子銃に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser irradiation type electron gun. More specifically, the present invention is
An electron beam with extremely high brightness can be generated, and high-brightness electrons such as electron microscopes such as transmission electron microscopes (including high-resolution electron microscopes dedicated to cryogenic temperatures) and scanning electron microscopes, or electron beam holography technology. The present invention relates to a new laser irradiation type electron gun which can be suitably used in the technical field requiring a beam.

【0002】[0002]

【従来の技術とその課題】従来より、電子顕微鏡に用い
られている電子銃には、熱電子放出型電子銃と電界放射
型電子銃が知られている。このうちの熱電子放出型電子
銃は、高融点金属を高温に加熱することにより金属表面
から飛び出す熱電子を引出し、この熱電子を加速するこ
とを特徴としている。一方、電界放射型電子銃は、電子
銃のフィラメントの先端部を鋭く、曲率半径を小さくす
ることにより生じる強電界により電子ビームを発生・加
速させるものであり、フィラメントを加熱する加熱式電
界放射型電子銃と、フィラメントを全く加熱しない冷陰
極式電界放射型電子銃がある。これらの電界放射型電子
銃は、強電界による量子力学的トンネル効果を利用する
ことにより電子ビームの電流密度、つまり輝度が熱電子
放出型電子銃よりも約2桁程高い高輝度収束電子ビーム
を発生させることができるという特徴がある。この高輝
度収束電子ビームの特徴である高輝度性および電子波の
高干渉性により電子顕微鏡において極微小領域の元素分
析を高い位置精度で行うことができるようになり、短時
間撮影による画質および分解能が向上された。また、電
子線ホログラフィ−ができるようになった。
2. Description of the Related Art Conventionally, thermionic emission type electron guns and field emission type electron guns are known as electron guns used in electron microscopes. Among them, the thermionic emission type electron gun is characterized in that a high melting point metal is heated to a high temperature to draw out thermoelectrons jumping out from the metal surface and accelerate the thermoelectrons. On the other hand, the field emission type electron gun is a heating type field emission type that heats a filament by heating and heating the filament by a strong electric field generated by sharpening the tip of the filament of the electron gun and reducing the radius of curvature. There are electron guns and cold cathode field emission electron guns that do not heat the filament at all. These field emission electron guns use a quantum mechanical tunneling effect due to a strong electric field to generate a high-brightness convergent electron beam whose electron beam current density, that is, brightness is about two orders of magnitude higher than that of a thermionic emission electron gun. It has the feature that it can be generated. Due to the high brightness and the high coherence of electron waves, which are the characteristics of this high-intensity focused electron beam, it becomes possible to perform elemental analysis of extremely small areas with high position accuracy in an electron microscope, and image quality and resolution due to short-time imaging Has been improved. Also, electron holography has become possible.

【0003】しかしながら、従来の熱電子放出型電子
銃、電界放射型電子銃では、発生される電子ビームの輝
度に限界があった。
However, in the conventional thermionic emission type electron gun and field emission type electron gun, the brightness of the generated electron beam is limited.

【0004】[0004]

【課題を解決するための手段】そこでこの発明は、上記
の課題を解決するものとして、加熱式電界放射型電子
銃、または熱電子放出型電子銃において、そのフィラメ
ントの先端部にレーザーを照射するレーザー光照射機構
が配設されていることを特徴とするレーザー照射型電子
銃を提供する。
In order to solve the above problems, the present invention irradiates a laser on the tip of the filament in a heating type field emission type electron gun or thermionic emission type electron gun. Provided is a laser irradiation type electron gun which is provided with a laser light irradiation mechanism.

【0005】[0005]

