WO2017212710A1 - Laser-driving light source device - Google Patents

Laser-driving light source device Download PDF

Info

Publication number
WO2017212710A1
WO2017212710A1 PCT/JP2017/008429 JP2017008429W WO2017212710A1 WO 2017212710 A1 WO2017212710 A1 WO 2017212710A1 JP 2017008429 W JP2017008429 W JP 2017008429W WO 2017212710 A1 WO2017212710 A1 WO 2017212710A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
plasma container
source device
light source
Prior art date
Application number
PCT/JP2017/008429
Other languages
French (fr)
Japanese (ja)
Inventor
新一郎 野▲崎▼
好成 前薗
利夫 横田
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016112394A external-priority patent/JP2017220319A/en
Priority claimed from JP2016183608A external-priority patent/JP2018049714A/en
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2017212710A1 publication Critical patent/WO2017212710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels

Definitions

  • the present invention relates to a laser-driven light source device, and more particularly to a laser-driven light source device used for an exposure device for a semiconductor, a liquid crystal substrate or a color filter, and an image projection device for digital cinema.
  • Patent Document 1 laser light is condensed from the outside into a gas sealed in a chamber (quartz bulb) and excited by the laser light.
  • a chamber quartz bulb
  • the emission center position is determined by the focal position of the laser beam from the outside. It is expected as a light source that can always be maintained stably.
  • the laser-driven light source device 50 includes a laser source 51 and a chamber (plasma container) 53, and a concave reflecting mirror 54 such as a paraboloid is provided in the chamber 53 so as to surround it.
  • Laser light L from the laser source 51 is condensed by the condensing optical system 52 and is incident on the chamber 53 through an incident window 55 provided in the rear opening of the concave reflecting mirror 54.
  • plasma P is generated in the chamber 53, and the enclosed light emitting element such as mercury or xenon is excited, and excitation light EL having a wavelength corresponding to the light emitting element is emitted.
  • FIG. 15 discloses another embodiment.
  • a pair of electrodes 53a and 53b are arranged in the chamber 53 as an ignition source, and a preliminary discharge is performed between the pair of electrodes 53a and 53b.
  • the plasma P is generated.
  • these laser-driven light source devices are for condensing laser light from the outside to the light emitting gas sealed in the chamber to generate high-temperature plasma. All of the laser light contributes to plasma generation.
  • the laser light that has passed through the plasma in the chamber is often emitted as it is together with the excitation light emitted from the chamber. Then, it has been confirmed that the intensity of the laser light that has passed through the chamber is so high that it cannot be ignored with respect to the excitation light emitted from the chamber.
  • the irradiated object may be heated to adversely affect processing accuracy or be damaged, and countermeasures are required.
  • FIG. 16 shows a schematic structure of the laser-driven light source device including the laser source 51, the condensing lens 52, the plasma container 53, and the concave reflecting mirror 54, behind the condensing position in the plasma container 53.
  • a shielding member 55 is provided on the side, and the laser beam that has passed through the plasma P is shielded by the shielding member 55 so that it is not emitted outside the plasma container 53.
  • the shielding member 55 shields the laser light that has passed through the plasma P, but at the same time, partially shields the excitation light used for irradiating the irradiated object generated from the plasma. There is a problem that it will. If the area of the shielding member is reduced in order to reduce such a problem, it is necessary to reduce the diameter of the light beam of the laser beam. However, if the diameter of the light beam is reduced, the plasma is elongated and the light utilization rate is reduced. Another problem is that it will go down. Moreover, in this prior art, since the shielding member 55 is provided in the plasma vessel 53, there is a problem that the structure is complicated and the manufacture is difficult.
  • the present invention has a laser generator, a condensing means, and a plasma container in which a luminescent gas is enclosed, and excitation light from plasma generated in the plasma container
  • a laser-driven light source device that radiates through a concave reflecting surface
  • laser light that has passed through a plasma container is emitted as it is together with excitation light emitted from the plasma container without having a complicated structure, and is irradiated on an object to be irradiated (work).
  • a laser-driven light source device transmits an excitation light emitted from a plasma container, and a light shielding member that shields the laser light is on an optical path of the laser light transmitted through the plasma container. It is arranged.
  • the light shielding member includes a substrate that transmits excitation light emitted from the plasma container, and a light shielding layer that is formed on the substrate and transmits the excitation light and shields the laser light. It is characterized by that.
  • the light shielding layer is formed on both surfaces of the substrate.
  • the light shielding layer is characterized in that the transmittance of the laser light is 0.1% or less.
  • the plasma container has a tube shape, and a concave reflecting mirror surrounding the plasma container is provided.
  • the plasma container includes a main body having a concave reflecting surface, an incident window provided in a rear opening of the main body, and an emission window provided in a front opening of the main body, and the main body and the incident window A sealed space is formed by the exit window.
  • the laser generator emits an annular laser beam toward the condensing unit, and the condensing unit condenses the annular laser beam inside the plasma container, and The laser light that has passed through the condensing point of the condensing means is emitted without hitting the concave reflecting surface.
  • the laser generating unit includes a laser source and an annular laser beam generating unit disposed on the optical axis of the laser source.
  • the annular laser beam generating means comprises a pair of axicon lenses. Further, the annular laser beam generating means is composed of a bundle fiber in which a plurality of optical fibers are bundled, and the bundle fiber does not have an optical fiber at the center in the cross section of the emission end. Further, the laser generating unit is characterized in that a plurality of laser diodes are composed of a laser diode array arranged so that light emission points thereof are annular.
  • the light shielding member is provided on the optical path of the laser light that has passed through the plasma container, the excitation light emitted from the plasma container is transmitted, and the laser light that has passed through the plasma container can be shielded. it can. Therefore, the laser beam that has passed through the plasma vessel is prevented from being emitted as it is together with the light emitted from the plasma vessel, so that the processing accuracy of the workpiece such as the semiconductor substrate is not lowered, and the workpiece is heated and damaged. There is nothing. Further, by forming a light shielding layer on both surfaces of a single substrate, an efficient laser light shielding effect can be expected by a light shielding member having a simple structure.
  • the laser beam condensed in the plasma vessel is an annular laser beam
  • the laser beam that has passed through the plasma remains in an annular shape and does not strike the concave reflecting surface and is directly outside the plasma vessel.
  • the laser beam is not irradiated to the irradiated object.
  • FIG. 1 is a schematic diagram of a first embodiment of the present invention.
  • the A section enlarged view of FIG. Schematic of 2nd Example of this invention.
  • the schematic of the 3rd example of the present invention Schematic of 4th Example of this invention.
  • Schematic of the fifth embodiment of the present invention Schematic of the sixth embodiment of the present invention.
  • Schematic of the seventh embodiment of the present invention Schematic of the eighth embodiment of the present invention.
  • XX expanded sectional view of FIG. Schematic diagram of a tenth embodiment of the present invention.
  • Schematic of the eleventh embodiment of the present invention Schematic of the prior art example 1.
  • FIG. 1 is a diagram showing a schematic configuration of a first embodiment of a laser-driven light source device of the present invention.
  • the laser-driven light source device 1 includes a plasma container 2 and a laser generator 3 that irradiates the plasma container 2 with laser light L.
  • the plasma container 2 has a parabolic shape, an elliptical shape, and the like surrounding the plasma container 2.
  • the concave reflecting mirror 4 is provided.
  • the plasma vessel 2 can adopt various forms, but in this embodiment, it has a tube shape.
  • the tube shape means an arc tube shape such as a substantially spherical shape or a substantially elliptic rotating body shape in the lamp technology.
  • the tube-shaped plasma container 2 is made of, for example, quartz glass, and a rare gas, mercury, or the like is sealed therein as a light emitting medium. These luminescent media are appropriately selected according to the wavelength used.
  • the plasma vessel 2 is preferably arranged so that the center point thereof is located at the focal point F of the concave reflecting mirror 4.
  • the optical axis (rotation center axis) of the concave reflecting mirror 4 coincides with the optical path of the laser light L.
  • the concave reflecting mirror 4 has a rear opening 4a into which the laser light L is incident, and a plasma container. A front opening 4b from which the excitation light EL emitted from 2 is emitted is formed.
  • An incident lens (incident window) 5 is provided in the rear opening 4 a of the plasma container 4, and the laser light L from the laser generator 3 is condensed by the condenser lens 7 and further collected by the incident lens 5. Light is incident on the plasma container 2. At this time, the focal point of the laser beam L condensed in the plasma container 2 is arranged so as to coincide with the focal point F of the concave reflecting mirror 4.
  • One of the incident lens 5 and the condenser lens 7 can be omitted.
  • the laser generator 3 pulsed driving, CW driving, or a driving type laser beam using them in combination can be used. Further, the laser generator 3 emits laser light L having a peak in a wavelength region other than the wavelength of the main application among the excitation light EL emitted from the plasma container 2. For example, when the plasma container 2 emits ultraviolet light having a wavelength of 365 nm, which is emission of mercury, as the excitation light EL, the wavelength of the laser light L emitted from the laser generator 3 is preferably other than 365 nm, for example, 809 nm Or having a peak in the infrared wavelength region of 1 ⁇ m or more.
  • a light shielding member 10 is disposed in front of the optical axis of the concave reflecting mirror 4, that is, in front of the optical path of the laser light L.
  • the light shielding member 10 is a flat plate made of a translucent material (for example, quartz glass, magnesium fluoride, or sapphire) that transmits the excitation light EL emitted from the plasma container 2.
  • the substrate 11 includes a light shielding layer 12 made of a dielectric multilayer film formed on the substrate 11.
  • the light shielding layer 12 has a characteristic of transmitting the excitation light EL emitted from the plasma container 2 and reflecting the laser light La that has passed through the plasma container 2 by appropriately selecting the number of layers and the material in the dielectric multilayer film.
  • the number of layers and the material of each dielectric multilayer film constituting the light shielding layer 12 are appropriately selected so that the transmittance of the laser light La is 0.1% or less.
