JP2004347463A - Imaging type x-ray microscope - Google Patents

Imaging type x-ray microscope Download PDF

Info

Publication number
JP2004347463A
JP2004347463A JP2003145028A JP2003145028A JP2004347463A JP 2004347463 A JP2004347463 A JP 2004347463A JP 2003145028 A JP2003145028 A JP 2003145028A JP 2003145028 A JP2003145028 A JP 2003145028A JP 2004347463 A JP2004347463 A JP 2004347463A
Authority
JP
Japan
Prior art keywords
ray
optical system
image
sample
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003145028A
Other languages
Japanese (ja)
Inventor
Sadao Fujii
貞夫 藤井
Fumihiko Oda
史彦 小田
Eiji Sato
栄治 佐藤
Akihiro Nakayama
章弘 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003145028A priority Critical patent/JP2004347463A/en
Publication of JP2004347463A publication Critical patent/JP2004347463A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray microscope having high resolution and no saturated phenomenon. <P>SOLUTION: This X-ray microscope is equipped with an X-ray generation part for generating a laser plasma X-ray by introducing incident laser light to an X-ray target 105, a sample holder 107 for supporting a sample on the irradiation position of the X-ray, and an X-ray objective lens optical system 109 for enlarging the X-ray transmitted through the sample and imaging on a photoelectric conversion face 113. In the microscope, an electro-optical system for enlarging an electronic image generated on the photoelectric conversion face 113 is provided on the opposite side of the X-ray objective lens optical system across the photoelectric conversion face, and the X-ray generation part, the sample holder and the X-ray objective lens optical system are stored in one vacuum container 125, and an X-ray image is converted into the electronic image by the photoelectric conversion face 113, enlarged electro-optically, imaged and observed through an imaging element 121. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、X線像を光電変換面により電子像に変換し電子光学的に拡大し結像して撮像素子を介して観察するX線顕微鏡に関する。
【0002】
【従来の技術】
X線は透過力が強いため、物体の内部構造を観察することができる。そこでX線透過像を拡大表示するX線顕微鏡がいろいろな分野で利用されている。
特に、生体を生きたままX線像観察することができる装置があると、生物学、生物化学、あるいは医学などの研究に大きく貢献することができる。
【0003】
X線はエネルギーが高いため物質を透過する力が強いが、可視光のように効率的に屈折や反射をする光学素子が存在しない。また、電荷を持たないため、電子線のように電磁コイルを利用した光学的素子も利用することができない。
このように、適当なレンズ系が無いためX線透過像を大きな倍率で拡大することが難しく、対象物を大きな分解能の下で観察することが難しい。たとえば、細胞内の微細構造や染色体などを観察するためには50nm程度、またDNA組織などまで観察するには20nm程度の分解能が要求される。
【0004】
X線透過像を拡大観察するようにしたX線顕微鏡として、特許文献1に開示されたシュワルツシルド型X線光学系を用いてX線透過像を拡大するX線顕微鏡がある。このX線顕微鏡では、X線コンデンサーレンズで収束した後の拡大するX線光束中に試料をセットし、試料を透過するX線像を2段のシュワルツシルド型X線光学系で拡大して蛍光変換面に結像させることにより空間分解能を数10nmにすることができる。
【0005】
また、特許文献2には、X線発生器直後の放射状に放出されるX線光束中に試料を配置して、試料を透過したX線像を真空容器内に設置したウォルター型光学系で光電変換面に結像させて、生成する電子像を電磁コイル群で構成される電子レンズで加速拡大して蛍光面に投影し可視化して観察できるようにしたX線像観察装置が開示されている。この観察装置では、真空室の外に試料が配置されていて、減衰を避けるため強度の強いX線を照射する必要があるが、数万倍の拡大倍率を有するとされている。
【0006】
しかし、これらX線自体を光学的に拡大するX線顕微鏡は、X線光学素子の拡大倍率が限られるので、大きな分解能を持たせると装置として極めて大型になる。また、X線光学系では倍率変更が困難なためズーミング機能を持たせることが難しく、試料中の特定の位置を探し出すための操作が煩雑で時間を必要としていた。さらに、強度の強いX線を照射する必要があるので、生体を生きたまま観察することは難しかった。
【0007】
また、試料を真空容器外に設置するものでは、水による吸収係数が小さいため生体試料の観察に適したいわゆる水の窓領域にある波長2.3〜4.4nmのX線を用いたときには、試料を透過したX線が真空容器に入射したときには、大気や入射窓などにより大きく減衰して、十分な観察像を得るために長時間の蓄積を要する。たとえば300eVのX線は大気中を数mm程度しか透過しないし、厚さ20μmのベリリウム窓の透過率は1%以下になる。