【作用】この発明では、上記の構成の通り、電子銃のフ
ィラメント先端部にレーザー光を照射するようにしてい
るが、この特徴をさらに原理的に説明すると、たとえば
図1に例示したように、電子銃のフィラメントの先端部
(1)の表面にレーザー光の振動数νの光子(3)が照
射されると、光電効果によりフィラメントの表面近傍の
自由電子(2)はhν(hはプランク定数)のエネルギ
ーを得る。このエネルギーと、フィラメントのレーザー
照射による加熱と通電による加熱とにより自由電子
(2)に与えられる熱エネルギーとの和のエネルギー
が、自由電子(2)が表面から飛び出すために必要なエ
ネルギーである仕事関数Wを越えた場合、フィラメント
の表面近傍から電子(4)が放出される。つまり、表面
から飛び出す電子(4)の運動エネルギーには、
According to the present invention, as described above, the filament tip portion of the electron gun is irradiated with the laser beam. This characteristic will be further explained in principle. For example, as shown in FIG. When the surface of the tip (1) of the filament of the electron gun is irradiated with photons (3) of the laser beam frequency ν, free electrons (2) near the filament surface are hν (h is Planck's constant) due to the photoelectric effect. ) Energy. The energy that is the sum of this energy and the thermal energy given to the free electrons (2) by heating the filament by laser irradiation and heating by energizing is the energy required for the free electrons (2) to jump out from the surface. When the function W is exceeded, electrons (4) are emitted from the vicinity of the surface of the filament. So the kinetic energy of the electron (4) jumping out from the surface is

【0006】[0006]

【数1】 [Equation 1]

【0007】のような関係が成り立つ。すなわち、この
関係がフィラメントからの電子の放出条件であり、この
放出条件を満たすようにレーザー光の照射とフィラメン
トの通電加熱、及びフィラメントの先端部の曲率半径
(R)を調整する。仕事関数Wは、フィラメントの先端
部の曲率半径(R)の関数であり、曲率半径(R)が小
さくなると、表面から放出された電子(4)を引き出す
ための引出し電極との電位差により生じるフィラメント
先端部(1)周辺の電界強度が大きくなるためにWは小
さくなり、より多量の電子(4)が放出される。加熱式
電界放射型電子銃を用いる場合、曲率半径(R)が約1
00nmの極微小値となるためにトンネル効果が発生し
て、これによりさらに多量の電子(4)が放出される。
The following relationship is established. That is, this relationship is the electron emission condition from the filament, and the irradiation of the laser beam, the electric heating of the filament, and the radius of curvature (R) of the tip of the filament are adjusted so as to satisfy the emission condition. The work function W is a function of the radius of curvature (R) of the tip of the filament, and when the radius of curvature (R) becomes smaller, the filament is generated due to the potential difference between the filament and the extraction electrode for extracting the electron (4) emitted from the surface. Since the electric field strength around the tip portion (1) becomes large, W becomes small, and a larger amount of electrons (4) are emitted. When using a heating type field emission electron gun, the radius of curvature (R) is about 1
A tunnel effect occurs due to the extremely small value of 00 nm, which causes a larger amount of electrons (4) to be emitted.

【0008】このように、レーザー光照射による光電効
果、及び加熱による熱的効果、及び極微小曲率半径によ
る量子力学的トンネル効果との相乗効果により極めて高
い輝度を有する電子ビームを発生させることができる。
レーザー光の波長については、これが短いほど、光電効
果により電子に与えるエネルギーが大きくなる。しか
し、波長が300nm以下より短くなると、一般に量子
効率(入射光子数に対する発生電子数の割合(%))が
低下することも考慮する必要がある。このため、フィラ
メントの仕事関数、形状、印加電圧等に応じた最も電子
が放出される最適条件の波長を選択する。たとえば、仕
事関数が4.54eVのタングステンフィラメント(古
くから、熱電子放出型電子銃に使用。また電界放射型電
子銃でも使用されている。)では、波長273nm以下
の短波長の光により、光電効果のみで電子が放出され
る。仕事関数がさらに小さい物質(たとえば、熱電子放
出型電子銃として最も輝度が高いLaB6 フィラメント
の仕事関数は、2.66eVと小さい。)では、必ずし
も可視光以下の短波長である必要はない。ただ、上記の
量子効率が低下しない範囲では、波長が短いほど有利で
あると考えられる。
As described above, the electron beam having extremely high brightness can be generated by the synergistic effect of the photoelectric effect by laser light irradiation, the thermal effect by heating, and the quantum mechanical tunnel effect by the extremely small radius of curvature. .
Regarding the wavelength of the laser light, the shorter the wavelength, the greater the energy given to the electron by the photoelectric effect. However, it is necessary to consider that the quantum efficiency (ratio (%) of the number of generated electrons to the number of incident photons) generally decreases when the wavelength becomes shorter than 300 nm. For this reason, the wavelength of the optimum condition for emitting the most electrons is selected according to the work function, shape, applied voltage, etc. of the filament. For example, in a tungsten filament having a work function of 4.54 eV (used for a thermionic emission type electron gun for a long time, and also used for a field emission type electron gun), a short wavelength light having a wavelength of 273 nm or less causes photoelectric conversion. Electrons are emitted only by the effect. A substance having a smaller work function (for example, the work function of the LaB 6 filament having the highest brightness as a thermionic emission electron gun is as small as 2.66 eV) does not necessarily have to be a short wavelength of visible light or shorter. However, it is considered that the shorter the wavelength is, the more advantageous it is within the range where the quantum efficiency is not lowered.

