JPH06333525A - Charged particle beam irradiation device - Google Patents

Charged particle beam irradiation device

Info

Publication number
JPH06333525A
JPH06333525A JP15602093A JP15602093A JPH06333525A JP H06333525 A JPH06333525 A JP H06333525A JP 15602093 A JP15602093 A JP 15602093A JP 15602093 A JP15602093 A JP 15602093A JP H06333525 A JPH06333525 A JP H06333525A
Authority
JP
Japan
Prior art keywords
aperture
chamber
charged particle
particle beam
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15602093A
Other languages
Japanese (ja)
Inventor
Tadao Suganuma
忠雄 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEAM TEC KK
Original Assignee
BEAM TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEAM TEC KK filed Critical BEAM TEC KK
Priority to JP15602093A priority Critical patent/JPH06333525A/en
Publication of JPH06333525A publication Critical patent/JPH06333525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To improve the performance and the service life of a charged particle beam source by providing the first aperture, and a lens to fix the focus at the hole of the aperture, at the outlet of a chamber to house the charged particle beam source. CONSTITUTION:The particle beams of electron beams 23 discharged from a cathode 1 are focused by a solenoid lens 21 provided at the outlet of a chamber 4, and the focus is fixed to the surface of an aperture 20. In this case, by increasing or decreasing the excitation of a deflection device 22, the focus of the beams at the surface of the aperture 20 can be made coincident to the position of the hole of an adequate size. And the aperture 20 held by an insulator 28 is connected to a current detecting device, and the current generated by hitting the beams to the aperture 20 is detected. As a result, it is decided whether the focus position is coincident to the hole of the aperture 20 or not. By such a constitution, the charged particles are not hit to the chamber 4 to house the beam source, or to the aperture 20, and the performance and the service life of the beam source are improved extensively.