  • FIG. 3 shows a second embodiment regarding the light shielding member 10, in which the light shielding layers 12, 12 are formed on both surfaces of the substrate 11.
  • a very effective light shielding function can be expected with a simple structure of one light shielding member 10.
  • the transmittance of the laser beam of the light shielding layer 12 is 0.1%, since both surfaces receive a shielding function twice, the total transmittance is 0.01%, and the laser beam is very high. Can be shielded.
  • the laser generator 3 emits laser light L toward an incident lens (incident window) 5 fixed to the rear opening 4 a of the concave reflecting mirror 4.
  • the laser light L is collected by the incident lens 5 and applied to the plasma container 2 disposed at the focal position F of the concave reflecting mirror 4.
  • the light emitting medium sealed in the container of the plasma container 2 is excited by the laser light L to generate high temperature plasma P.
  • the luminescent medium is excited by the high-temperature plasma P, and the excitation light EL is emitted from the plasma container 2, reflected by the concave reflecting surface 4, and parallel to the optical axis of the concave reflecting mirror 4 toward the outside from the front opening 4b.
  • the laser light L generates the plasma P in the plasma container 2, but not all of it contributes to the plasma generation, and a part thereof passes through the plasma container 2 as it is.
  • the laser light La that has passed through the plasma container 2 enters the light shielding member 10 together with the excitation light EL.
  • 99.9% or more of this passing laser beam La is reflected by the light shielding layer 12, and there is almost no laser beam to pass through.
  • the shielding rate is further increased and the transmission amount is 0.01%.
  • the following is substantially 0%, and the light source element 14 positioned earlier is not damaged.
  • the light shielding layer 12 corresponds to only the part where the laser beam La that has passed through the plasma container 2 is incident. Can be provided.
  • the light source device of this embodiment is used as a light source for an exposure device or an image projection device, the processing accuracy of a workpiece such as a semiconductor substrate is high, and thermal damage to the workpiece can be prevented.
  • the arrangement of the laser generator 3 that irradiates the plasma vessel 2 with the laser light L is different from that of the first embodiment shown in FIG. That is, in this embodiment, the laser generator 3 is positioned on the front 4b side of the concave reflecting mirror 4, and irradiates the plasma vessel 2 with the laser light L from the front opening 4b.
  • the other configuration is the same as that of the first embodiment of FIG. 1 except that the incident lens 5 provided in the rear opening 4a of the concave reflecting mirror 4 is not attached.
  • the light shielding member 10 is provided on the optical path of the laser light L so as to be inclined with respect to the optical path.
  • the laser beam L from the laser generator 3 is once irradiated on the light shielding member 10.
  • the laser beam L is reflected here, the optical path is changed, and enters the concave reflecting mirror 4.
  • the light is reflected by the concave reflecting mirror 4 and condensed at the focal position F. That is, the light is condensed at the center position of the plasma container 2.
  • the plasma P is generated by the focused laser light in the plasma container 2, and the generated excitation light EL is radiated to the outside from the front opening 4 b of the concave reflecting mirror 4. .
  • both the excitation light EL and the passing laser light La emitted from the plasma container 2 reach the light shielding member 10.
  • the excitation light EL passes through the light shielding member 10 as it is, the passing laser light La is reflected, and reaches only the optical element on which only the excitation light EL is placed.
  • the plasma container 2 includes a concave reflecting mirror 4, an incident window 5 provided in the rear opening 4a, and an emission window 6 provided in the front opening 4b.
  • a closed space is formed by the concave reflecting mirror 4, the entrance window 5, and the exit window 6, and a light emitting medium is enclosed in the sealed space.
  • a laser beam L from a laser generator enters the plasma container 2 through the incident window 5 and is focused on the focal point F of the concave reflecting mirror 4.
  • the generated plasma P excites the luminescent medium to generate excitation light EL, and the excitation light EL is emitted from the emission window 6 to the outside.
  • the laser light La that has passed through the plasma container 2 is also emitted together with the excitation light EL.
  • the excitation light EL and the passing laser light La are transmitted by the light shielding member 10 disposed at the tip of the plasma container 2 and the other passing laser light La is reflected. It is the same as that of an Example.
  • FIG. 7 shows an embodiment of another plasma vessel having a structure other than a tube shape.
  • FIG. 7 is a cross-sectional view of the sixth embodiment, in which the plasma vessel 2 has a cylindrical main body 20, and a concave reflecting surface 21 is formed on the inner surface thereof.
  • the concave reflecting surface 21 is appropriately selected such as an elliptical shape or a parabolic shape.
  • the main body 20 has a rear opening 20a and a front opening 20b.
  • An incident window 22 is provided corresponding to the rear opening 20a, and an emission window 23 is provided corresponding to the front opening 20b.
  • the incident window 22 corresponding to the rear opening 20 a of the main body 20 is attached to a metal window frame member 24, and the window frame member 24 is attached to the main body 20 by a metal cylinder 25.
  • a sealed space is formed by the main body 20, the entrance window 22, and the exit window 23, and a light emitting medium is enclosed in the sealed space.
  • the optical axis (rotation center axis) of the concave reflecting surface 21 in the plasma container 2 having the above configuration coincides with the optical axis of the laser light L from the laser generator (not shown).
  • the laser beam L from the laser generating unit is collected and incident from the incident window 22 of the plasma container 2 and collected at the focal position F of the concave reflecting surface 21.
  • the plasma P is generated around the focal position F, and the excitation light EL generated by exciting the luminescent medium is reflected by the concave reflecting surface 21 and emitted from the emission window 23 to the outside.
  • the excitation light EL and the passing laser light La that has passed through the plasma container 2 are transmitted through one excitation light EL by the light shielding member 10 disposed at the tip of the plasma container 2, and the other passage.
  • the laser beam La is reflected in the same manner as in the above embodiment.
  • the main body 20 can be made of a ceramic material or a metal material such as aluminum by configuring the plasma container 2 with the main body portion 20, the entrance window 22, and the exit window 23.
  • the entrance window 22 is laser light transmissive
  • the exit window 23 is transmissive to excitation light, and both can employ a crystal material such as quartz or sapphire.
  • ceramics and metals other than quartz glass can be used for the main body 20, the entrance window 22, and the exit window 23, and even when irradiated with high-power UV light or VUV light from the plasma, There is an advantage that ultraviolet distortion does not occur in the container 2.
  • FIG. 8 and subsequent figures show other forms in which the laser beam that has passed through the plasma container is not irradiated on the object to be irradiated (work).
  • the laser-driven light source device 1 includes a plasma container 2, a laser generator 3 that irradiates the plasma container 2 with an annular laser beam L, and a condenser lens 7.
  • the plasma container 2 has a cylindrical main body 20, and a concave reflecting surface 21 is formed on the inner surface thereof.
  • the concave reflecting surface 21 is appropriately selected such as an elliptical shape or a parabolic shape.
  • the other structure of the plasma container 2 is the same as that of the sixth embodiment shown in FIG.
  • the laser generator 3 includes a laser source 31 and an annular laser light generating means 32 for forming an annular shape in which the laser light L from the laser source 31 is hollowed out.
  • the annular laser light generating means 32 includes a pair of axicon lenses 33 and 34.
  • the optical axis of the laser light L from the laser source 31 coincides with the optical axis (rotation center axis) of the concave reflecting surface 21 in the plasma container 2.
  • the laser light L transmitted through the axicon lenses 33 and 34 from the laser source 31 of the laser generator 3 becomes a hollow annular laser light L as shown in FIG. Is collected through the incident window 22 of the plasma container 2 and collected at the focal position F of the concave reflecting surface 21.
  • the plasma P is generated around the focal position F, and the excitation light EL generated by exciting the light-emitting medium is reflected by the concave reflecting surface 21 to produce parallel light (when the concave reflecting surface 21 has a parabolic shape). ) And exits from the exit window 23 to the outside.
  • the laser beam La that has passed through the plasma P in the plasma container 2 out of the annular laser beam L is emitted to the outside in an annular shape without hitting the concave reflecting surface 21.
  • the annular laser beam La that has passed through the plasma P is not irradiated to the irradiated object, and only the excitation light EL excited by the plasma P is irradiated to the irradiated object (not shown) as it is.
  • the structure that prevents the annular laser beam La that has passed through the plasma P from hitting the concave reflecting surface 21 is based on the shape, size, incident solid angle, etc. of the passing laser beam La. It is determined by appropriately selecting the shape, dimensions and the like.
  • a damper D may be provided at a position where the passing laser light La emitted from the plasma container 2 spreads and does not interfere with the excitation light EL to be used to absorb the passing laser light La. Thereby, it is possible to prevent the passing laser beam La from being irradiated to the peripheral device and causing a malfunction.
  • FIG. 9B Another eighth embodiment of the annular laser beam generating means 32 is shown in FIG.
  • the annular laser light generating means 32 is composed of a bundle fiber 36 in which a plurality of optical fibers 35 are bundled, and this bundle fiber 36 does not have an optical fiber at the center in the cross section of the emission end.
  • an annular laser beam L is formed in which the central portion having a light emission spot on the circumference is hollow.
  • FIGS. 10 and 11 show another ninth embodiment of the laser generator 3.
  • the laser generator 3 includes a plurality of laser diodes 37 each having a light emitting point 38. Is composed of a laser diode array 39 arranged in a ring shape.
  • the laser diodes 37 are arranged in a square ring shape, but may be in an annular ring shape.
  • the laser light L from the light emitting point 38 of each laser diode 37 of the laser diode array 39 forms a hollow square ring.
  • FIG. 12 and 13 show another embodiment of the plasma vessel 2, respectively.
  • the structure of the plasma container 2 in the tenth embodiment of FIG. 12 is the same as that of the fifth embodiment of FIG. Further, the structure of the plasma container 2 in the eleventh embodiment of FIG. 13 is a tube shape similar to that of the first embodiment of FIG.
  • the laser beam that has passed through the plasma vessel without contributing to the generation of high-temperature plasma is avoided as it is without being complicated in the structure of the plasma vessel.
  • the (work) is not irradiated, so that it is possible to prevent a decrease in processing accuracy of the work and damage due to heating.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)