【0009】また、フィラメント先端部から放出される
電子は、フィラメントに照射されるレーザー光が強くな
るほど多くなる。パルス波では、フィラメントから放出
される電子の個数もパルス的に変化する。これは、少な
くとも短時間の撮影を行う場合には好ましくない。しか
し、パルス幅よりも十分長い露出時間では、それほど問
題にならないかもしれない。ただ、パルス的に電流値が
変化すると電子線が照射される試料の温度もパルス的に
変化する等の問題が生じる。この意味で、連続レーザー
照射の方がパルスレーザ照射よりも好ましい。
The number of electrons emitted from the tip of the filament increases as the intensity of the laser beam applied to the filament increases. In the pulse wave, the number of electrons emitted from the filament also changes like a pulse. This is not preferable at least when shooting is performed for a short time. However, exposure times that are much longer than the pulse width may not be a problem. However, when the current value changes in a pulsed manner, the temperature of the sample irradiated with the electron beam also changes in a pulsed manner. In this sense, continuous laser irradiation is preferable to pulsed laser irradiation.

【0010】いずれの場合でも、最も多く電子を放出す
るレーザー光の波長は、フィラメントの材質(仕事関
数、融点)、形状、印加電圧、温度および量子効率のパ
ラメータから求められる。個々の材質(電子顕微鏡の材
質)としては、従来よりW(タングステン)とLaB6
(ランタンボライドヘキサゴナル)が最も多く使用され
ている。最近、電界放射型電子銃のオプション的なフィ
ラメントとして、ZrO/Wも使用されている。これら
の現存の個々のレーザーの特性を考慮し、フィラメント
の選定と組み合わせて、最適な波長を選ぶこととなる。
In any case, the wavelength of the laser beam that emits the most electrons is determined from the filament material (work function, melting point), shape, applied voltage, temperature and quantum efficiency parameters. As the individual materials (materials of the electron microscope), W (tungsten) and LaB 6 have been used conventionally.
(Lanthan boride hexagonal) is most often used. Recently, ZrO / W is also used as an optional filament for a field emission electron gun. Considering the characteristics of each of these existing lasers, the optimum wavelength will be selected in combination with the selection of the filament.

【0011】フィラメントの素材としては、従来よりの
使用実績のあるW、LaB6 およびZrO/Wをはじめ
適宜なものが使用される。これらの素材において重要な
ことは、融点が高いこと、仕事関数が小さいこと、鋭利
な先端を得るための加工(あるいは電解研磨)が可能な
こと、長時間真空中・高温で安定(寿命が長い)なこと
等である。
As the material of the filament, an appropriate material such as W, LaB 6 and ZrO / W, which have been used in the past, can be used. What is important in these materials is that they have a high melting point, a low work function, that they can be processed (or electropolished) to obtain a sharp tip, and that they are stable in vacuum and at high temperatures for a long time (long life). ) It is a thing.

【0012】この発明は、上記の通り、加熱式電界放射
型電子銃のフィラメントの先端部にレーザー光を照射す
ることにより生じる光電効果と、加熱式電界放射型電子
銃の量子力学的トンネル効果および熱的効果との相乗効
果により極めて高い輝度を有する電子ビームを発生させ
ることができる。また、熱電子放出型電子銃のフィラメ
ント先端部にレ−ザ−光を照射することによって高い輝
度を有する電子ビ−ムを案価に発生させることができ
る。
As described above, the present invention provides the photoelectric effect produced by irradiating the tip of the filament of the heating field emission electron gun with laser light, the quantum mechanical tunnel effect of the heating field emission electron gun, and An electron beam having extremely high brightness can be generated by a synergistic effect with the thermal effect. Also, by irradiating the tip of the filament of the thermionic emission type electron gun with laser light, an electron beam having high brightness can be generated at a reasonable price.