Description

【発明の詳細な説明】Detailed Description of the Invention

〔0001〕 〔産業上の利用分野〕本発明は、荷電粒子線源を収容す
るチャンバーやアパーチャ等に粒子線が衝突することを
防ぎ、且つチャンバーへのガスの流入を減少させる手段
を設けることにより、線源へのガスの吸着やイオンのア
タック等を減らし、その結果、線源の性能と寿命を改善
した荷電粒子線照射装置に関する。 〔0002〕 〔従来の技術〕電子顕微鏡、電子ビーム露光装置、電子
ビーム加工装置、電子ビーム溶接装置、収束イオンビー
ム装置等の荷電粒子線照射装置に於いては、荷電粒子線
を発生し照射する照射系が設けられている。例として図
3に熱電子銃を用いた走査電子顕微鏡の照射系を示す。 〔0003〕同図において1は陰極、2はウェーネル
ト、3は陽極(アノード)であり、これらが一体となっ
て電子銃を構成している。4は電子銃チャンバーであっ
て排気装置5によって排気される。6は電磁型コンデン
サーレンズ、7は電磁型対物レンズ、8と9はそれぞれ
アパーチャ、10はライナーチューブ、11は試料、1
2は試料チャンバーであり、ライナーチューブと試料チ
ャンバーはそれぞれ排気装置13と14によって排気さ
れる。陰極から放出された電子ビーム15は、外周部は
アパーチャ8に衝突して遮られ、中心部はアパーチャを
通過してコンデンサーレンズ6により集束される。さら
に電子ビームは同様にして対物レンズ7によって集束さ
れ、試料11に照射される。さらに電子ビームは図示し
ていない走査コイルによって試料上を走査され、このと
き試料からは二次電子などが発生し、これらは図示して
いない検出器により検出されて電子顕微鏡像を形成す
る。 〔0004〕 〔発明が解決しようとする課題〕このような従来の電子
顕微鏡に於いては、電子銃から発生した電子ビームはア
パーチャ8やチャンバー4に衝突し、この時アパーチャ
やチャンバーの表面からガスやイオン等を発生させる。
その結果、チャンバーの圧力が上昇してガスが陰極に吸
着し、イオンが陰極をアタックし、これらは陰極の物性
と形状を変化させて、陰極の特性と寿命を劣化させるこ
とになる。 〔0005〕更なる問題点はライナーチューブからのガ
スの流入である。一般にライナーチューブ内の真空圧力
は高く、そのためライナーチューブから電子銃チャンバ
ーにガスが流入して真空度を劣化させる。これを防ぐた
めにはアパーチャ8の穴径は限りなく小さいことが望ま
れるが、一方必要な電子ビーム量を下方に取り出すため
にはある程度の穴径が必要で、電子顕微鏡等に於いては
普通0.3ないし0.5mm程度が用いられる。この程
度のアパーチャ径ではガスの流入はかなりの量に達し、
電子銃チャンバーの圧力を上昇させ、陰極の特性と寿命
を劣化させる。 〔0006〕電子ビーム露光装置、電子ビーム加工装
置、電子ビーム溶接装置等ではより大きな電流を取り出
すので、アパーチャの穴径としては0.5ないし8mm
程度が必要で、この場合ガス流入の影響はさらに深刻で
ある。また高分解能電子顕微鏡等に用いられる電界放出
型の電子銃は、わずかなガスの吸着やイオンアタックに
よってもその特性と寿命が劣化するので、同様の問題が
存在する。以上説明したように各種装置においてガス吸
着、イオンアタック、ガス流入等の問題は深刻で、その
解決が望まれているのであるが、従来技術では充分有効
な手段がなく、そのため実用上多大の不都合を来してい
た。 〔0007〕 〔課題を解決するための手段〕本発明に於いては、荷電
粒子線源を収容するチャンバーの出口に最初のアパーチ
ャを設け、且つ粒子線を集束させて焦点をアパーチャの
面に結ばせるレンズを設けている。更には、焦点位置を
アパーチャの穴に一致させる調節手段と、一致したこと
を判定する手段を設けている。 〔0008〕 〔作用〕上述した手段により、粒子線がアパーチャやチ
ャンバー等に衝突することなく、その全てがアパーチャ
を通過するようにする。またアパーチャの穴径を微小に
して、チャンバーへのガスの流入を減少させる。それら
の結果、チャンバーの真空度を向上させ、線源へのガス
の吸着やイオンのアタック等を減らし、線源の性能と寿
命とを改善する。
[0001] [Industrial field of application] The present invention provides a means for preventing a particle beam from colliding with a chamber, an aperture, or the like that accommodates a charged particle beam source, and for reducing gas inflow into the chamber. The present invention relates to a charged particle beam irradiation apparatus in which adsorption of gas to a radiation source and attack of ions are reduced, and as a result, performance and life of the radiation source are improved. [Prior Art] In a charged particle beam irradiation apparatus such as an electron microscope, an electron beam exposure apparatus, an electron beam processing apparatus, an electron beam welding apparatus, and a focused ion beam apparatus, a charged particle beam is generated and irradiated. An irradiation system is provided. As an example, FIG. 3 shows an irradiation system of a scanning electron microscope using a thermal electron gun. In the figure, 1 is a cathode, 2 is a Wehnelt, and 3 is an anode (anode), and these together form an electron gun. An electron gun chamber 4 is exhausted by an exhaust device 5. 6 is an electromagnetic condenser lens, 7 is an electromagnetic objective lens, 8 and 9 are apertures, 10 is a liner tube, 11 is a sample, 1