【0008】
X線顕微鏡には、X線自体の拡大によらずX線透過像を電子像に変換して電子レンズ系で拡大して観察できるようにしたものがある。
本願出願人によって開示された特許文献3や特願2002−152136には、図3や図4に示すように、光電変換を利用してX線像を電子像に変換し、電子像を拡大して撮像素子上に結像し可視化して観察するようにしたX線顕微鏡が記載されている。この開示発明は、裏面に光電変換面を有する試料ホルダーの表面に試料を密着してセットし、X線を照射して形成したX線像を電子像に変換して電磁レンズ系で拡大し撮像面に結像させて、試料のX線像を観察する。
【0009】
このX線顕微鏡は、ズーミング機能を備えるため生体試料の観察にも便利である。さらに、これに用いる軟X線は電子線に比べて生体試料に与えるダメージが小さく、また無染色で観察できるので、生体試料の観察に好都合である。
画像検出部に空間分解能15μmのマイクロチャンネルプレートMCPを用いると、X線像の倍率は安全率を見込んでも1000倍程度あれば50nmの分解能を持たせることができる。
【0010】
ところが、開示の装置で1000倍のX線像拡大率を得るためには、電子の加速空間での加速場収差が問題となり、高分解能を達成するために引加電圧をできるだけ高くし、光電変換面とアノードの間の距離をできるだけ短くし、光電変換面から放出される2次電子のエネルギーをできるだけ小さくするなどの対策が必要である。光電変換材料に選択の余地は少なく、加速電圧を高くし光電変換面とアノードの距離を短くすることになるので、放電防止に格段の注意が必要となり、高分解能を達成することは容易でなかった。
【0011】
また、フレネル回折による分解能の低下を避けるため、たとえば厚さ100nmの窒化珪素薄膜を挟んで表側に試料を載せ裏側に光電変換膜を形成するなど、試料と光電変換面はできるだけ密着させて配置する。ところが、光電変換膜には通常ヨウ化セシウムが用いられ、潮解性を有するため、特に水を含む生体試料を観察する場合に試料調製が難しかった。
【0012】
【特許文献1】
特開平6−67000号公報
【特許文献2】
特公平5−4778号公報
【特許文献3】
特開2003−43200号公報
【0013】
【発明が解決しようとする課題】
そこで、本発明が解決しようとする課題は、高分解能で飽和現象が無いX線顕微鏡を提供することである。
【0014】
【課題を解決するための手段】
上記課題を解決するため、本発明の結像型X線顕微鏡は、X線像を光電変換面により電子像に変換し電子光学的に拡大し結像して撮像素子を介して観察するX線顕微鏡であって、入射するレーザ光をX線ターゲットに導いてレーザプラズマX線を生成するX線発生部と、試料をX線の照射位置に支持する試料ホルダーと、試料を透過したX線を拡大し光電変換面上に結像するX線対物レンズ光学系を備え、光電変換面で発生する電子像を拡大する電子光学系が光学変換面を挟んでX線対物レンズ光学系と反対側に設けられ、かつX線発生部と試料ホルダーとX線対物レンズ光学系を1個の真空容器内に収納したことを特徴とする。
【0015】
本発明の結像型X線顕微鏡は、X線像の拡大機能と電子像の拡大機能を組み合わせたもので、試料を透過したX線束をX線対物レンズ系でたとえば10倍に拡大して光電変換面に投影し、光電変換後の電子像を電子光学系で100倍程度に拡大して撮像素子面上に結像させれば、簡単に1000倍程度の拡大倍率が得られる。100倍程度の倍率ならば電子像拡大機構に高度な仕様を要求する必要が無く、比較的簡単に構成することができる。
【0016】
たとえば、X線対物レンズとしてシュワルツシルド型光学系を用いた場合、物点と像点間距離が1m程度の比較的小型な構成により、容易に水の窓領域で10倍の拡大倍率を得ることができる。
これによって、試料上で50nmの大きさは光電変換面上に500nmに拡大されて結像する。これを電子光学系でMCPや蛍光板に結像させて観察すれば、電子光学系の倍率は100倍で十分になる。このとき、電子光学系に要求される分解能は200nm程度である。したがって、高分解能を得るために極端に加速電圧を高くしたり光電変換面とアノード間の距離を短くする必要がない。
【0017】
また、レーザプラズマX線を用いることができる。
レーザプラズマX線は、通常、パルス幅が数ナノ秒、波長1064nm、繰り返し数10Hz程度のNd:YAGレーザを光学レンズで金属ターゲットに集光して発生するプラズマから得られる。ターゲット材に金AuやモリブデンMoを用いると2〜5nmの軟X線が多く発生し、数ナノ秒のパルスX線となる。
【0018】
生きた生体試料を観察するときは、ブラウン運動により像が不明瞭になる現象がある。50nmの分解能で観察するときに像のぼけを防止して組織の姿を正確に捉えるためには0.5ms以下の短時間撮像が必要とされる。
光電変換膜における変換時間はピコ秒以下と非常に早く、また、光電変換面から2次電子が放出される時間も同程度であるので、レーザプラズマX線を用いることにより、この要求に応えることができる。
【0019】
しかし、たとえばヨウ化セシウムを用いた光電変換式結像型X線顕微鏡において、観察に耐える像を形成するために必要なX線量は約1×1011個/mmとされるので、ヨウ化セシウムがX線1個に対して電子0.3個に変換するとすれば、1パルスのX線で良好なX線像を形成するときのピーク電流密度が約1A/mmと非常に大きくなり、空間電荷効果により像が形成できなくなる場合がある。
空間電荷効果を抑制するため、ターゲットに照射するレーザの強度を低下させればX線発生効率が低下し好ましくない。また、一方、短時間にあまりに多量のX線が入射した場合、放出する光電子の量が多くなり、光電変換面が電子欠乏状態になって電子像が形成できなくなる問題がある。
【0020】
本発明のX線顕微鏡では、X線対物レンズ系を用いるため、X線光束の拡大倍率が10倍であれば、光電変換面におけるX線密度は100分の1になる。したがって、レーザプラズマX線の1パルスでX線像を形成させるためには、電子光学系におけるピーク電流は0.01A/mm程度に低下し、空間電荷効果の像形成への影響は無視できる水準となり、また光電変換面における電子供給も問題なくなる。
【0021】
また、本発明のX線顕微鏡では、X線発生部と試料ホルダーとX線対物レンズ系が真空室内に設置されるので、生体試料の観察に適した水の窓領域のX線を用いるときにも減衰が小さく、十分観察に耐えるX線透過像を得ることができる。さらに、試料を透過したX線の減衰が少ないので、像観察時間を短縮することができる。
なお、電子線拡大部も高い真空度が要求されるので、X線対物レンズ系等を電子像拡大レンズ系と同じ真空容器内に収納するようにしても良い。
【0022】
本発明のX線顕微鏡は、X線発生部と試料ホルダーの間にウォルター型光学系で構成されたX線集光光学系を備え、さらに、X線対物レンズ光学系がウォルター型光学系で構成されるものであってもよい。
レーザプラズマX線源から放射されるX線をウォルター型X線集光鏡で収束し、拡大するX線光束中に試料をおいて、試料を透過したX線光束をウォルター型光学系で収束して光電変換面に結像させる。ウォルター型光学系は収束力が比較的小さいが、拡大倍率が10倍程度であれば十分コンパクトに構成することができる。