【0013】電子顕微鏡用の電子ビ−ムとしてより輝度
が高いものが得られることが以下の観点から重要であ
る。 1)短時間撮影の画質(S/N比)の向上(→例えば、
極低温観察における試料の微動・振動による分解能低下
が、短時間の撮影により克服できる。この場合輝度が弱
いと、短時間の撮影では画質が低下する。短時間撮影と
高輝度電子線を組み合わせると、極低温観察での分解能
が向上する。) 2)輝度が高くなると必然的に、電子波の干渉性が向上
し、電子線ホログラフィーが可能となる。電子線ホログ
ラフィーの応用例としては、物質中の磁場の直接観察が
ある。このため、酸化物高温超電導体中の超電導状態に
おける磁束量子の観察が可能になる。また、電子線ホロ
グラフィーにより、電子顕微鏡の高分解能化が可能であ
る。輝度が高いほど電子線ホログラフィーの高性能化が
期待できる。
It is important from the following viewpoints that an electron beam having a higher brightness can be obtained as an electron beam for an electron microscope. 1) Improving image quality (S / N ratio) for short-time shooting (→ For example,
The resolution degradation due to fine movement and vibration of the sample in cryogenic observation can be overcome by short-time imaging. In this case, if the brightness is weak, the image quality deteriorates in short-time shooting. The combination of short-time photography and high-intensity electron beam improves the resolution in cryogenic observation. 2) Higher brightness inevitably improves the coherence of electron waves and enables electron beam holography. An example of application of electron holography is direct observation of the magnetic field in a substance. Therefore, it becomes possible to observe the magnetic flux quantum in the superconducting state in the oxide high temperature superconductor. Further, electron beam holography enables high resolution of the electron microscope. The higher the brightness, the higher the performance of electron holography can be expected.

【0014】3)干渉性が向上すると、電子顕微鏡の分
解能が向上する。いわゆるインフォメーションリミット
とよばれる特殊条件下での分解能の向上である。 4)分析電顕としては、分析時間の短縮化により、分析
時の試料の微動量が短くなり、分析位置の精度が向上す
る。(分析では放出される特性X線の積算検出線量が分
析精度向上のためにある一定量以上必要とされる。) そしてまた、輝度が高いこと以外にもこの発明による電
子顕微鏡用の電子ビームでは、次の通りの優れた性能を
有している。
3) The improved coherence improves the resolution of the electron microscope. It is the improvement of resolution under special conditions called so-called information limit. 4) As an analytical electron microscope, by shortening the analysis time, the amount of fine movement of the sample at the time of analysis is shortened, and the accuracy of the analysis position is improved. (In the analysis, the integrated detected dose of the characteristic X-rays emitted is required to be a certain amount or more in order to improve the analysis accuracy.) Further, in addition to high brightness, the electron beam for the electron microscope according to the present invention , Has excellent performance as follows.

【0015】 運動エネルギーの幅が小さいこと。 運動エネルギー(加速電圧)が時間的に安定してい
ること。 輝度が時間的に安定していること。(これは秒単位
以上の時間変動の意味) 収束性が良いこと。
The width of kinetic energy is small. Kinetic energy (accelerating voltage) is stable over time. The brightness is stable over time. (This means a time variation of more than a second unit) Good convergence.

【0016】[0016]