Reference numeral 2 is a sample chamber, and the liner tube and the sample chamber are exhausted by exhaust devices 13 and 14, respectively. The outer peripheral portion of the electron beam 15 emitted from the cathode collides with the aperture 8 and is blocked, and the central portion passes through the aperture and is focused by the condenser lens 6. Further, the electron beam is similarly focused by the objective lens 7 and irradiated on the sample 11. Further, the electron beam is scanned over the sample by a scanning coil (not shown), at which time secondary electrons are generated from the sample, and these are detected by a detector (not shown) to form an electron microscope image. [0004] [Problems to be Solved by the Invention] In such a conventional electron microscope, an electron beam generated from an electron gun collides with an aperture 8 or a chamber 4, and at this time, a gas is emitted from the surface of the aperture or the chamber. And generate ions.
As a result, the pressure in the chamber rises, the gas is adsorbed on the cathode, and the ions attack the cathode, which change the physical properties and shape of the cathode and deteriorate the characteristics and life of the cathode. [0005] A further problem is the inflow of gas from the liner tube. Generally, the vacuum pressure in the liner tube is high, so that gas flows from the liner tube into the electron gun chamber to deteriorate the degree of vacuum. In order to prevent this, it is desired that the hole diameter of the aperture 8 is as small as possible, but on the other hand, a certain hole diameter is necessary to extract the required electron beam amount downward, and it is usually 0 in an electron microscope or the like. About 0.3 to 0.5 mm is used. With such an aperture diameter, the gas inflow reaches a considerable amount,
It raises the pressure in the electron gun chamber and degrades the cathode characteristics and life. [0006] Since an electron beam exposure apparatus, an electron beam processing apparatus, an electron beam welding apparatus, etc. draws a larger current, the aperture hole diameter is 0.5 to 8 mm.
Degree is required, in which case the effect of gas inflow is more serious. Further, the field emission type electron gun used in a high resolution electron microscope or the like has the same problem because its characteristics and life are deteriorated even by slight gas adsorption or ion attack. As described above, the problems such as gas adsorption, ion attack, and gas inflow are serious in various devices, and it is desired to solve them. However, there is no sufficiently effective means in the prior art, and therefore, it is a great disadvantage in practical use. Was coming. [Means for Solving the Problems] According to the present invention, a first aperture is provided at the exit of a chamber that houses a charged particle beam source, and the particle beam is focused to focus on the surface of the aperture. It has a lens that makes it. Further, there are provided adjusting means for matching the focus position with the hole of the aperture and means for determining that they match. [Operation] By the above-mentioned means, all of the particle beam passes through the aperture without colliding with the aperture or the chamber. In addition, the hole diameter of the aperture is made small to reduce the inflow of gas into the chamber. As a result, the degree of vacuum of the chamber is improved, the adsorption of gas to the radiation source and the attack of ions are reduced, and the performance and life of the radiation source are improved.