Abstract

The purpose of the present invention is to provide a laser-driving light source device (1) which inhibits a reduction in the processing accuracy of a workpiece and damage due to heat, by preventing laser light (L) which has passed through a plasma container (2) from exiting in conjunction with excitation light (EL) emitted from the plasma container (2). The present invention is characterized in that either: a light beam blocking member (10), which transmits the excitation light (EL) emitted by the plasma container, and blocks the laser light, is disposed on the optical path of the laser light (L) which has passed through the plasma container (2); or a laser generation unit (3) emits annular laser light (L) towards a condensing means (7), the condensing means (7) condenses the annular laser light on the inside of the plasma container (2), and the laser light (La) which has passed through the condensing point of the condensing means (7) exits without hitting a concave reflective surface.

Description

レーザ駆動光源装置Laser drive light source device
 本発明は、レーザ駆動光源装置に関し、特に、半導体、液晶基板若しくはカラーフィルタの露光装置やデジタルシネマ用の画像投影装置に使用されるレーザ駆動光源装置に係わるものである。 The present invention relates to a laser-driven light source device, and more particularly to a laser-driven light source device used for an exposure device for a semiconductor, a liquid crystal substrate or a color filter, and an image projection device for digital cinema.
 近年、半導体、液晶基板若しくはカラーフィルタの露光には、入力電力の大きな紫外線光源を使うことにより、処理時間の短縮化や、大面積の被処理物への一括露光等が進められている。また、デジタルシネマ用の画像投影装置の分野においては、スクリーンの輝度を高いものとすることが要求されている。これに伴い、上記用途の光源には、より高輝度の光を放射することが求められている。しかし、プラズマ容器への入力電力を単純に大きくすれば、プラズマ容器の内部に配置された放電用の電極への負荷が増大してその蒸発物が原因となって、プラズマ容器の黒化や短寿命が発生する、といった問題があった。 In recent years, for the exposure of semiconductors, liquid crystal substrates, or color filters, the use of an ultraviolet light source with a large input power has shortened the processing time and batch exposure of a large-area workpiece. Also, in the field of image projection devices for digital cinema, it is required to increase the screen brightness. In connection with this, the light source of the said use is calculated | required to radiate | emit light with higher brightness | luminance. However, if the input power to the plasma vessel is simply increased, the load on the discharge electrode arranged inside the plasma vessel increases and the vaporized substances cause blackening or shorting of the plasma vessel. There was a problem that the life would occur.
 このような問題に対して、従来から様々な対策が検討されている。例えば、特表2009-532829号公報(特許文献1)に示されるレーザ駆動光源装置では、チャンバ(石英バルブ)内に封入されたガスに外部からレーザ光を集光して、レーザ光による励起で封入ガスの高温プラズマを発生させることにより、封入ガスの成分組成に応じたスペクトル分布の安定した発光強度が得られ、更には、発光中心位置が、外部からのレーザ光の焦点位置で定まるために常に安定に維持できる光源として期待されている。 Various countermeasures have been studied for such problems. For example, in the laser-driven light source device disclosed in Japanese Translation of PCT International Publication No. 2009-532829 (Patent Document 1), laser light is condensed from the outside into a gas sealed in a chamber (quartz bulb) and excited by the laser light. By generating a high-temperature plasma of the sealed gas, stable emission intensity with a spectral distribution according to the component composition of the sealed gas can be obtained, and furthermore, the emission center position is determined by the focal position of the laser beam from the outside. It is expected as a light source that can always be maintained stably.
 図14、15にその従来技術の概略構造が示されている。
 図14において、レーザ駆動光源装置50は、レーザ源51と、チャンバ(プラズマ容器)53とからなり、このチャンバ53にはこれを取り囲むよう放物面などの凹面反射鏡54が設けられている。
 レーザ源51からのレーザ光Lは、集光光学系52によって集光されて、凹面反射鏡54の後部開口に設けられた入射窓55を介して、チャンバ53に集光入射する。
 これにより、チャンバ53内にプラズマPが生成され、封入された水銀やキセノンなどの発光元素が励起されて、該発光元素に応じた波長の励起光ELが放射される。
14 and 15 show the schematic structure of the prior art.
In FIG. 14, the laser-driven light source device 50 includes a laser source 51 and a chamber (plasma container) 53, and a concave reflecting mirror 54 such as a paraboloid is provided in the chamber 53 so as to surround it.
Laser light L from the laser source 51 is condensed by the condensing optical system 52 and is incident on the chamber 53 through an incident window 55 provided in the rear opening of the concave reflecting mirror 54.
As a result, plasma P is generated in the chamber 53, and the enclosed light emitting element such as mercury or xenon is excited, and excitation light EL having a wavelength corresponding to the light emitting element is emitted.
 また、図15には他の実施形態が開示されていて、チャンバ53には点火源として一対の電極53a、53bが配置されていて、この一対の電極53a、53b間で予備放電がなされ、ここにレーザ光Lが照射されることでプラズマPが発生するものである。 FIG. 15 discloses another embodiment. A pair of electrodes 53a and 53b are arranged in the chamber 53 as an ignition source, and a preliminary discharge is performed between the pair of electrodes 53a and 53b. When the laser beam L is irradiated to the plasma P, the plasma P is generated.
 ところで、これらのレーザ駆動光源装置は、チャンバ内に封入された発光ガスに外部からレーザ光を集光して高温プラズマを生成するものであるが、レーザ光の全てがプラズマの生成に寄与している訳ではなく、チャンバ内のプラズマを通過したレーザ光がチャンバから発した励起光と共にそのまま出射されることが頻繁にあった。
 そして、このチャンバを通過したレーザ光の強度は、チャンバから発する励起光に対して無視することができない位に高いことが確認されていて、この通過レーザ光が被照射物に照射されると、被照射物が加熱され加工精度に悪影響を及ぼしたり、破損したりしてしまうことがあり、その対策が求められている。
By the way, these laser-driven light source devices are for condensing laser light from the outside to the light emitting gas sealed in the chamber to generate high-temperature plasma. All of the laser light contributes to plasma generation. The laser light that has passed through the plasma in the chamber is often emitted as it is together with the excitation light emitted from the chamber.
Then, it has been confirmed that the intensity of the laser light that has passed through the chamber is so high that it cannot be ignored with respect to the excitation light emitted from the chamber. The irradiated object may be heated to adversely affect processing accuracy or be damaged, and countermeasures are required.
 その対策が施されたものとして、特開2011-119200号公報(特許文献2)があり、この文献では、プラズマを通過したレーザ光を遮蔽する遮蔽部材をプラズマ容器内に設けたものが提案されている。
 図16にその概略構造が示されていて、レーザ源51と、集光レンズ52と、プラズマ容器53と、凹面反射鏡54からなるレーザ駆動光源装置において、プラズマ容器53内の集光位置の後方側に遮蔽部材55を設けて、プラズマPを通過したレーザ光をこの遮蔽部材55により遮蔽して、プラズマ容器53外に放射されないようにしたものである。
Japanese Patent Application Laid-Open No. 2011-119200 (Patent Document 2) has been provided with such countermeasures. In this document, a plasma container in which a shielding member for shielding laser light that has passed through plasma is provided is proposed. ing.
FIG. 16 shows a schematic structure of the laser-driven light source device including the laser source 51, the condensing lens 52, the plasma container 53, and the concave reflecting mirror 54, behind the condensing position in the plasma container 53. A shielding member 55 is provided on the side, and the laser beam that has passed through the plasma P is shielded by the shielding member 55 so that it is not emitted outside the plasma container 53.
 しかしながら、この先行技術によれば、遮蔽部材55はプラズマPを通過したレーザ光を遮蔽するものであるが、同時に、プラズマから発生する被照射物への照射に利用する励起光をも一部遮蔽してしまうという不具合がある。このような不具合を低減すべく、遮蔽部材の面積を小さくすると、レーザ光の光束の径を小さくする必要があるが、光束の径を小さくすると、プラズマが細長く延びてしまい、光の利用率が低下するという別の問題が発生する。
 また、この従来技術では、プラズマ容器53内に遮蔽部材55を設けるものであるので、その構造が複雑であり、製造が困難であるという不具合もある。
However, according to this prior art, the shielding member 55 shields the laser light that has passed through the plasma P, but at the same time, partially shields the excitation light used for irradiating the irradiated object generated from the plasma. There is a problem that it will. If the area of the shielding member is reduced in order to reduce such a problem, it is necessary to reduce the diameter of the light beam of the laser beam. However, if the diameter of the light beam is reduced, the plasma is elongated and the light utilization rate is reduced. Another problem is that it will go down.
Moreover, in this prior art, since the shielding member 55 is provided in the plasma vessel 53, there is a problem that the structure is complicated and the manufacture is difficult.