【0023】
本発明の結像型X線顕微鏡は、試料と光電変換膜が分離されるとともにズーミング機能を備える。したがって、含水試料の観察に適し、生体試料を生きたまま観察することができる。
【0024】
【発明の実施の形態】
本発明の結像型X線顕微鏡を実施の形態に基づいて説明する。
【0025】
【実施例1】
本実施例は、シュワルツシルド型光学系を用いて試料透過X線像を拡大するようにした結像型X線顕微鏡である。図1は、本実施例の概念構成図である。
図1に示すように、本X線顕微鏡100は、レーザ発生器101、集光レンズ103、X線ターゲット105、試料ホルダー107、シュワルツシルド型光学系109、光電変換面113、電子光学系におけるアノード115、磁界対物レンズ117、磁界投射レンズ119、MCP蛍光板121、CCDカメラ123を備える。
これらの構成要素のうちレーザ発生器101とCCDカメラ123を除いた全てが高真空に保った真空容器125の内に収納される。
【0026】
レーザ発生器101は、パルス状のレーザを発生し、真空容器の窓を通って集光レンズ103でX線ターゲット105の表面に集光する。X線ターゲット105は金AuやモリブデンMoなどの金属を表面に貼り付けた回転ドラムで、レーザにより金属プラズマを生成し金属種に対応するX線を発生する。金やモリブデンでは、2〜5nmの軟X線を多く含む数ナノ秒のパルスX線が発生する。
X線ターゲット105は回転してレーザ光が常に新しい面に照射するようにする。
【0027】
X線ターゲット105から放射状に放出されるX線の光束内に試料が位置するように試料ホルダー107が配置されている。
試料に照射して透過したX線像は、X線放射方向に拡大しながらX線光学系109に入射する。
X線光学系109は中心に穴を有し多層膜をコーティングした凹面球面鏡110とこれに対向して同軸に設けられる多層膜コーティング凸面球面鏡111から構成されるシュワルツシルド型光学系である。
X線透過像はX線光学系109により光電変換面113に結像され、X線透過像と対応した電子像が光電変換面113上に形成される。
X線像の拡大倍率は10倍程度でよく、シュワルツシルド型光学系で十分余裕を持って実現できる。また、X線の行程は真空容器中にあるので、生体観察に適した水の窓領域の軟X線を使うときにも試料以外の雰囲気によって減衰しにくくX線透過像を再現性よく光電変換面113上に投影することができる。
【0028】
光電変換面113には、直流電源114によってアノード115との間に直流電圧が引加され、電子像から放出される2次電子はこの電圧によって電子光学系内に引き出される。
電子光学系は、磁界対物レンズ117と磁界投射レンズ119で構成され、電子像を電子的に拡大してマイクロチャンネルプレートMCP121に結像させる。拡大倍率は構造的に無理なく実現できる100倍程度であってよい。
MCP121は空間分解能が15μmあって蛍光板が添えられており、電子像を可視化し、可視化した電子像、すなわち拡大されたX線透過像は、CCDカメラ123によって図外のCRTなどの表示装置に表示する。
【0029】
本実施例の結像型X線顕微鏡100によれば、空間分解能15μmのMCP121を使って、X線透過面における50nmより精密な分解能を簡単に実現することができる。
また、0.5ms以下の短時間撮影が可能なため、ブラウン運動があっても物の正確な位置を検出することができる。また、光電変換面におけるX線密度が大きくならないので、電子欠乏状態にならず、リアルタイムで電子像を形成させて観察することができる。
【0030】
【実施例2】
本実施例は、実施例1におけるシュワルツシルド型光学系に代えて集光鏡とウォルター型光学系を用いたことを特徴とする結像型X線顕微鏡である。図2は、本実施例の概念構成図である。
以下、実施例1と重複する部分は簡単に説明する。
図2に示すように、本X線顕微鏡200は、レーザ発生器201、集光レンズ203、X線ターゲット205と、光電変換面213、電子光学系におけるアノード215、磁界対物レンズ217、磁界投射レンズ219、MCP蛍光板221、CCDカメラ223を備え、さらに実施例1におけるシュワルツシルド型光学系に代えて集光鏡207とウォルター型光学系211を備える。なお、試料ホルダー209は、集光鏡207とウォルター型光学系211の間に配置される。
また、実施例1と同様に、レーザ発生器201とCCDカメラ223を除いた全ての構成要素が真空容器225の内に収納される。
【0031】
レーザ発生器201で発生するレーザが集光レンズ203でX線ターゲット205の表面に集光すると、X線ターゲット205は2〜5nmの軟X線を多く含む数ナノ秒のパルスX線を発生する。
X線ターゲット205から放射状に放出されるX線は、X線集光鏡207で収束され、その後再び拡大する光束内に試料が位置するように試料ホルダー209が配置される。したがって、試料のX線透過像は、拡大しながらウォルター型光学系211に入射する。
ウォルター型光学系は、表面すれすれの角度で入射する軟X線が全反射することを利用し、焦点を共有する回転放物面と回転双曲面と組み合わせてX線を結像させる光学系である。
なお、X線集光鏡207もウォルター型光学系で構成してもよい。
【0032】
X線透過像はX線光学系211により光電変換面213に結像され、X線透過像と対応した電子像が形成される。
X線像の拡大倍率は10倍程度でよく、ウォルター型光学系で十分実現できる。光電変換面213とアノード215の間には、直流電源214によって直流電圧が引加され、電子像から放出される2次電子が磁界対物レンズ217と磁界投射レンズ219で構成される電子光学系に送り込まれ、マイクロチャンネルプレートMCP221に結像させる。
MCP221に結蔵した拡大されたX線透過像は、CCDカメラ223によって図外のCRTなどの表示装置に表示される。
【0033】
【発明の効果】
以上説明したように、本発明の結像型X線顕微鏡によって、生体試料を生きた状態でX線透過像として観察することができるようになった。
【図面の簡単な説明】
【図1】本発明に係る結像型X線顕微鏡の第1の実施例を示す概念構成図である。
【図2】本発明に係る結像型X線顕微鏡の第2の実施例を示す概念構成図である。
【図3】従来技術における結像型X線顕微鏡例を示す概念構成図である。
【図4】図3の電子光学系を説明する概念構成図である。
【符号の説明】
100 第1実施例のX線顕微鏡
200 第2実施例のX線顕微鏡
101,201 レーザ発生器
103,203 集光レンズ
105,205 X線ターゲット
107 試料ホルダー
109 シュワルツシルド型光学系
110 凹面球面鏡
111 凸面球面鏡
113,213 光電変換面
114,214 直流電源
115,215 アノード
117,217 磁界対物レンズ
119,219 磁界投射レンズ
121,221 MCP蛍光板
123,223 CCDカメラ
125,225 真空容器
207 集光鏡
209 試料ホルダー
211 ウォルター型光学系