〔0009〕 〔実施例〕図1は本発明の第一の実施例であって、熱電
子銃を用いた走査電子顕微鏡の照射系を示す。本図にお
いて、図3と同一符号を付したものは同一の構成要素で
ある。陰極1としては通常タングステンフィラメント、
六ホウ化ランタンなどが用いられる。電子銃チャンバー
4の出口に最初のアパーチャ20を設けている。それ以
降、8および9のアパーチャを設けていることは従来例
と同じである。アパーチャ20は絶縁物28によりアー
スから絶縁されて支持されており、且つ、図示されてい
ない電流検出装置に電気的に接続されている。21は電
磁型のレンズ、22は電磁型の偏向装置である。 〔0010〕陰極から放出された電子ビーム23は円錐
状に広がり、レンズ21によって集束作用を受け、焦点
をアパーチャ20の面に結ぶ。アパーチャの穴径はビー
ムの焦点の直径よりやや大きい程度に選ばれ、本実施例
の場合30ないし100μm程度である。偏向装置22
の励滋を増減することによりアパーチャ面におけるビー
ムの焦点の位置を調節し、焦点の位置をアパーチャの穴
に一致させれば、ビームはすべてアパーチャを通過す
る。 〔0011〕前述したようにアパーチャ20は電流検出
装置に接続されている。ビームがアパーチャに衝突して
いる時はアパーチャに吸収された電流が検出装置によっ
て検出され、ビームがアパーチャを通過しているときは
検出電流はほぼゼロになるので、このことによりビーム
の焦点位置とアパーチャの穴の位置とが一致したことを
判定することが出来る。アパーチャを通過したビームは
コンデンサレンズ6によって集束され、それ以降は図3
の従来例と同様なので説明を省略する。 〔0012〕このように電子ビームはチャンバー4やア
パーチャ20に衝突することが無く、従ってそれらの表
面においてガスやイオン等を発生させることが無い。ま
たアパーチャ20の穴はビームの焦点よりやや大きい程
度の小直径で良いので、ライナーチューブから電子銃チ
ャンバーへのガス流入は無視できる程度に小さくなる。
前述したように本実施例のアパーチャ穴径は30μm程
度にできるので、従来装置のそれが0.3mm、とすれ
ば、ガス流入量は約1/100に減少する。従って排気
装置5によって排気することにより充分な高真空にまで
到達することが出来る。 〔0013〕なお偏向装置22は必ずしも必要ではな
く、電子銃、レンズ、アパーチャ等の軸精度が良好に製
作され組み立てられていれば、偏向装置がなくともビー
ムの焦点はアパーチャを通過する。この場合は28によ
る絶縁支持、アパーチャの吸収電流の検出も当然不要と
なる。更には、ビームの位置を調節する手段としては偏
向装置の代わりに電子銃を機械的に動かす軸合わせ装置
を設けても良い。 〔0014〕図2は本発明の第二の実施例であって、電
界放出型電子銃を用いた電子照射系を示す。本図におい
て、図1と同一符号を付したものは同一の構成要素であ
る。25はエミッターであって、先端には針状のタング
ステン単結晶などが用いられ、そこから電子を放出す
る。26は第一アノードで、その下面は最初のアパーチ
ャ20を形成している。第一アノードは絶縁物28によ
り保持され、且つ、図示されていない電流検出装置およ
び高圧電源に接続されている。エミッターと第一アノー
ドには外部よりそれぞれ異なった高圧の電位が印加さ
れ、両者の間の電位差によりエミッターの前面に強い電
界が形成され、電子ビーム23が電界放出される。 〔0015〕放出された電子ビームはレンズ21によっ
て集束され、アパーチャ20の面上に焦点を結ぶ。焦点
の直径は電界放出型電子銃の場合極めて小さいので、ア
パーチャの穴径は10μm程度でよい。アパーチャ面上
の焦点の位置を偏向装置22によって調節し、焦点の位
置をアパーチャの穴に一致させれば、ビームはアパーチ
ャの穴を通過する。29は第二アノードであって、穴径
は1ないし5mm程度が選択され、また電気的には接地
されている。第二アノードを通過したビームはコンデン
サーレンズ6によって集束され、あとは図1と同様であ
る。 〔0016〕この実施例においても電子ビームはチャン
バー4や第一アノード26やアパーチャ20に衝突する
ことが無く、従ってそれらの表面においてガスやイオン
等を発生させることが無い。またアパーチャを通じて電
子銃チャンバーへ流入するガスの量は無視できる程度に
少ないので、排気装置5によって超高真空にまで排気す
ることが出来る。従って、電界放出型の電子銃がわずか
なガスの吸着やイオンアタックによってもその特性と寿
命が劣化するという問題点が解決され、電子銃を安定に
動作させることが出来る。 〔0017〕電界放出型の電子銃においては第一アノー
ドと第二アノードとはそれぞれ異なる電位が与えられ、
従って両者のあいだには電界が存在し、そこで電子が加
速または減速されて最終的なエネルギーに達するのであ
るが、この電界のために静電レンズが形成されてしま
い、一般に静電レンズは収差が大きいので、これが照射
系の性能を劣化させるという問題が在った。しかし本実
施例ではその電界(即ち静電レンズ)の近傍でビームが
焦点を結んでいるため静電レンズの集束作用をほとんど
受けず、従って照射系への悪影響もきわめて微小にとど
めることが出来る。これが本発明の持つ更なる効果であ
る。 〔0018〕以上、本発明を電子銃における実施例で説
明したが、イオン銃を用いたイオンビーム照射系におい
ても類似の構成で本発明を実施することが出来る。ただ
しその場合レンズとしては静電レンズが用いられる。イ
オン銃の場合イオンアタックの問題はないのでこれに対
する効果は無いが、その他の効果は生かされる。このよ
うに本発明は電子、イオン等の荷電粒子線の照射系に実
施できるものである。 〔0019〕 〔発明の効果〕本発明は以上説明したように構成されて
いるので、線源を収容するチャンバーやアパーチャ等に
荷電粒子線が衝突することがなくなり、且つチャンバー
へのガスの流入は無視できる程度にまで減少する。それ
らの結果チャンバーは充分な高真空にまで排気され、線
源へのガスの吸着やイオンのアタック等が減少し、線源
の性能と寿命とが大幅に改善される。また電界放出型の
電子銃においては、アノードの近傍に形成される静電レ
ンズによる収差の影響もきわめて微小にとどめることが
出来る。
[Embodiment] FIG. 1 is a first embodiment of the present invention and shows an irradiation system of a scanning electron microscope using a thermionic gun. In this figure, the components denoted by the same reference numerals as those in FIG. 3 are the same components. The cathode 1 is usually a tungsten filament,
Lanthanum hexaboride or the like is used. A first aperture 20 is provided at the exit of the electron gun chamber 4. After that, the apertures 8 and 9 are provided as in the conventional example. The aperture 20 is supported by being insulated from the ground by an insulator 28, and is electrically connected to a current detecting device (not shown). Reference numeral 21 is an electromagnetic lens, and 22 is an electromagnetic deflection device. [0010] The electron beam 23 emitted from the cathode spreads in a conical shape, is focused by the lens 21, and focuses on the surface of the aperture 20. The hole diameter of the aperture is selected to be slightly larger than the diameter of the focal point of the beam, and in the present embodiment, it is about 30 to 100 μm. Deflection device 22
By adjusting the position of the focal point of the beam on the aperture plane by increasing or decreasing the energization of the beam, and making the position of the focal point coincide with the hole of the aperture, all the beams pass through the aperture. [0011] As described above, the aperture 20 is connected to the current detecting device. When the beam hits the aperture, the current absorbed by the aperture is detected by the detector, and when the beam is passing through the aperture, the detected current is almost zero. It can be determined that the positions of the holes in the aperture match. The beam that has passed through the aperture is focused by the condenser lens 6, and thereafter, the beam shown in FIG.
The description is omitted because it is the same as the conventional example. [0012] As described above, the electron beam does not collide with the chamber 4 and the aperture 20, and therefore, gas, ions and the like are not generated on the surface thereof. Further, since the hole of the aperture 20 may have a small diameter slightly larger than the focal point of the beam, the gas inflow from the liner tube into the electron gun chamber becomes negligibly small.