【実施例】以下、実施例を示しさらに詳しくこの発明に
ついて説明する。もちろんこの発明は以下の例によって
限定されるものではない。図は、この発明の一実施例と
してのレーザー照射型電子銃の構造を例示したものであ
る。レーザー発生器(6)より発生されたレーザーは、
レンズ(7a)とレンズ(7b)により調整された後、
反射鏡(8a)と反射鏡(8b)によりその進行方向が
変えられて、レンズ(10)と透明ガラス(11)で構
成されるレーザー透過用窓(9)を通り、電子銃(1
8)内に入射される。入射されたレーザーは反射鏡(1
6)、もしくは凹面鏡によりフィラメント(12)の先
端部に収束照射される。レーザーの収束照射の調整は、
観察用窓(14)を通して、カメラ(15)によりフィ
ラメント(12)の先端部を拡大観察しながら、レンズ
(7a)、レンズ(7b)、レンズ(10)、及び反射
鏡(8a)、反射鏡(8b)、反射鏡(16)により調
整する。フィラメント(12)はレーザー照射により加
熱されるが、さらに通電加熱を行うことによりフィラメ
ント(12)の温度調整を行う。このフィラメントの温
度調整は観察用窓(14)を通して、パイロスコープ
(15)により測定及び調整を行う。レーザー照射され
たフィラメント(12)の先端部の表面からは多量の電
子が放出され、この電子はプラスの電位を有する引出し
電極(13)により引き出される。引き出された電子は
電子線収束用電磁石(17)により収束された後、加速
管等を通って、電子顕微鏡の試料室に入射される。
The present invention will be described in more detail with reference to the following examples. Of course, the present invention is not limited to the following examples. The figure illustrates the structure of a laser irradiation type electron gun as one embodiment of the present invention. The laser generated by the laser generator (6) is
After being adjusted by the lens (7a) and the lens (7b),
The traveling direction is changed by the reflecting mirror (8a) and the reflecting mirror (8b), and the electron gun (1) passes through the laser transmission window (9) composed of the lens (10) and the transparent glass (11).
8). The incident laser is a reflection mirror (1
6) Alternatively, the tip of the filament (12) is converged and irradiated by the concave mirror. The adjustment of the convergent irradiation of the laser is
The lens (7a), the lens (7b), the lens (10), the reflecting mirror (8a), and the reflecting mirror are observed while magnifying and observing the distal end portion of the filament (12) with the camera (15) through the observation window (14). (8b), adjustment with the reflecting mirror (16). The filament (12) is heated by laser irradiation, and the temperature of the filament (12) is adjusted by further conducting electric heating. The temperature of this filament is adjusted through the observation window (14) by the pyroscope (15). A large amount of electrons are emitted from the surface of the tip of the filament (12) irradiated with the laser, and the electrons are extracted by the extraction electrode (13) having a positive potential. The extracted electrons are converged by the electron beam converging electromagnet (17), and then enter the sample chamber of the electron microscope through the acceleration tube and the like.

【0017】なお、以上の実施例では電子顕微鏡への利
用を例示しているが、電子線ホログラフィー等の高輝度
電子銃を必要とする技術分野への利用も行うことができ
る。
In the above embodiments, the use in the electron microscope is illustrated, but the use in the technical field requiring a high-brightness electron gun such as electron beam holography can also be performed.

【0018】[0018]

【発明の効果】この発明は、以上詳しく説明したように
構成されているので、極めて高い輝度を有する電子ビー
ムを発生させることができる。
Since the present invention is configured as described above in detail, it is possible to generate an electron beam having extremely high brightness.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の原理をレーザー照射型電子銃のフィ
ラメントの先端部の状態として示した模式図である。
FIG. 1 is a schematic diagram showing the principle of the present invention as a state of a tip portion of a filament of a laser irradiation type electron gun.

【図2】この発明の一実施例としてのレーザー照射型電
子銃を例示した断面構成図である。
FIG. 2 is a cross-sectional configuration diagram illustrating a laser irradiation type electron gun as one embodiment of the present invention.

【符号の説明】 1 フィラメント先端部 2 自由電子 3 光子 4 電子 6 レーザー発生器 7a,7b レンズ 8a,8b 反射鏡 9 窓 10 レンズ 11 透明ガラス 12 フィラメント 13 引出し電極 14 観察用窓 15 カメラまたはパイロスコープ 16 反射鏡 17 収束用電磁石 18 電子銃[Explanation of Codes] 1 Filament Tip 2 Free Electron 3 Photon 4 Electron 6 Laser Generator 7a, 7b Lens 8a, 8b Reflector 9 Window 10 Lens 11 Transparent Glass 12 Filament 13 Extraction Electrode 14 Observation Window 15 Camera or Pyroscope 16 Reflector 17 Focusing Electromagnet 18 Electron Gun

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加熱式電界放射型電子銃、または熱電子
放出型電子銃において、そのフィラメントの先端部にレ
ーザー光を照射するレーザー光照射機構が配設されてい
ることを特徴とするレーザー照射型電子銃。
1. A heating type field emission type electron gun or a thermionic emission type electron gun, wherein a laser beam irradiation mechanism for irradiating a laser beam to the tip of the filament is provided. Type electron gun.
JP7018258A 1995-02-06 1995-02-06 Laser irradiation type electron gun Pending JPH08212952A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7018258A JPH08212952A (en) 1995-02-06 1995-02-06 Laser irradiation type electron gun
NL1002246A NL1002246C2 (en) 1995-02-06 1996-02-05 Laser gun irradiated by electron gun.
DE1996104272 DE19604272A1 (en) 1995-02-06 1996-02-06 Electron gun with laser beam heating, for scanning or transmission electron microscopy or e-beam holography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7018258A JPH08212952A (en) 1995-02-06 1995-02-06 Laser irradiation type electron gun