特表2009-532829号公報Special table 2009-532829 特開2011-119200号公報JP 2011-119200 A
 この発明は、上記従来技術の問題点に鑑みて、レーザ発生部と、集光手段と、発光ガスが封入されたプラズマ容器とを有し、該プラズマ容器内に生じるプラズマからの励起光を、凹面反射面を介して放射するレーザ駆動光源装置において、複雑な構造を有することなく、プラズマ容器を通過したレーザ光が、プラズマ容器から発する励起光と共にそのまま出射されて、被照射物(ワーク)に照射されてしまうことを防止することにより、ワークの加工精度に悪影響を及ぼすことなく、ワークを損傷したりしてしまうことのないレーザ駆動光源装置を提供せんとするものである。 In view of the above-mentioned problems of the prior art, the present invention has a laser generator, a condensing means, and a plasma container in which a luminescent gas is enclosed, and excitation light from plasma generated in the plasma container In a laser-driven light source device that radiates through a concave reflecting surface, laser light that has passed through a plasma container is emitted as it is together with excitation light emitted from the plasma container without having a complicated structure, and is irradiated on an object to be irradiated (work). By preventing irradiation, it is an object of the present invention to provide a laser-driven light source device that does not damage the workpiece without adversely affecting the processing accuracy of the workpiece.
 上記課題を解決するために、この発明に係わるレーザ駆動光源装置は、プラズマ容器が発する励起光を透過し、レーザ光を遮蔽する光線遮蔽部材が、前記プラズマ容器を透過したレーザ光の光路上に配置されていることを特徴とする。
 また、前記光線遮蔽部材が、前記プラズマ容器が発する励起光を透過する基板と、該基板上に形成され、前記励起光を透過すると共に前記レーザ光を遮蔽する光線遮蔽層とで構成されていることを特徴とする。
 また、前記光線遮蔽層が、前記基板の両面に形成されていることを特徴とする。
In order to solve the above-mentioned problems, a laser-driven light source device according to the present invention transmits an excitation light emitted from a plasma container, and a light shielding member that shields the laser light is on an optical path of the laser light transmitted through the plasma container. It is arranged.
The light shielding member includes a substrate that transmits excitation light emitted from the plasma container, and a light shielding layer that is formed on the substrate and transmits the excitation light and shields the laser light. It is characterized by that.
The light shielding layer is formed on both surfaces of the substrate.
 また、前記光線遮蔽層は、前記レーザ光の透過率が0.1%以下であることを特徴とする。
 また、前記プラズマ容器が管球形状であり、該プラズマ容器を取り囲む凹面反射鏡が設けられていることを特徴とする。
 また、前記プラズマ容器が、凹面反射面を有する本体と、該本体の後方開口に設けられた入射窓と、前記本体の前方開口に設けられた出射窓とからなり、前記本体と前記入射窓と前記出射窓によって密閉空間が形成されていることを特徴とする。
Further, the light shielding layer is characterized in that the transmittance of the laser light is 0.1% or less.
Further, the plasma container has a tube shape, and a concave reflecting mirror surrounding the plasma container is provided.
The plasma container includes a main body having a concave reflecting surface, an incident window provided in a rear opening of the main body, and an emission window provided in a front opening of the main body, and the main body and the incident window A sealed space is formed by the exit window.
 また、前記レーザ発生部は、環状のレーザ光を前記集光手段に向けて放射するものであって、前記集光手段は、前記プラズマ容器の内部に前記環状のレーザ光を集光させ、前記集光手段の集光点を通過したレーザ光が前記凹面反射面に当たることなく出射するものであることを特徴とする。
 また、前記レーザ発生部は、レーザ源と、該レーザ源の光軸上に配置された環状レーザ光生成手段とからなることを特徴とする。
The laser generator emits an annular laser beam toward the condensing unit, and the condensing unit condenses the annular laser beam inside the plasma container, and The laser light that has passed through the condensing point of the condensing means is emitted without hitting the concave reflecting surface.
The laser generating unit includes a laser source and an annular laser beam generating unit disposed on the optical axis of the laser source.
 また、前記環状レーザ光生成手段が、一対のアキシコンレンズからなることを特徴とする。
 また、前記環状レーザ光生成手段が、複数の光ファイバを束ねたバンドルファイバから構成され、前記バンドルファイバは、出射端の断面における中心部に光ファイバを有しないものであることを特徴とする。
 また、前記レーザ発生部が、複数のレーザダイオードが、その発光点が環状となるように配置されたレーザダイオードアレイからなることを特徴とする。
Further, the annular laser beam generating means comprises a pair of axicon lenses.
Further, the annular laser beam generating means is composed of a bundle fiber in which a plurality of optical fibers are bundled, and the bundle fiber does not have an optical fiber at the center in the cross section of the emission end.
Further, the laser generating unit is characterized in that a plurality of laser diodes are composed of a laser diode array arranged so that light emission points thereof are annular.
 本発明においては、プラズマ容器を通過したレーザ光の光路上に光線遮蔽部材を備えているので、プラズマ容器から発せられた励起光は透過し、プラズマ容器を通過過したレーザ光を遮蔽することができる。
 したがって、プラズマ容器を通過したレーザ光がプラズマ容器から発する光と共にそのまま出射することが防止されるので、半導体基板などのワークの加工精度を低下させることがなく、また、ワークを加熱して損傷することもない。
 また、1枚の基板の両面に光線遮蔽層を形成することで、簡単な構造の光線遮蔽部材によって効率的なレーザ光遮断効果が期待できる。
In the present invention, since the light shielding member is provided on the optical path of the laser light that has passed through the plasma container, the excitation light emitted from the plasma container is transmitted, and the laser light that has passed through the plasma container can be shielded. it can.
Therefore, the laser beam that has passed through the plasma vessel is prevented from being emitted as it is together with the light emitted from the plasma vessel, so that the processing accuracy of the workpiece such as the semiconductor substrate is not lowered, and the workpiece is heated and damaged. There is nothing.
Further, by forming a light shielding layer on both surfaces of a single substrate, an efficient laser light shielding effect can be expected by a light shielding member having a simple structure.
 また、プラズマ容器内に集光するレーザ光が中抜けした環状のレーザ光であるために、プラズマを通過したレーザ光も環状のままであり、凹面反射面に当ることなく、そのままプラズマ容器外に放射された際に、このレーザ光が被照射物に照射されることがない。 In addition, since the laser beam condensed in the plasma vessel is an annular laser beam, the laser beam that has passed through the plasma remains in an annular shape and does not strike the concave reflecting surface and is directly outside the plasma vessel. When irradiated, the laser beam is not irradiated to the irradiated object.
本発明の第1実施例の概略図。1 is a schematic diagram of a first embodiment of the present invention. 図1のA部拡大図。The A section enlarged view of FIG. 本発明の第2実施例の概略図。Schematic of 2nd Example of this invention. 本発明の第3実施例の概略図。The schematic of the 3rd example of the present invention. 本発明の第4実施例の概略図。Schematic of 4th Example of this invention. 本発明の第5実施例の概略図。Schematic of the fifth embodiment of the present invention. 本発明の第6実施例の概略図。Schematic of the sixth embodiment of the present invention. 本発明の第7実施例の概略図。Schematic of the seventh embodiment of the present invention. 本発明の第8実施例の概略図。Schematic of the eighth embodiment of the present invention. 本発明の第9実施例の概略図。Schematic of the ninth embodiment of the present invention. 図10のX-X拡大断面図。XX expanded sectional view of FIG. 本発明の第10実施例の概略図。Schematic diagram of a tenth embodiment of the present invention. 本発明の第11実施例の概略図。Schematic of the eleventh embodiment of the present invention. 従来例1の概略図。Schematic of the prior art example 1. FIG. 従来例2の概略図。Schematic of the prior art example 2. FIG. 実施例3の概略図。Schematic diagram of Example 3.
 図1は、本発明のレーザ駆動光源装置の第1実施例の構成の概略を示す図である。
 レーザ駆動光源装置1は、プラズマ容器2と、該プラズマ容器2にレーザ光Lを照射するレーザ発生部3とからなり、プラズマ容器2にはこれを取り囲むように放物面形状や楕円面形状などの凹面反射鏡4が設けられている。なお、このプラズマ容器2は、種々の形態を採用できるが、この実施例では、管球形状をしている。ここで、管球形状とは、ランプ技術における、略球形状や略楕円回転体形状などの発光管形状を意味する。
 この管球形状のプラズマ容器2は、例えば、石英ガラスからなり、その内部には発光媒体として、例えば、希ガス、水銀等が封入されている。これらの発光媒体は、使用波長に応じて適宜に選択される。
 また、このプラズマ容器2は、その中心点が前記凹面反射鏡4の焦点Fに位置するように配置されることが好ましい。
FIG. 1 is a diagram showing a schematic configuration of a first embodiment of a laser-driven light source device of the present invention.
The laser-driven light source device 1 includes a plasma container 2 and a laser generator 3 that irradiates the plasma container 2 with laser light L. The plasma container 2 has a parabolic shape, an elliptical shape, and the like surrounding the plasma container 2. The concave reflecting mirror 4 is provided. The plasma vessel 2 can adopt various forms, but in this embodiment, it has a tube shape. Here, the tube shape means an arc tube shape such as a substantially spherical shape or a substantially elliptic rotating body shape in the lamp technology.