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an X-ray microscope that converts an X-ray image into an electronic image by a photoelectric conversion surface, magnifies the image electronically, forms an image, and observes the image via an image sensor.
[0002]
[Prior art]
Since the X-ray has a strong penetrating power, the internal structure of the object can be observed. Therefore, an X-ray microscope for enlarging and displaying an X-ray transmission image is used in various fields.
In particular, a device capable of observing an X-ray image while a living body is alive can greatly contribute to research in biology, biochemistry, medicine, and the like.
[0003]
X-rays have high energy and therefore have a strong power to penetrate substances, but there is no optical element that refracts and reflects efficiently like visible light. Further, since it has no electric charge, an optical element using an electromagnetic coil such as an electron beam cannot be used.
As described above, since there is no appropriate lens system, it is difficult to enlarge an X-ray transmission image at a large magnification, and it is difficult to observe an object with a large resolution. For example, a resolution of about 50 nm is required to observe a fine structure or chromosome in a cell, and a resolution of about 20 nm is required to observe a DNA tissue or the like.
[0004]
As an X-ray microscope for magnifying and observing an X-ray transmission image, there is an X-ray microscope that enlarges an X-ray transmission image using a Schwarzschild type X-ray optical system disclosed in Patent Document 1. In this X-ray microscope, a sample is set in an enlarged X-ray beam after being converged by an X-ray condenser lens, and an X-ray image transmitted through the sample is enlarged by a two-stage Schwarzschild type X-ray optical system to obtain a fluorescent image. By forming an image on the conversion surface, the spatial resolution can be made several tens nm.
[0005]
Patent Document 2 discloses that a sample is arranged in a radially emitted X-ray luminous flux immediately after an X-ray generator, and an X-ray image transmitted through the sample is subjected to photoelectric conversion by a Walter-type optical system installed in a vacuum vessel. An X-ray image observation apparatus has been disclosed which forms an electron image on a conversion surface, accelerates and expands an electron image to be generated by an electron lens composed of a group of electromagnetic coils, projects the image on a phosphor screen, and visualizes the image. . In this observation device, the sample is placed outside the vacuum chamber, and it is necessary to irradiate strong X-rays to avoid attenuation. However, it is said that the observation device has a magnification of tens of thousands of times.
[0006]
However, an X-ray microscope that optically magnifies these X-rays themselves has a limited magnification of the X-ray optical element. In addition, since it is difficult to change the magnification in the X-ray optical system, it is difficult to provide a zooming function, and the operation for searching for a specific position in the sample is complicated and time-consuming. Furthermore, since it is necessary to irradiate strong X-rays, it was difficult to observe the living body alive.