As described above, since the aperture hole diameter of this embodiment can be set to about 30 μm, if the diameter of the conventional device is 0.3 mm, the gas inflow amount is reduced to about 1/100. Therefore, by exhausting with the exhaust device 5, it is possible to reach a sufficiently high vacuum. The deflector 22 is not always necessary. If the electron gun, lens, aperture, etc. are manufactured and assembled with good axial accuracy, the beam focus passes through the aperture without the deflector. In this case, the insulation support by 28 and the detection of the absorption current of the aperture are naturally unnecessary. Further, as a means for adjusting the position of the beam, an axis aligning device for mechanically moving the electron gun may be provided instead of the deflecting device. [0014] Fig. 2 shows a second embodiment of the present invention, showing an electron irradiation system using a field emission type electron gun. In this figure, the components denoted by the same reference numerals as those in FIG. 1 are the same components. Reference numeral 25 is an emitter, and a needle-shaped tungsten single crystal or the like is used at the tip thereof, and electrons are emitted from it. 26 is a first anode, the lower surface of which forms the first aperture 20. The first anode is held by an insulator 28 and is connected to a current detection device and a high voltage power source (not shown). Different high voltage potentials are applied to the emitter and the first anode from the outside, a strong electric field is formed on the front surface of the emitter due to the potential difference between the two, and the electron beam 23 is field-emitted. The emitted electron beam is focused by the lens 21 and focused on the surface of the aperture 20. Since the diameter of the focal point is extremely small in the case of the field emission electron gun, the hole diameter of the aperture may be about 10 μm. If the position of the focal point on the aperture plane is adjusted by the deflecting device 22 so that the position of the focal point coincides with the hole of the aperture, the beam passes through the hole of the aperture. Reference numeral 29 is a second anode, the hole diameter of which is selected to be about 1 to 5 mm, and it is electrically grounded. The beam passing through the second anode is focused by the condenser lens 6, and the rest is the same as in FIG. [0016] Also in this embodiment, the electron beam does not collide with the chamber 4, the first anode 26, and the aperture 20, and therefore, gas, ions, etc. are not generated on the surface thereof. Further, since the amount of gas flowing into the electron gun chamber through the aperture is so small as to be negligible, it is possible to exhaust the gas to an ultrahigh vacuum by the exhaust device 5. Therefore, the problem that the field emission type electron gun deteriorates in its characteristics and life due to slight gas adsorption or ion attack is solved, and the electron gun can be operated stably. [0017] In the field emission type electron gun, different potentials are applied to the first anode and the second anode,
Therefore, an electric field exists between the two, and the electrons are accelerated or decelerated there to reach the final energy, but this electric field forms an electrostatic lens, and in general, the electrostatic lens has an aberration. Since it is large, there is a problem that this deteriorates the performance of the irradiation system. However, in this embodiment, since the beam is focused near the electric field (that is, the electrostatic lens), the focusing action of the electrostatic lens is hardly received, and therefore, the adverse effect on the irradiation system can be extremely small. This is a further effect of the present invention. Although the present invention has been described with reference to the embodiment of the electron gun, the present invention can be implemented with a similar configuration in an ion beam irradiation system using an ion gun. However, in that case, an electrostatic lens is used as the lens. In the case of an ion gun, there is no problem of ion attack, so there is no effect on this, but other effects can be used. As described above, the present invention can be applied to an irradiation system of a charged particle beam such as electrons and ions. [Effect of the Invention] Since the present invention is configured as described above, the charged particle beam does not collide with the chamber or the aperture that houses the radiation source, and the gas does not flow into the chamber. Reduced to a negligible level. As a result, the chamber is evacuated to a sufficiently high vacuum, the adsorption of gas on the source and the attack of ions are reduced, and the performance and life of the source are greatly improved. Further, in the field emission type electron gun, the influence of the aberration due to the electrostatic lens formed in the vicinity of the anode can be kept extremely small.