Publications (1)

Publication Number Publication Date
JPH08212952A true JPH08212952A (en) 1996-08-20

Family

ID=11966663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7018258A Pending JPH08212952A (en) 1995-02-06 1995-02-06 Laser irradiation type electron gun

Country Status (3)

Country Link
JP (1) JPH08212952A (en)
DE (1) DE19604272A1 (en)
NL (1) NL1002246C2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273419A (en) * 2002-09-26 2004-09-30 Leo Elektronenmikroskopie Gmbh Electron beam source, electron optical apparatus using such beam source, and method of operating electro beam source
JP2006134664A (en) * 2004-11-04 2006-05-25 National Institute For Materials Science Apparatus for coating partially high quantum efficiency substance on tip of cathode of photocathode type electron ray source
JP2007531876A (en) * 2004-04-02 2007-11-08 カリフォルニア インスティテュート オブ テクノロジー Method and system for ultrafast photoelectron microscopy
JP2011524072A (en) * 2008-06-13 2011-08-25 カール ツァイス エヌティーエス エルエルシー Ion source, system and method
WO2012114521A1 (en) 2011-02-25 2012-08-30 株式会社Param Electron gun and electron beam device
JP2013131505A (en) * 2013-03-29 2013-07-04 Param Co Ltd Electron gun and electron beam device
JP2015512122A (en) * 2012-02-16 2015-04-23 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Device and method for electron emission and device having this electron emission system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113064B4 (en) * 2001-03-15 2004-05-19 Lzh Laserzentrum Hannover E.V. Method and device for generating UV radiation, in particular EUV radiation
DE10255767A1 (en) * 2002-11-28 2004-06-17 Von Ardenne Anlagentechnik Gmbh Electron-beam-generating method for an electron beam generator emits electrons in a vacuum beam-generating chamber from a heated cathode's emission surface
US9159527B2 (en) 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source
US7786452B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7786451B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US7554096B2 (en) 2003-10-16 2009-06-30 Alis Corporation Ion sources, systems and methods
US7557360B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7557359B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7557361B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US8110814B2 (en) 2003-10-16 2012-02-07 Alis Corporation Ion sources, systems and methods
US7554097B2 (en) 2003-10-16 2009-06-30 Alis Corporation Ion sources, systems and methods
US7557358B2 (en) 2003-10-16 2009-07-07 Alis Corporation Ion sources, systems and methods
US7804068B2 (en) 2006-11-15 2010-09-28 Alis Corporation Determining dopant information
DE102013108603B4 (en) * 2013-08-08 2015-05-13 Von Ardenne Gmbh Radiation source, apparatus and method for rapid heat treatment of coatings
CN104766776B (en) * 2014-01-07 2016-09-28 中国科学院物理研究所 Multi-functional ultra-fast transmission electron microscope electron gun
EP3561850A1 (en) * 2018-04-27 2019-10-30 Friedrich-Alexander-Universität Erlangen-Nürnberg Electron emitting apparatus and method for emitting electrons

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961595A (en) * 1972-10-11 1974-06-14
JPH06333525A (en) * 1993-05-21 1994-12-02 Beam Tec:Kk Charged particle beam irradiation device
JPH0714503A (en) * 1993-06-25 1995-01-17 Laser Gijutsu Sogo Kenkyusho Laser hot cathode structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557656B2 (en) * 1972-07-17 1980-02-27
NL7605820A (en) * 1976-05-31 1977-12-02 Philips Nv ELECTRON BEAM TUBE WITH FIELD EMISSION ELECTRONIC SOURCE, FIELD EMISSION ELECTRONIC SOURCE FOR SUCH ELECTRONIC BEAM TUBE AND METHOD FOR MANUFACTURE OF SUCH FIELD EMISSION ELECTRONIC SOURCE.
KR970005769B1 (en) * 1992-08-27 1997-04-19 가부시끼가이샤 도시바 Magnetic immersion field emission electron gun