[0007]
In the case where the sample is placed outside the vacuum vessel, when an X-ray having a wavelength of 2.3 to 4.4 nm in a so-called water window region suitable for observation of a biological sample is used because the absorption coefficient by water is small, When the X-rays transmitted through the sample enter the vacuum vessel, they are greatly attenuated by the atmosphere, the entrance window, and the like, and long-term accumulation is required to obtain a sufficient observation image. For example, X-rays of 300 eV transmit only a few mm in the atmosphere, and the transmittance of a 20 μm-thick beryllium window is 1% or less.
[0008]
Some X-ray microscopes convert an X-ray transmission image into an electron image regardless of the magnification of the X-ray itself, and allow the image to be enlarged and observed by an electron lens system.
Patent Literature 3 and Japanese Patent Application No. 2002-152136 disclosed by the applicant of the present application convert an X-ray image into an electronic image using photoelectric conversion and enlarge the electronic image as shown in FIGS. An X-ray microscope is described in which an image is formed on an image sensor and visualized for observation. According to the disclosed invention, a sample is set in close contact with the surface of a sample holder having a photoelectric conversion surface on the back surface, and an X-ray image formed by irradiating X-rays is converted into an electronic image, which is enlarged and imaged by an electromagnetic lens system. An X-ray image of the sample is observed by forming an image on the surface.
[0009]
Since this X-ray microscope has a zooming function, it is also convenient for observing a biological sample. Furthermore, the soft X-ray used for this is less likely to damage a biological sample than an electron beam and can be observed without staining, which is convenient for observation of a biological sample.
When a micro-channel plate MCP having a spatial resolution of 15 μm is used for the image detecting section, a resolution of 50 nm can be provided if the magnification of the X-ray image is about 1000 times even in view of the safety factor.
[0010]
However, in order to obtain an X-ray image magnification of 1000 times with the disclosed apparatus, the problem of the acceleration field aberration in the electron acceleration space becomes a problem. In order to achieve high resolution, the applied voltage is increased as much as possible, and the photoelectric conversion is performed. It is necessary to take measures such as minimizing the distance between the surface and the anode and minimizing the energy of secondary electrons emitted from the photoelectric conversion surface. There is little room for choice for the photoelectric conversion material, and the acceleration voltage is increased and the distance between the photoelectric conversion surface and the anode is shortened.Therefore, great care must be taken to prevent discharge, and it is not easy to achieve high resolution. Was.
[0011]
In order to avoid a decrease in resolution due to Fresnel diffraction, the sample and the photoelectric conversion surface are arranged as closely as possible, for example, a sample is placed on the front side with a silicon nitride thin film having a thickness of 100 nm and a photoelectric conversion film is formed on the back side. . However, since cesium iodide is usually used for the photoelectric conversion film and has deliquescence, it has been particularly difficult to prepare a sample when observing a biological sample containing water.
[0012]
[Patent Document 1]
JP-A-6-67000 [Patent Document 2]
Japanese Patent Publication No. 5-4778 [Patent Document 3]
JP 2003-43200 A
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an X-ray microscope with high resolution and no saturation phenomenon.
[0014]
[Means for Solving the Problems]
In order to solve the above problem, an imaging X-ray microscope according to the present invention converts an X-ray image into an electronic image by a photoelectric conversion surface, magnifies the image optically, forms an image, and observes the image via an image sensor. A microscope, an X-ray generation unit that guides incident laser light to an X-ray target to generate laser plasma X-rays, a sample holder that supports the sample at an X-ray irradiation position, and a X-ray that transmits the sample. An X-ray objective lens optical system for enlarging and forming an image on the photoelectric conversion surface is provided. An electron optical system for enlarging an electron image generated on the photoelectric conversion surface is located on the opposite side of the X-ray objective lens optical system across the optical conversion surface. The X-ray generator, the sample holder, and the X-ray objective lens optical system are housed in a single vacuum vessel.
[0015]
The imaging X-ray microscope of the present invention combines the function of enlarging an X-ray image and the function of enlarging an electronic image. The X-ray flux transmitted through the sample is magnified 10 times with an X-ray objective lens system, for example. When the image is projected onto the conversion surface, the electron image after photoelectric conversion is enlarged by about 100 times by the electron optical system and formed on the imaging element surface, an enlargement magnification of about 1000 times can be easily obtained. If the magnification is about 100 times, there is no need to request advanced specifications for the electronic image enlargement mechanism, and the configuration can be made relatively easily.
[0016]
For example, when a Schwarzschild type optical system is used as an X-ray objective lens, a relatively small configuration in which the distance between an object point and an image point is about 1 m makes it easy to obtain a magnification of 10 times in a window area of water. Can be.
Thereby, the size of 50 nm on the sample is enlarged to 500 nm on the photoelectric conversion surface to form an image. If this is imaged on an MCP or a fluorescent plate with an electron optical system and observed, a magnification of 100 times of the electron optical system is sufficient. At this time, the resolution required for the electron optical system is about 200 nm. Therefore, it is not necessary to extremely increase the acceleration voltage or shorten the distance between the photoelectric conversion surface and the anode in order to obtain high resolution.
[0017]
Further, laser plasma X-rays can be used.
Laser plasma X-rays are usually obtained from plasma generated by converging a Nd: YAG laser having a pulse width of several nanoseconds, a wavelength of 1064 nm, and a repetition rate of about 10 Hz on a metal target with an optical lens. When gold Au or molybdenum Mo is used as the target material, a large amount of soft X-rays of 2 to 5 nm are generated, and pulse X-rays of several nanoseconds are obtained.