The tube-shaped plasma container 2 is made of, for example, quartz glass, and a rare gas, mercury, or the like is sealed therein as a light emitting medium. These luminescent media are appropriately selected according to the wavelength used.
The plasma vessel 2 is preferably arranged so that the center point thereof is located at the focal point F of the concave reflecting mirror 4.
 そして、前記凹面反射鏡4の光軸(回転中心軸)は、前記レーザ光Lの光路と一致しており、この凹面反射鏡4には、レーザ光Lが入射する後方開口4aと、プラズマ容器2から発せられる励起光ELが出射する前方開口4bが形成されている。
 このプラズマ容器4の後方開口4aには入射レンズ(入射窓)5が設けられており、レーザ発生部3からのレーザ光Lが、集光レンズ7によって集光され、更にこの入射レンズ5によって集光されてプラズマ容器2に入射する。このとき、プラズマ容器2内で集光するレーザ光Lの焦点は、前記凹面反射鏡4の焦点Fと一致するように配置されている。なお、前記入射レンズ5と集光レンズ7とは、いずれか一方を省略することもできる。
The optical axis (rotation center axis) of the concave reflecting mirror 4 coincides with the optical path of the laser light L. The concave reflecting mirror 4 has a rear opening 4a into which the laser light L is incident, and a plasma container. A front opening 4b from which the excitation light EL emitted from 2 is emitted is formed.
An incident lens (incident window) 5 is provided in the rear opening 4 a of the plasma container 4, and the laser light L from the laser generator 3 is condensed by the condenser lens 7 and further collected by the incident lens 5. Light is incident on the plasma container 2. At this time, the focal point of the laser beam L condensed in the plasma container 2 is arranged so as to coincide with the focal point F of the concave reflecting mirror 4. One of the incident lens 5 and the condenser lens 7 can be omitted.
 レーザ発生部3としては、パルス駆動、CW駆動、あるいはそれらを併用する駆動方式のレーザ光を使用することができる。
 また、レーザ発生部3は、プラズマ容器2から発する励起光ELのうち、主用途の波長以外の波長域にピークを有するレーザ光Lを発する。例えば、励起光ELとして、プラズマ容器2が水銀の発光である波長365nmの紫外光を発する場合は、レーザ発生部3から発するレーザ光Lの波長は、365nm以外であることが好ましく、例えば、809nm、または1μm以上の赤外波長域にピークを有するものである。
As the laser generator 3, pulsed driving, CW driving, or a driving type laser beam using them in combination can be used.
Further, the laser generator 3 emits laser light L having a peak in a wavelength region other than the wavelength of the main application among the excitation light EL emitted from the plasma container 2. For example, when the plasma container 2 emits ultraviolet light having a wavelength of 365 nm, which is emission of mercury, as the excitation light EL, the wavelength of the laser light L emitted from the laser generator 3 is preferably other than 365 nm, for example, 809 nm Or having a peak in the infrared wavelength region of 1 μm or more.
 そして、前記凹面反射鏡4の光軸、即ち、レーザ光Lの光路上の前方には、光線遮蔽部材10が配置されている。この光線遮蔽部材10は、図2に詳細が示されるように、プラズマ容器2から発した励起光ELを透過する透光性材料(例えば、石英ガラス、フッ化マグネシウムあるいはサファイア)からなる平板状の基板11と、該基板11上に形成された誘電体多層膜よりなる光線遮蔽層12とで構成されている。
 この光線遮蔽層12は、誘電体多層膜における積層数および材質をそれぞれ適宜選択することにより、プラズマ容器2から発した励起光ELを透過し、プラズマ容器2を通過したレーザ光Laを反射する特性を有する。
 ここで、光線遮蔽層12を構成するそれぞれの誘電体多層膜は、レーザ光Laの透過率が0.1%以下となるように積層数および材質がそれぞれ適宜選択されていることが好ましい。
A light shielding member 10 is disposed in front of the optical axis of the concave reflecting mirror 4, that is, in front of the optical path of the laser light L. As shown in detail in FIG. 2, the light shielding member 10 is a flat plate made of a translucent material (for example, quartz glass, magnesium fluoride, or sapphire) that transmits the excitation light EL emitted from the plasma container 2. The substrate 11 includes a light shielding layer 12 made of a dielectric multilayer film formed on the substrate 11.
The light shielding layer 12 has a characteristic of transmitting the excitation light EL emitted from the plasma container 2 and reflecting the laser light La that has passed through the plasma container 2 by appropriately selecting the number of layers and the material in the dielectric multilayer film. Have
Here, it is preferable that the number of layers and the material of each dielectric multilayer film constituting the light shielding layer 12 are appropriately selected so that the transmittance of the laser light La is 0.1% or less.
 図3に、光線遮蔽部材10に関して第2実施例が示されていて、この実施例では、光線遮蔽層12、12が、基板11の両面に形成されている。こうすることで、1枚の光線遮蔽部材10という簡単な構造で極めて有効な光線遮蔽機能が期待できる。
 光線遮蔽層12のレーザ光の透過率を0.1%とした場合、両面で2度の遮蔽機能を受けるため、全体の透過率は、0.01%となり、非常に高い程度でのレーザ光の遮蔽が可能となる。
FIG. 3 shows a second embodiment regarding the light shielding member 10, in which the light shielding layers 12, 12 are formed on both surfaces of the substrate 11. By doing so, a very effective light shielding function can be expected with a simple structure of one light shielding member 10.
When the transmittance of the laser beam of the light shielding layer 12 is 0.1%, since both surfaces receive a shielding function twice, the total transmittance is 0.01%, and the laser beam is very high. Can be shielded.
 図1において、レーザ発生部3は、凹面反射鏡4の後方開口4aに固定された入射レンズ(入射窓)5に向けてレーザ光Lを発する。このレーザ光Lは、入射レンズ5により集光され、凹面反射鏡4の焦点位置Fに配置されたプラズマ容器2に照射される。このプラズマ容器2の容器内に封入された発光媒体は、レーザ光Lによって励起され、高温プラズマPを生成する。
 高温プラズマPによって発光媒体が励起され、その励起光ELはプラズマ容器2を出射し、凹面反射面4によって反射され、凹面反射鏡4の光軸と平行となって前方開口4bから外部に向けて出射して、凹面反射鏡4の光軸上(レーザ光Lの光路上)に配置された光線遮蔽部材10に入射する。この光線遮蔽部材10は励起光透過性であることから、プラズマ容器2からの励起光ELは、この光線遮蔽部材10を透過して、該光線遮蔽部材10の先に位置する光学素子14に入射する。
In FIG. 1, the laser generator 3 emits laser light L toward an incident lens (incident window) 5 fixed to the rear opening 4 a of the concave reflecting mirror 4. The laser light L is collected by the incident lens 5 and applied to the plasma container 2 disposed at the focal position F of the concave reflecting mirror 4. The light emitting medium sealed in the container of the plasma container 2 is excited by the laser light L to generate high temperature plasma P.
The luminescent medium is excited by the high-temperature plasma P, and the excitation light EL is emitted from the plasma container 2, reflected by the concave reflecting surface 4, and parallel to the optical axis of the concave reflecting mirror 4 toward the outside from the front opening 4b. The light exits and enters the light shielding member 10 disposed on the optical axis of the concave reflecting mirror 4 (on the optical path of the laser light L). Since the light shielding member 10 is transmissive to excitation light, the excitation light EL from the plasma container 2 passes through the light shielding member 10 and enters the optical element 14 positioned at the tip of the light shielding member 10. To do.
 以上のように、レーザ光Lは、プラズマ容器2内でプラズマPの生成を行うが、そのすべてがプラズマ生成に寄与するわけではなく、その一部はそのままプラズマ容器2を通過する。このプラズマ容器2を通過したレーザ光Laは、図2に示すように、励起光ELとともに、前記光線遮蔽部材10に入射する。
 ここで、この通過レーザ光Laは、光線遮蔽層12によって99.9%以上が反射され、透過するレーザ光は殆どない。なお、ここで、図3に示す第2実施例のように、基板11の両面に光線遮蔽層12、12を形成したものを採用すれば、更に遮蔽率が高まり、透過量は0.01%以下となり、実質的に0%となって、先に位置する光源素子14にダメージを与えることがない。
 なお、プラズマ容器2を通過したレーザ光Laが出射する場所は特定の場所に決定されるため、光線遮蔽層12は、プラズマ容器2を通過したレーザ光Laが入射する部位のみに対応するように設けることができる。
As described above, the laser light L generates the plasma P in the plasma container 2, but not all of it contributes to the plasma generation, and a part thereof passes through the plasma container 2 as it is. As shown in FIG. 2, the laser light La that has passed through the plasma container 2 enters the light shielding member 10 together with the excitation light EL.
Here, 99.9% or more of this passing laser beam La is reflected by the light shielding layer 12, and there is almost no laser beam to pass through. Here, as in the second embodiment shown in FIG. 3, if the one having the light shielding layers 12 and 12 formed on both surfaces of the substrate 11 is employed, the shielding rate is further increased and the transmission amount is 0.01%. The following is substantially 0%, and the light source element 14 positioned earlier is not damaged.
In addition, since the place where the laser beam La that has passed through the plasma container 2 is emitted is determined to be a specific place, the light shielding layer 12 corresponds to only the part where the laser beam La that has passed through the plasma container 2 is incident. Can be provided.