【図面の簡単な説明】[Brief description of drawings]

〔図1〕本発明を熱電子銃を用いた照射系に実施した例
を示す断面図である。 〔図2〕本発明を電界放出型電子銃を用いた照射系に実
施した例を示す断面図である。 〔図3〕従来技術による熱電子銃を用いた照射系を示す
断面図である。 〔符号の説明〕 1 陰極 2 ウェーネルト 3 陽極 4 チャンバー 5 排気装置 20 アパーチャ 21 レンズ 22 偏向装置 23 電子ビーム 25 エミッター 26 第一アノード 28 絶縁物 29 第二アノード
FIG. 1 is a cross-sectional view showing an example in which the present invention is applied to an irradiation system using a thermionic gun. FIG. 2 is a sectional view showing an example in which the present invention is applied to an irradiation system using a field emission electron gun. FIG. 3 is a cross-sectional view showing an irradiation system using a thermal electron gun according to a conventional technique. [Explanation of Codes] 1 Cathode 2 Wehnelt 3 Anode 4 Chamber 5 Exhaust device 20 Aperture 21 Lens 22 Deflector 23 Electron beam 25 Emitter 26 First anode 28 Insulator 29 Second anode

Claims (2)

【特許請求の範囲】[Claims] 〔請求項1〕 荷電粒子線源と、荷電粒子線源を収容す
るチャンバーと、チャンバーを排気する排気装置とを設
け、チャンバーの出口に最初のアパーチャを設け、荷電
粒子線の焦点をアパーチャの面に結ばせるレンズを設け
た事を特徴とする荷電粒子線照射装置。
[Claim 1] A charged particle beam source, a chamber for accommodating the charged particle beam source, and an exhaust device for evacuating the chamber are provided, a first aperture is provided at an outlet of the chamber, and a focus of the charged particle beam is provided on the aperture surface. A charged particle beam irradiation device characterized in that a lens that can be connected to is provided.
〔請求項2〕 アパーチャ面における荷電粒子線の焦点
の位置を調節する手段と、アパーチャに吸収された電流
を検出する手段とを設けた、請求項1記載の荷電粒子線
照射装置。
[Claim 2] The charged particle beam irradiation apparatus according to claim 1, further comprising means for adjusting the position of the focal point of the charged particle beam on the aperture surface and means for detecting the current absorbed by the aperture.
JP15602093A 1993-05-21 1993-05-21 Charged particle beam irradiation device Pending JPH06333525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15602093A JPH06333525A (en) 1993-05-21 1993-05-21 Charged particle beam irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15602093A JPH06333525A (en) 1993-05-21 1993-05-21 Charged particle beam irradiation device