[0018]
When observing a living biological sample, there is a phenomenon that an image becomes unclear due to Brownian motion. When observing at a resolution of 50 nm, in order to prevent blurring of the image and accurately capture the appearance of the tissue, a short time imaging of 0.5 ms or less is required.
The conversion time in the photoelectric conversion film is very short, less than picoseconds, and the time required for secondary electrons to be emitted from the photoelectric conversion surface is almost the same. Can be.
[0019]
However, for example, in a photoelectric conversion type X-ray microscope using cesium iodide, the X-ray dose required to form an image that can withstand observation is about 1 × 10 11 / mm 2 . If cesium is converted to 0.3 electrons per X-ray, the peak current density when forming a good X-ray image with one pulse of X-ray becomes very large, about 1 A / mm 2. In some cases, an image cannot be formed due to the space charge effect.
If the intensity of the laser irradiating the target is reduced to suppress the space charge effect, the X-ray generation efficiency is undesirably reduced. On the other hand, when an excessively large amount of X-rays is incident in a short time, the amount of emitted photoelectrons increases, and the photoelectric conversion surface becomes in an electron deficient state, so that an electron image cannot be formed.
[0020]
In the X-ray microscope of the present invention, since the X-ray objective lens system is used, if the magnification of the X-ray luminous flux is 10 times, the X-ray density on the photoelectric conversion surface becomes 1/100. Therefore, in order to form an X-ray image with one pulse of laser plasma X-rays, the peak current in the electron optical system is reduced to about 0.01 A / mm 2 , and the effect of the space charge effect on image formation can be ignored. Level, and there is no problem in supplying electrons on the photoelectric conversion surface.
[0021]
Further, in the X-ray microscope of the present invention, since the X-ray generation unit, the sample holder, and the X-ray objective lens system are installed in a vacuum chamber, the X-ray microscope can be used for X-rays in a water window region suitable for observation of a biological sample. Also, the attenuation is small, and an X-ray transmission image that can sufficiently withstand observation can be obtained. Further, since the attenuation of the X-ray transmitted through the sample is small, the image observation time can be shortened.
Since the electron beam magnifying unit also requires a high degree of vacuum, the X-ray objective lens system and the like may be housed in the same vacuum vessel as the electron image magnifying lens system.
[0022]
The X-ray microscope according to the present invention includes an X-ray focusing optical system constituted by a Walter-type optical system between the X-ray generator and the sample holder, and further comprises an X-ray objective lens optical system constituted by a Walter-type optical system. May be performed.
X-rays emitted from the laser plasma X-ray source are converged by a Walter-type X-ray focusing mirror, the sample is placed in an expanding X-ray beam, and the X-ray beam transmitted through the sample is converged by a Walter-type optical system. To form an image on the photoelectric conversion surface. The Walter-type optical system has a relatively small converging power, but can be sufficiently compact if the magnification is about 10 times.
[0023]
The imaging X-ray microscope of the present invention has a zooming function while separating the sample and the photoelectric conversion film. Therefore, it is suitable for observation of a water-containing sample, and a living sample can be observed alive.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
An imaging X-ray microscope according to the present invention will be described based on an embodiment.
[0025]
Embodiment 1
The present embodiment is an imaging X-ray microscope in which a sample transmission X-ray image is enlarged using a Schwarzschild type optical system. FIG. 1 is a conceptual configuration diagram of the present embodiment.
As shown in FIG. 1, the X-ray microscope 100 includes a laser generator 101, a condenser lens 103, an X-ray target 105, a sample holder 107, a Schwarzschild type optical system 109, a photoelectric conversion surface 113, and an anode in an electron optical system. 115, a magnetic field objective lens 117, a magnetic field projection lens 119, an MCP fluorescent plate 121, and a CCD camera 123.
All of these components except the laser generator 101 and the CCD camera 123 are housed in a vacuum container 125 maintained at a high vacuum.
[0026]
The laser generator 101 generates a pulsed laser, and focuses the laser light on the surface of the X-ray target 105 through the window of the vacuum vessel with the focusing lens 103. The X-ray target 105 is a rotating drum having a surface adhered to a metal such as gold Au or molybdenum Mo. The X-ray target 105 generates a metal plasma by a laser and generates X-rays corresponding to the metal type. In gold or molybdenum, pulsed X-rays of several nanoseconds containing many soft X-rays of 2 to 5 nm are generated.
The X-ray target 105 rotates so that the laser beam always irradiates a new surface.
[0027]
The sample holder 107 is arranged so that the sample is located within the luminous flux of X-rays emitted radially from the X-ray target 105.
The X-ray image irradiated on the sample and transmitted enters the X-ray optical system 109 while expanding in the X-ray radiation direction.
The X-ray optical system 109 is a Schwarzschild type optical system including a concave spherical mirror 110 having a hole at the center and coated with a multilayer film, and a multilayer-coated convex spherical mirror 111 provided coaxially with the concave spherical mirror.
The X-ray transmission image is formed on the photoelectric conversion surface 113 by the X-ray optical system 109, and an electronic image corresponding to the X-ray transmission image is formed on the photoelectric conversion surface 113.
The magnification of the X-ray image may be about 10 times, and it can be realized with a sufficient margin by the Schwarzschild type optical system. Also, since the process of X-rays is in a vacuum vessel, even when using soft X-rays in the window area of water suitable for living body observation, it is hardly attenuated by the atmosphere other than the sample, and the X-ray transmission image is reproducibly photoelectrically converted. It can be projected onto surface 113.