 このように、光線遮蔽部材10の光路上の先方に位置する光学素子14に対して、実質的にプラズマ容器2から発した励起光ELのみを照射することができる。
 したがって、本実施例の光源装置を露光装置若しくは画像投影装置の光源として使用した場合は、半導体基板等のワークの加工精度が高いものとなり、また、ワークの熱損傷を防止することができる。
In this way, it is possible to substantially irradiate only the excitation light EL emitted from the plasma container 2 to the optical element 14 positioned on the optical path of the light shielding member 10.
Therefore, when the light source device of this embodiment is used as a light source for an exposure device or an image projection device, the processing accuracy of a workpiece such as a semiconductor substrate is high, and thermal damage to the workpiece can be prevented.
 図4に示す第3実施例では、プラズマ容器2にレーザ光Lを照射するレーザ発生部3の配置が、図1の第1実施例とは異なる。
 即ち、この実施例では、レーザ発生部3は、凹面反射鏡4の前方4b側に位置していて、当該前方開口4bからプラズマ容器2にレーザ光Lを照射するものである。その他の構成については、凹面反射鏡4の後方開口4aに設けられた入射レンズ5が取り付けられていないことを除いて、図1の第1実施例と同様である。
In the third embodiment shown in FIG. 4, the arrangement of the laser generator 3 that irradiates the plasma vessel 2 with the laser light L is different from that of the first embodiment shown in FIG.
That is, in this embodiment, the laser generator 3 is positioned on the front 4b side of the concave reflecting mirror 4, and irradiates the plasma vessel 2 with the laser light L from the front opening 4b. The other configuration is the same as that of the first embodiment of FIG. 1 except that the incident lens 5 provided in the rear opening 4a of the concave reflecting mirror 4 is not attached.
 また更に、図5に示す第4実施例では、光線遮蔽部材10はレーザ光Lの光路上において、該光路に対して傾斜して設けられている。レーザ発生部3からのレーザ光Lは、一旦、光線遮蔽部材10に照射される。レーザ光Lはここで反射されて、光路を変更されて、凹面反射鏡4に入射する。そして、この凹面反射鏡4によって反射されてその焦点位置Fに集光する。つまり、プラズマ容器2の中心位置に集光する。
 前記図1の第1実施例と同様に、プラズマ容器2内では集光するレーザ光によりプラズマPが生成され、発生した励起光ELは、凹面反射鏡4の前方開口4bから外部に放射される。
Furthermore, in the fourth embodiment shown in FIG. 5, the light shielding member 10 is provided on the optical path of the laser light L so as to be inclined with respect to the optical path. The laser beam L from the laser generator 3 is once irradiated on the light shielding member 10. The laser beam L is reflected here, the optical path is changed, and enters the concave reflecting mirror 4. Then, the light is reflected by the concave reflecting mirror 4 and condensed at the focal position F. That is, the light is condensed at the center position of the plasma container 2.
As in the first embodiment of FIG. 1, the plasma P is generated by the focused laser light in the plasma container 2, and the generated excitation light EL is radiated to the outside from the front opening 4 b of the concave reflecting mirror 4. .
 一方、凹面反射鏡4により反射されてプラズマ容器2に入射したレーザ光Lは、その一部Laがプラズマ容器2を通過し、凹面反射鏡4により反射されて前方開口4bから外部に出射される。
 こうして、プラズマ容器2から出射した励起光ELと通過レーザ光Laは、ともに光線遮蔽部材10に至る。
 ここで、励起光ELはそのまま当該光線遮蔽部材10を透過し、通過レーザ光Laは反射され、励起光ELのみが後置された光学素子に至るものである。
On the other hand, part of the laser beam L reflected by the concave reflecting mirror 4 and incident on the plasma container 2 passes through the plasma container 2, is reflected by the concave reflecting mirror 4, and is emitted to the outside from the front opening 4b. .
Thus, both the excitation light EL and the passing laser light La emitted from the plasma container 2 reach the light shielding member 10.
Here, the excitation light EL passes through the light shielding member 10 as it is, the passing laser light La is reflected, and reaches only the optical element on which only the excitation light EL is placed.
 図6、7には、プラズマ容器2が管球形状以外の構造を持つ実施例が示されている。
 図6の第5実施例においては、プラズマ容器2は、凹面反射鏡4と、この後方開口4aに設けられた入射窓5と、前方開口4bに設けられた出射窓6とから構成されていて、これら凹面反射鏡4と、入射窓5と、出射窓6とによって密閉空間が形成されていて、この密閉空間内に発光媒体が封入されている。
 不図示のレーザ発生部からのレーザ光Lは、入射窓5からプラズマ容器2内に入射し、凹面反射鏡4の焦点F位置に集光する。ここで生成されたプラズマPが発光媒体を励起して励起光ELを生成し、この励起光ELは出射窓6から外部に出射する。
 同時に、プラズマ容器2を通過したレーザ光Laも励起光ELと共に出射する。これらの励起光ELと通過レーザ光Laが、プラズマ容器2の先に配置された光線遮蔽部材10によって、一方の励起光ELが透過し、他方の通過レーザ光Laが反射されることは、上記実施例と同様である。
6 and 7 show an embodiment in which the plasma vessel 2 has a structure other than a tube shape.
In the fifth embodiment shown in FIG. 6, the plasma container 2 includes a concave reflecting mirror 4, an incident window 5 provided in the rear opening 4a, and an emission window 6 provided in the front opening 4b. A closed space is formed by the concave reflecting mirror 4, the entrance window 5, and the exit window 6, and a light emitting medium is enclosed in the sealed space.
A laser beam L from a laser generator (not shown) enters the plasma container 2 through the incident window 5 and is focused on the focal point F of the concave reflecting mirror 4. The generated plasma P excites the luminescent medium to generate excitation light EL, and the excitation light EL is emitted from the emission window 6 to the outside.
At the same time, the laser light La that has passed through the plasma container 2 is also emitted together with the excitation light EL. The excitation light EL and the passing laser light La are transmitted by the light shielding member 10 disposed at the tip of the plasma container 2 and the other passing laser light La is reflected. It is the same as that of an Example.
 図7には、管球形状以外の構造を持つ他のプラズマ容器の実施例が示されている。
 図7は第6実施例の断面図であり、プラズマ容器2は、円柱形状の本体20を有しており、その内面に凹面反射面21が形成されている。この凹面反射面21は、楕円形状、放物面形状等適宜に選択される。
 本体20には後方開口20aと前方開口20bが形成されていて、後方開口20aに対応して入射窓22が設けられ、前方開口20bに対応して出射窓23が設けられている。
 そして、本体20の後方開口20aに対応した入射窓22は、金属製の窓枠部材24に装着されていて、この窓枠部材24が、金属筒体25によって本体20に取り付けられている。これら本体20と、入射窓22と、出射窓23とによって密閉空間が形成されていて、この密閉空間内に発光媒体が封入されている。
FIG. 7 shows an embodiment of another plasma vessel having a structure other than a tube shape.
FIG. 7 is a cross-sectional view of the sixth embodiment, in which the plasma vessel 2 has a cylindrical main body 20, and a concave reflecting surface 21 is formed on the inner surface thereof. The concave reflecting surface 21 is appropriately selected such as an elliptical shape or a parabolic shape.
The main body 20 has a rear opening 20a and a front opening 20b. An incident window 22 is provided corresponding to the rear opening 20a, and an emission window 23 is provided corresponding to the front opening 20b.
The incident window 22 corresponding to the rear opening 20 a of the main body 20 is attached to a metal window frame member 24, and the window frame member 24 is attached to the main body 20 by a metal cylinder 25. A sealed space is formed by the main body 20, the entrance window 22, and the exit window 23, and a light emitting medium is enclosed in the sealed space.
 上記構成のプラズマ容器2における凹面反射面21の光軸(回転中心軸)は、レーザ発生部(不図示)からのレーザ光Lの光軸と一致している。
 レーザ発生部からのレーザ光Lは集光されつつ、プラズマ容器2の入射窓22から入射して、凹面反射面21の焦点位置Fに集光する。これにより当該焦点位置Fを中心としてプラズマPが生成され、発光媒体が励起されて生じる励起光ELは、凹面反射面21により反射されて、出射窓23から外部に出射されていく。
 この実施例においても、励起光ELと、プラズマ容器2を通過した通過レーザ光Laが、プラズマ容器2の先に配置された光線遮蔽部材10によって、一方の励起光ELが透過し、他方の通過レーザ光Laが反射されることは、上記実施例と同様である。
The optical axis (rotation center axis) of the concave reflecting surface 21 in the plasma container 2 having the above configuration coincides with the optical axis of the laser light L from the laser generator (not shown).
The laser beam L from the laser generating unit is collected and incident from the incident window 22 of the plasma container 2 and collected at the focal position F of the concave reflecting surface 21. As a result, the plasma P is generated around the focal position F, and the excitation light EL generated by exciting the luminescent medium is reflected by the concave reflecting surface 21 and emitted from the emission window 23 to the outside.
Also in this embodiment, the excitation light EL and the passing laser light La that has passed through the plasma container 2 are transmitted through one excitation light EL by the light shielding member 10 disposed at the tip of the plasma container 2, and the other passage. The laser beam La is reflected in the same manner as in the above embodiment.
 上記のように、この第5実施例では、プラズマ容器2を、本体部20と入射窓22と出射窓23とで構成することで、本体20はセラミックス材料や、アルミニウムなどの金属材料を採用でき、また、入射窓22はレーザ光透過性であり、出射窓23は励起光透過性であって、ともに水晶やサファイアなどの結晶材を採用できる。