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961595A (en) * 1972-10-11 1974-06-14
JPH06333525A (en) * 1993-05-21 1994-12-02 Beam Tec:Kk Charged particle beam irradiation device
JPH0714503A (en) * 1993-06-25 1995-01-17 Laser Gijutsu Sogo Kenkyusho Laser hot cathode structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273419A (en) * 2002-09-26 2004-09-30 Leo Elektronenmikroskopie Gmbh Electron beam source, electron optical apparatus using such beam source, and method of operating electro beam source
JP4675037B2 (en) * 2002-09-26 2011-04-20 カール・ツァイス・エヌティーエス・ゲーエムベーハー Electron beam source, electron optical apparatus using such a beam source, and driving method of electron beam source
JP2007531876A (en) * 2004-04-02 2007-11-08 カリフォルニア インスティテュート オブ テクノロジー Method and system for ultrafast photoelectron microscopy
EP1735811A4 (en) * 2004-04-02 2009-08-19 California Inst Of Techn Method and system for ultrafast photoelectron microscope
US7915583B2 (en) 2004-04-02 2011-03-29 California Institute Of Technology Method and system for ultrafast photoelectron microscope
JP2006134664A (en) * 2004-11-04 2006-05-25 National Institute For Materials Science Apparatus for coating partially high quantum efficiency substance on tip of cathode of photocathode type electron ray source
JP2011524072A (en) * 2008-06-13 2011-08-25 カール ツァイス エヌティーエス エルエルシー Ion source, system and method
US9029765B2 (en) 2008-06-13 2015-05-12 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
WO2012114521A1 (en) 2011-02-25 2012-08-30 株式会社Param Electron gun and electron beam device
US9070527B2 (en) 2011-02-25 2015-06-30 Param Corporation Electron gun and electron beam device
JP2015512122A (en) * 2012-02-16 2015-04-23 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Device and method for electron emission and device having this electron emission system
JP2013131505A (en) * 2013-03-29 2013-07-04 Param Co Ltd Electron gun and electron beam device

Also Published As

Publication number Publication date
DE19604272A1 (en) 1996-08-08
NL1002246A1 (en) 1996-08-06
NL1002246C2 (en) 1998-07-13

Similar Documents

Publication Publication Date Title
JPH08212952A (en) Laser irradiation type electron gun
TWI307110B (en) Method and apparatus for controlling electron beam current
US7428298B2 (en) Magnetic head for X-ray source
US7443953B1 (en) Structured anode X-ray source for X-ray microscopy
KR100867172B1 (en) Carbon Nano Tube based X-ray tube structure
EP2741309B1 (en) Method for aligning X-ray apparatus with deflectable electron beam and use of the apparatus
US6828565B2 (en) Electron beam source, electron optical apparatus using such beam source and method of operating and electron beam source
US7469039B2 (en) Device and method for generating an x-ray point source by geometric confinement
Arndt et al. A microfocus X-ray tube used with focusing collimators
US10741352B2 (en) Optically addressed, thermionic electron beam device
US7864924B2 (en) Scanning X-ray radiation
JP2530591B2 (en) Pulsed laser photoexcitation electron source device suitable for high current density electron emission
JP4915786B2 (en) Electron beam generator and laser beam irradiation method for cathode tip
US5808309A (en) Apparatus for generating an electron beam
Miyatake et al. Development of electron source for Auger electron spectroscopy in scanning probe microscope systems
JPS59501138A (en) X-ray source device
Cazaux et al. Scanning x‐ray radiography: First tests in an electron spectrometer
Polack et al. Project of a photoelectron X-ray microscope on aco storage ring
JP2010055883A (en) X-ray tube and fluorescence x-ray spectroscopic analyzer using same
JP3765781B2 (en) Image adjustment apparatus and image adjustment method for X-ray microscope
WO2024133953A1 (en) Semiconducting cold photocathode device using electric field to control the electron affinity
JP2004347463A (en) Imaging type x-ray microscope
JP2001023796A (en) Laser plasma x-ray source
Brau Needle cathodes as sources of high-brightness electron beams
FR2699326A1 (en) Bifocal cathode for X=ray tube e.g. in medical X=ray scanner - has central tungsten filament with other two filaments symmetrically placed, and whole structure situated inside metallic piece which focuses beam