[0028]
A DC voltage is applied between the photoelectric conversion surface 113 and the anode 115 by a DC power supply 114, and secondary electrons emitted from the electron image are extracted into the electron optical system by this voltage.
The electron optical system includes a magnetic field objective lens 117 and a magnetic field projection lens 119, and electronically enlarges an electronic image to form an image on a microchannel plate MCP121. The magnification may be about 100 times that can be realized structurally without difficulty.
The MCP 121 has a spatial resolution of 15 μm and is provided with a fluorescent screen. The MCP 121 visualizes an electron image, and the visualized electron image, that is, an enlarged X-ray transmission image is displayed on a display device such as a CRT (not shown) by the CCD camera 123. I do.
[0029]
According to the imaging X-ray microscope 100 of the present embodiment, it is possible to easily realize a resolution higher than 50 nm on the X-ray transmitting surface using the MCP 121 having a spatial resolution of 15 μm.
Further, since a short-time photographing of 0.5 ms or less can be performed, an accurate position of an object can be detected even when there is Brownian motion. Further, since the X-ray density on the photoelectric conversion surface does not increase, an electron deficiency state does not occur, and an electron image can be formed and observed in real time.
[0030]
Embodiment 2
This embodiment is an imaging X-ray microscope characterized by using a condenser mirror and a Walter optical system instead of the Schwarzschild optical system in the first embodiment. FIG. 2 is a conceptual configuration diagram of the present embodiment.
Hereinafter, portions overlapping with the first embodiment will be briefly described.
As shown in FIG. 2, the X-ray microscope 200 includes a laser generator 201, a condenser lens 203, an X-ray target 205, a photoelectric conversion surface 213, an anode 215 in an electron optical system, a magnetic field objective lens 217, and a magnetic field projection lens. 219, an MCP fluorescent screen 221, and a CCD camera 223. Further, instead of the Schwarzschild type optical system in the first embodiment, a converging mirror 207 and a Walter type optical system 211 are provided. The sample holder 209 is disposed between the condenser mirror 207 and the Walter optical system 211.
As in the first embodiment, all the components except the laser generator 201 and the CCD camera 223 are housed in the vacuum container 225.
[0031]
When the laser generated by the laser generator 201 is focused on the surface of the X-ray target 205 by the focusing lens 203, the X-ray target 205 generates a pulse X-ray of several nanoseconds containing a large amount of soft X-rays of 2 to 5 nm. .
X-rays radially emitted from the X-ray target 205 are converged by the X-ray focusing mirror 207, and then the sample holder 209 is arranged so that the sample is positioned within the light beam that expands again. Therefore, the X-ray transmission image of the sample enters the Walter optical system 211 while being enlarged.
The Walter-type optical system is an optical system that forms an X-ray by combining soft parabolic and rotational hyperboloids that share a focal point, by making use of the fact that soft X-rays incident at a grazing angle are totally reflected. .
Note that the X-ray focusing mirror 207 may also be configured by a Walter optical system.
[0032]
The X-ray transmission image is formed on the photoelectric conversion surface 213 by the X-ray optical system 211, and an electronic image corresponding to the X-ray transmission image is formed.
The magnification of the X-ray image may be about 10 times, and can be sufficiently realized by the Walter optical system. A DC voltage is applied between the photoelectric conversion surface 213 and the anode 215 by a DC power supply 214, and secondary electrons emitted from an electron image are converted into an electron optical system constituted by a magnetic field objective lens 217 and a magnetic field projection lens 219. It is sent and forms an image on the microchannel plate MCP221.
The enlarged X-ray transmission image stored in the MCP 221 is displayed on a display device such as a CRT (not shown) by the CCD camera 223.
[0033]
【The invention's effect】
As described above, the living body sample can be observed as an X-ray transmission image in a living state by the imaging X-ray microscope of the present invention.
[Brief description of the drawings]
FIG. 1 is a conceptual configuration diagram showing a first embodiment of an imaging X-ray microscope according to the present invention.
FIG. 2 is a conceptual configuration diagram showing a second embodiment of the imaging X-ray microscope according to the present invention.
FIG. 3 is a conceptual configuration diagram showing an example of an imaging X-ray microscope according to the related art.
FIG. 4 is a conceptual configuration diagram illustrating the electron optical system of FIG.