 このように、これら本体部20や入射窓22や出射窓23に石英ガラス以外のセラミックスや金属を使用することができ、プラズマからの高出力のUV光やVUV光の照射を受けても、プラズマ容器2に紫外線ひずみが生じることがないという利点がある。
As described above, in the fifth embodiment, the main body 20 can be made of a ceramic material or a metal material such as aluminum by configuring the plasma container 2 with the main body portion 20, the entrance window 22, and the exit window 23. Further, the entrance window 22 is laser light transmissive, and the exit window 23 is transmissive to excitation light, and both can employ a crystal material such as quartz or sapphire.
Thus, ceramics and metals other than quartz glass can be used for the main body 20, the entrance window 22, and the exit window 23, and even when irradiated with high-power UV light or VUV light from the plasma, There is an advantage that ultraviolet distortion does not occur in the container 2.
 図8以下に、プラズマ容器を通過したレーザ光が被照射物(ワーク)に照射されないようにした別の形態が示されている。
 図8において、レーザ駆動光源装置1は、プラズマ容器2と、該プラズマ容器2に環状のレーザ光Lを照射するレーザ発生部3と、集光レンズ7とからなる。
 プラズマ容器2は、円柱形状の本体20を有しており、その内面に凹面反射面21が形成されている。この凹面反射面21は、楕円形状、放物面形状等適宜に選択される。
 プラズマ容器2のその他の構造については、図7に示した第6実施例と同様である。
FIG. 8 and subsequent figures show other forms in which the laser beam that has passed through the plasma container is not irradiated on the object to be irradiated (work).
In FIG. 8, the laser-driven light source device 1 includes a plasma container 2, a laser generator 3 that irradiates the plasma container 2 with an annular laser beam L, and a condenser lens 7.
The plasma container 2 has a cylindrical main body 20, and a concave reflecting surface 21 is formed on the inner surface thereof. The concave reflecting surface 21 is appropriately selected such as an elliptical shape or a parabolic shape.
The other structure of the plasma container 2 is the same as that of the sixth embodiment shown in FIG.
 レーザ発生部3は、レーザ源31と、該レーザ源31からのレーザ光Lを中抜けした環状形状にするための環状レーザ光生成手段32とからなり、この実施例では、環状レーザ光生成手段32は、一対のアキシコンレンズ33、34からなる。
 このレーザ源31からのレーザ光Lの光軸と、前記プラズマ容器2における凹面反射面21の光軸(回転中心軸)とは一致している。
 前記レーザ発生部3のレーザ源31からアキシコンレンズ33、34を透過したレーザ光Lは、図8(B)に示すように、中抜けした円環状のレーザ光Lとなり、これが集光レンズ7によって集光されてプラズマ容器2の入射窓22から入射して、凹面反射面21の焦点位置Fに集光する。これにより当該焦点位置Fを中心としてプラズマPが生成され、発光媒体が励起されて生じる励起光ELは、凹面反射面21により反射されて、平行光(凹面反射面21が放物面形状の場合)となって出射窓23から外部に出射されていく。
The laser generator 3 includes a laser source 31 and an annular laser light generating means 32 for forming an annular shape in which the laser light L from the laser source 31 is hollowed out. In this embodiment, the annular laser light generating means 32 includes a pair of axicon lenses 33 and 34.
The optical axis of the laser light L from the laser source 31 coincides with the optical axis (rotation center axis) of the concave reflecting surface 21 in the plasma container 2.
The laser light L transmitted through the axicon lenses 33 and 34 from the laser source 31 of the laser generator 3 becomes a hollow annular laser light L as shown in FIG. Is collected through the incident window 22 of the plasma container 2 and collected at the focal position F of the concave reflecting surface 21. As a result, the plasma P is generated around the focal position F, and the excitation light EL generated by exciting the light-emitting medium is reflected by the concave reflecting surface 21 to produce parallel light (when the concave reflecting surface 21 has a parabolic shape). ) And exits from the exit window 23 to the outside.
 上記構成において、環状レーザ光Lのうちプラズマ容器2内のプラズマPを通過したレーザ光Laは、凹面反射面21に当ることなく、環状形状のまま外部に出射される。
 これにより、プラズマPを通過した環状のレーザ光Laは被照射物に照射されることはなく、プラズマPにより励起された励起光ELのみがそのまま被照射物(不図示)に照射される。
 なお、プラズマPを通過した環状のレーザ光Laが、凹面反射面21に当たらないようにする構造は、当該通過レーザ光Laの形状、寸法、入射立体角などに応じて、凹面反射面21の形状、寸法などを適宜に選択することによって決定される。
 また、プラズマ容器2から出射する通過レーザ光Laが拡開して、利用すべき励起光ELと干渉しない位置に、当該通過レーザ光Laを吸収するためにダンパーDを設けるようにしてもよい。これにより、通過レーザ光Laが周辺機器に照射されて不具合を起こすことを防止できる。
In the above configuration, the laser beam La that has passed through the plasma P in the plasma container 2 out of the annular laser beam L is emitted to the outside in an annular shape without hitting the concave reflecting surface 21.
Thus, the annular laser beam La that has passed through the plasma P is not irradiated to the irradiated object, and only the excitation light EL excited by the plasma P is irradiated to the irradiated object (not shown) as it is.
The structure that prevents the annular laser beam La that has passed through the plasma P from hitting the concave reflecting surface 21 is based on the shape, size, incident solid angle, etc. of the passing laser beam La. It is determined by appropriately selecting the shape, dimensions and the like.
In addition, a damper D may be provided at a position where the passing laser light La emitted from the plasma container 2 spreads and does not interfere with the excitation light EL to be used to absorb the passing laser light La. Thereby, it is possible to prevent the passing laser beam La from being irradiated to the peripheral device and causing a malfunction.
 環状レーザ光生成手段32の別の第8実施例が図9に示されている。この環状レーザ光生成手段32は、複数の光ファイバ35を束ねたバンドルファイバ36から構成され、このバンドルファイバ36は、出射端の断面における中心部に光ファイバを有しないものである。これにより、図9(B)に示されるように、円周上に発光スポットを有する中心部が中抜けした環状レーザ光Lが形成される。 Another eighth embodiment of the annular laser beam generating means 32 is shown in FIG. The annular laser light generating means 32 is composed of a bundle fiber 36 in which a plurality of optical fibers 35 are bundled, and this bundle fiber 36 does not have an optical fiber at the center in the cross section of the emission end. As a result, as shown in FIG. 9B, an annular laser beam L is formed in which the central portion having a light emission spot on the circumference is hollow.
 また、図10、11にレーザ発生部3の別の第9実施例が示されていて、図11に明示されるように、レーザ発生部3は、複数のレーザダイオード37が、その発光点38が環状となるように配置されたレーザダイオードアレイ39から構成されるものである。なお、この例では、レーザダイオード37は四角環状に配列されたものを示したが、円環状の配列であってもよい。
 レーザダイオードアレイ39の各レーザダイオード37の発光点38からのレーザ光Lは、図10(B)に示すように、中抜けした四角環状をなしている。
FIGS. 10 and 11 show another ninth embodiment of the laser generator 3. As clearly shown in FIG. 11, the laser generator 3 includes a plurality of laser diodes 37 each having a light emitting point 38. Is composed of a laser diode array 39 arranged in a ring shape. In this example, the laser diodes 37 are arranged in a square ring shape, but may be in an annular ring shape.
As shown in FIG. 10B, the laser light L from the light emitting point 38 of each laser diode 37 of the laser diode array 39 forms a hollow square ring.
 図12および図13には、それぞれプラズマ容器2の別の実施例が示されている。
 図12の第10実施例におけるプラズマ容器2の構造は、図6の第5実施例と同様である。
 また、図13の第11実施例におけるプラズマ容器2の構造は、図1の第1実施例と同様の管球形状である。
12 and 13 show another embodiment of the plasma vessel 2, respectively.
The structure of the plasma container 2 in the tenth embodiment of FIG. 12 is the same as that of the fifth embodiment of FIG.
Further, the structure of the plasma container 2 in the eleventh embodiment of FIG. 13 is a tube shape similar to that of the first embodiment of FIG.
 以上説明したように、本発明のレーザ駆動光源装置によれば、プラズマ容器の構造複雑化を回避して、高温プラズマの生成に寄与することなくプラズマ容器を通過したレーザ光が、そのまま被照射物(ワーク)に照射されることがなく、ワークの加工精度の低下や、加熱損傷を防止することができる。 As described above, according to the laser-driven light source device of the present invention, the laser beam that has passed through the plasma vessel without contributing to the generation of high-temperature plasma is avoided as it is without being complicated in the structure of the plasma vessel. The (work) is not irradiated, so that it is possible to prevent a decrease in processing accuracy of the work and damage due to heating.
 1    レーザ駆動光源装置
 2    プラズマ容器
 20   本体
 20a  後方開口
 20b  前方開口
 21   凹面反射面
 22   入射窓
 23   出射窓
 24   窓枠部材
 25   金属筒体
 3    レーザ発生部
 31   レーザ源
 32   環状レーザ光生成手段
 33、34 アキシコンレンズ
 35   光ファイバ
 36   バンドルファイバ
 37   レーザダイオード
 38   発光点
 39   レーザダイオードアレイ
 4    凹面反射鏡
 4a   後方開口
 4b   前方開口
 5    入射窓
 6    出射窓
 7    集光手段(集光レンズ)
 10   光線遮蔽部材
 11   基板
 12   光線遮蔽層
 14   光学素子
 L    レーザ光
 La   通過レーザ光
 EL   励起光
 P    プラズマ
 F    焦点
 