Publications (1)

Publication Number Publication Date
JPH06333525A true JPH06333525A (en) 1994-12-02

Family

ID=15618563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15602093A Pending JPH06333525A (en) 1993-05-21 1993-05-21 Charged particle beam irradiation device

Country Status (1)

Country Link
JP (1) JPH06333525A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212952A (en) * 1995-02-06 1996-08-20 Natl Res Inst For Metals Laser irradiation type electron gun
JP2000215842A (en) * 1999-01-26 2000-08-04 Japan Science & Technology Corp In situ observation system in composite emission electron microscope
JP2002093358A (en) * 2000-09-19 2002-03-29 Jeol Ltd Charged particle beam device
JP2004192903A (en) * 2002-12-10 2004-07-08 Prazmatec:Kk Electron gun
WO2011001611A1 (en) * 2009-06-30 2011-01-06 株式会社 日立ハイテクノロジーズ Charged particle gun and charged particle beam device
JP2016004733A (en) * 2014-06-19 2016-01-12 株式会社島津製作所 Electron beam device and control device and method for electron beam device
JP2018147653A (en) * 2017-03-03 2018-09-20 日本電子株式会社 Charged particle beam apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212952A (en) * 1995-02-06 1996-08-20 Natl Res Inst For Metals Laser irradiation type electron gun
JP2000215842A (en) * 1999-01-26 2000-08-04 Japan Science & Technology Corp In situ observation system in composite emission electron microscope
JP2002093358A (en) * 2000-09-19 2002-03-29 Jeol Ltd Charged particle beam device
JP2004192903A (en) * 2002-12-10 2004-07-08 Prazmatec:Kk Electron gun
WO2011001611A1 (en) * 2009-06-30 2011-01-06 株式会社 日立ハイテクノロジーズ Charged particle gun and charged particle beam device
JP2011014244A (en) * 2009-06-30 2011-01-20 Hitachi High-Technologies Corp Charged particle gun and charged particle beam device
JP2016004733A (en) * 2014-06-19 2016-01-12 株式会社島津製作所 Electron beam device and control device and method for electron beam device
JP2018147653A (en) * 2017-03-03 2018-09-20 日本電子株式会社 Charged particle beam apparatus

Similar Documents

Publication Publication Date Title
US7541580B2 (en) Detector for charged particle beam instrument
JP4236742B2 (en) Scanning electron microscope
JP4176159B2 (en) Environmentally controlled SEM using magnetic field for improved secondary electron detection
JPH09171791A (en) Scanning type electron microscope
JPH07296751A (en) X-ray tube device
JP2002507045A (en) Scanning electron microscope
JPH05266855A (en) Scanning electronic microscope
CN108352284B (en) Wide-field atmospheric scanning electron microscope
US7851755B2 (en) Apparatus for detecting backscattered electrons in a beam apparatus
JPH04298948A (en) Charged particie extractor
JPH06333525A (en) Charged particle beam irradiation device
JP3399989B2 (en) Charged particle energy analyzer
US7557346B2 (en) Scanning electron microscope
US4918358A (en) Apparatus using charged-particle beam
US10049855B2 (en) Detecting charged particles
JP2002324510A (en) Scanning electron microscope
JPH06338280A (en) Environmental control type scanning electron microscope
JP3494152B2 (en) Scanning electron microscope
JP2787084B2 (en) Scanning electron microscope
JP3014986B2 (en) Scanning electron microscope
JPH1012176A (en) Shape observer
JP3494208B2 (en) Scanning electron microscope
JP2004247321A (en) Scanning electron microscope
JP2007250560A (en) Scanning electron microscope
CN115346850A (en) Particle beam device with deflection unit