[Explanation of symbols]
Reference Signs List 100 X-ray microscope 200 of first embodiment 200 X-ray microscope 101, 201 Laser generator 103, 203 Condensing lens 105, 205 X-ray target 107 Sample holder 109 Schwarzschild type optical system 110 Concave spherical mirror 111 Convex surface Spherical mirror 113, 213 Photoelectric conversion surface 114, 214 DC power supply 115, 215 Anode 117, 217 Magnetic field objective lens 119, 219 Magnetic field projection lens 121, 221 MCP fluorescent plate 123, 223 CCD camera 125, 225 Vacuum container 207 Condensing mirror 209 Sample holder 211 Walter-type optical system

Claims (4)

X線像を光電変換面により電子像に変換し電子光学的に拡大し結像して撮像素子を介して観察するX線顕微鏡において、入射するレーザ光をX線ターゲットに導いてレーザプラズマX線を生成するX線発生部と、試料を前記レーザプラズマX線の照射位置に支持する試料ホルダーと、該試料を透過したX線を拡大し前記光電変換面上に結像するX線対物レンズ光学系を備え、該光電変換面で発生する電子像を拡大する電子光学系が前記光学変換面を挟んで前記X線対物レンズ光学系と反対側に設けられ、かつ前記X線発生部と前記試料ホルダーと前記X線対物レンズ光学系を1個の真空容器内に収納したことを特徴とする結像型X線顕微鏡。In an X-ray microscope in which an X-ray image is converted into an electronic image by a photoelectric conversion surface, electro-optically enlarged, formed and observed through an imaging device, an incident laser beam is guided to an X-ray target to generate a laser plasma X-ray. An X-ray generating unit for generating a laser beam, a sample holder for supporting the sample at the irradiation position of the laser plasma X-ray, and an X-ray objective lens optics for enlarging the X-ray transmitted through the sample and forming an image on the photoelectric conversion surface An electron optical system for enlarging an electron image generated on the photoelectric conversion surface is provided on the opposite side of the X-ray objective lens optical system across the optical conversion surface, and the X-ray generation unit and the sample are provided. An imaging X-ray microscope, wherein the holder and the X-ray objective lens optical system are housed in one vacuum vessel. 前記X線対物レンズ光学系がシュワルツシルド型光学系で構成されることを特徴とする請求項1記載の結像型X線顕微鏡。2. An imaging X-ray microscope according to claim 1, wherein said X-ray objective lens optical system comprises a Schwarzschild type optical system. 前記X線発生部と前記試料ホルダーの間にウォルター型光学系で構成されたX線集光光学系を備え、前記X線対物レンズ光学系がウォルター型光学系で構成されることを特徴とする請求項1記載の結像型X線顕微鏡。An X-ray focusing optical system composed of a Walter optical system is provided between the X-ray generator and the sample holder, and the X-ray objective lens optical system is composed of a Walter optical system. The imaging X-ray microscope according to claim 1. 前記真空容器が前記電子像の拡大結像系を収納する真空容器を兼ねることを特徴とする請求項1から3のいずれかに記載の結像型X線顕微鏡。The imaging X-ray microscope according to any one of claims 1 to 3, wherein the vacuum container also serves as a vacuum container that stores the enlarged image forming system of the electronic image.
JP2003145028A 2003-05-22 2003-05-22 Imaging type x-ray microscope Pending JP2004347463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145028A JP2004347463A (en) 2003-05-22 2003-05-22 Imaging type x-ray microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145028A JP2004347463A (en) 2003-05-22 2003-05-22 Imaging type x-ray microscope

Publications (1)

Publication Number Publication Date
JP2004347463A true JP2004347463A (en) 2004-12-09

Family

ID=33532327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145028A Pending JP2004347463A (en) 2003-05-22 2003-05-22 Imaging type x-ray microscope

Country Status (1)

Country Link
JP (1) JP2004347463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511440A (en) * 2013-03-14 2016-04-14 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination optical unit for mask inspection system and mask inspection system having such an illumination optical unit
EP3989240A1 (en) * 2020-10-23 2022-04-27 Rigaku Corporation Imaging type x-ray microscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511440A (en) * 2013-03-14 2016-04-14 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination optical unit for mask inspection system and mask inspection system having such an illumination optical unit
US10042248B2 (en) 2013-03-14 2018-08-07 Carl Zeiss Smt Gmbh Illumination optical unit for a mask inspection system and mask inspection system with such an illumination optical unit
EP3989240A1 (en) * 2020-10-23 2022-04-27 Rigaku Corporation Imaging type x-ray microscope
US11885753B2 (en) 2020-10-23 2024-01-30 Rigaku Corporation Imaging type X-ray microscope

Similar Documents

Publication Publication Date Title
US7039157B2 (en) X-ray microscope apparatus
JP3133103B2 (en) X-ray microscope and method of forming x-ray image
Kim et al. Compact soft x-ray transmission microscopy with sub-50 nm spatial resolution
JPH07260713A (en) X-ray camera
US5912939A (en) Soft x-ray microfluoroscope
EP0766869A1 (en) Electron microscope with raman spectroscopy
WO1998035214A9 (en) Soft x-ray microfluoroscope
JP2004347463A (en) Imaging type x-ray microscope
WO2001046962A1 (en) &#39;x-ray microscope having an x-ray source for soft x-rays
Cheng et al. X-ray microradiography and shadow projection x-ray microscopy
Batani et al. The use of high energy laser-plasma sources in soft X-ray contact microscopy of living biological samples
Fletcher et al. Soft x-ray contact microscopy using laser-generated plasma sources
JPS62106352A (en) Scanning type x-ray microscope
JPH11133200A (en) X-ray scanning microscopic method and microscope
JP3939199B2 (en) Sample slide for X-ray microscope
Früke et al. EUV scanning transmission microscope operating with high-harmonic and laser plasma radiation
Torrisi et al. Applications of a compact" water window" source for investigations of nanostructures using SXR microscope
JP3049790B2 (en) Imaging soft X-ray microscope
CN219501039U (en) Multi-blade micro-pore channel wire shielding device for X-ray digital imaging machine
JP5759257B2 (en) X-ray equipment
JPH01134300A (en) X-ray microscope
Song et al. Small size X-pinch radiation source for application to phase-contrast x-ray radiography of biological specimens
JPH1020099A (en) Scanning confocal x-ray microscope
Rau et al. A hard X-ray KB-FZP microscope for tomography with sub-100-nm resolution
Aritome et al. An imaging zone plate X-ray microscope using a laser plasma source