 
 
DESCRIPTION OF SYMBOLS 1 Laser drive light source device 2 Plasma container 20 Main body 20a Back opening 20b Front opening 21 Concave-reflection surface 22 Incident window 23 Output window 24 Window frame member 25 Metal cylinder 3 Laser generator 31 Laser source 32 Annular laser light generation means 33, 34 Axicon lens 35 Optical fiber 36 Bundle fiber 37 Laser diode 38 Light emitting point 39 Laser diode array 4 Concave reflector 4a Back opening 4b Front opening 5 Incident window 6 Output window 7 Condensing means (condensing lens)
DESCRIPTION OF SYMBOLS 10 Light shielding member 11 Substrate 12 Light shielding layer 14 Optical element L Laser light La Passing laser light EL Excitation light P Plasma F Focus

Claims (13)

  1.  レーザ発生部と、集光手段と、発光ガスが封入されたプラズマ容器とを有し、該プラズマ容器内に生じるプラズマからの励起光を、凹面反射面を介して放射するレーザ駆動光源装置であって、
     前記プラズマ容器が発する励起光を透過し、前記レーザ光を遮蔽する光線遮蔽部材が、前記プラズマ容器を通過したレーザ光の光路上に配置されていることを特徴とするレーザ駆動光源装置。
    A laser-driven light source device that has a laser generator, a condensing means, and a plasma container in which a luminescent gas is sealed, and that emits excitation light from the plasma generated in the plasma container through a concave reflecting surface. And
    A laser-driven light source device, wherein a light shielding member that transmits excitation light emitted from the plasma container and shields the laser light is disposed on an optical path of the laser light that has passed through the plasma container.
  2.  前記光線遮蔽部材が、前記プラズマ容器が発する励起光を透過する基板と、該基板上に形成され、前記励起光を透過すると共に前記レーザ光を遮蔽する光線遮蔽層とで構成されていることを特徴とする請求項1に記載のレーザ駆動光源装置。 The light shielding member includes a substrate that transmits excitation light emitted from the plasma container, and a light shielding layer that is formed on the substrate and that transmits the excitation light and shields the laser light. The laser-driven light source device according to claim 1.
  3.  前記光線遮蔽層が、前記基板の両面に形成されていることを特徴とする請求項2に記載のレーザ駆動光源装置。 3. The laser-driven light source device according to claim 2, wherein the light shielding layer is formed on both surfaces of the substrate.
  4.  前記光線遮蔽層は、前記レーザ光の透過率が0.1%以下であることを特徴とする請求項2または3に記載のレーザ駆動光源装置。 The laser-driven light source device according to claim 2 or 3, wherein the light shielding layer has a transmittance of the laser light of 0.1% or less.
  5.  前記プラズマ容器が管球形状であり、該プラズマ容器を取り囲む凹面反射鏡が設けられていることを特徴とする請求項1~4のいずれかに記載のレーザ駆動光源装置。 The laser-driven light source device according to any one of claims 1 to 4, wherein the plasma container has a tube shape and is provided with a concave reflecting mirror surrounding the plasma container.
  6.  前記プラズマ容器が、凹面反射面を有する本体と、該本体の後方開口に設けられた入射窓と、前記本体の前方開口に設けられた出射窓とからなり、前記本体と前記入射窓と前記出射窓によって密閉空間が形成されていることを特徴とする請求項1~4のいずれかに記載のレーザ駆動光源装置。
     
     
    The plasma container includes a main body having a concave reflecting surface, an incident window provided in a rear opening of the main body, and an emission window provided in a front opening of the main body, the main body, the incident window, and the emission The laser-driven light source device according to any one of claims 1 to 4, wherein a sealed space is formed by the window.

  7.  レーザ発生部と、集光手段と、発光ガスが封入されたプラズマ容器とを有し、該プラズマ容器内に生じるプラズマからの励起光を、凹面反射面を介して放射するレーザ駆動光源装置であって、
     前記レーザ発生部は、環状のレーザ光を前記集光手段に向けて放射するものであって、
     前記集光手段は、前記プラズマ容器の内部に前記環状のレーザ光を集光させ、
     前記集光手段の集光点を通過したレーザ光が前記凹面反射面に当たることなく出射するものであることを特徴とするレーザ駆動光源装置。
    A laser-driven light source device that has a laser generator, a condensing means, and a plasma container in which a luminescent gas is sealed, and that emits excitation light from the plasma generated in the plasma container through a concave reflecting surface. And
    The laser generator emits an annular laser beam toward the condensing means,
    The condensing means condenses the annular laser beam inside the plasma container,
    A laser-driven light source device characterized in that laser light that has passed through a condensing point of the condensing means is emitted without hitting the concave reflecting surface.
  8.  前記レーザ発生部は、レーザ源と、該レーザ源の光軸上に配置された環状レーザ光生成手段とからなることを特徴とする請求項7に記載のレーザ駆動光源装置。 The laser-driven light source device according to claim 7, wherein the laser generation unit includes a laser source and an annular laser beam generation unit disposed on the optical axis of the laser source.
  9.  前記環状レーザ光生成手段が、一対のアキシコンレンズからなることを特徴とする請求項8に記載のレーザ駆動光源装置。 The laser-driven light source device according to claim 8, wherein the annular laser light generating means is composed of a pair of axicon lenses.
  10.  前記環状レーザ光生成手段が、複数の光ファイバを束ねたバンドルファイバから構成され、前記バンドルファイバは、出射端の断面における中心部に光ファイバを有しないものであることを特徴とする請求項8に記載のレーザ駆動光源装置。 9. The annular laser beam generating means is composed of a bundle fiber in which a plurality of optical fibers are bundled, and the bundle fiber does not have an optical fiber at the center in the cross section of the emission end. The laser-driven light source device described in 1.
  11.  前記レーザ発生部が、複数のレーザダイオードが、その発光点が環状となるように配置されたレーザダイオードアレイからなることを特徴とする請求項7に記載のレーザ駆動光源装置。 8. The laser-driven light source device according to claim 7, wherein the laser generation unit includes a laser diode array in which a plurality of laser diodes are arranged so that their light emission points are annular.
  12.  前記プラズマ容器は管球形状であって、該プラズマ容器を囲むように凹面反射鏡が配置されていることを特徴とする請求項7に記載のレーザ駆動光源装置。 The laser-driven light source device according to claim 7, wherein the plasma container has a tube shape, and a concave reflecting mirror is disposed so as to surround the plasma container.
  13.  前記プラズマ容器が、凹面反射面を有する本体と、該本体の後方開口に設けられた入射窓と、前記本体の前方開口に設けられた出射窓とからなり、前記本体と前記入射窓と前記出射窓によって密閉空間が形成されていることを特徴とする請求項7に記載のレーザ駆動光源装置。
     
     
     
    The plasma container includes a main body having a concave reflecting surface, an incident window provided in a rear opening of the main body, and an emission window provided in a front opening of the main body, the main body, the incident window, and the emission The laser-driven light source device according to claim 7, wherein a sealed space is formed by the window.


PCT/JP2017/008429 2016-06-06 2017-03-03 Laser-driving light source device WO2017212710A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-112394 2016-06-06
JP2016112394A JP2017220319A (en) 2016-06-06 2016-06-06 Laser drive light source device
JP2016-183608 2016-09-21
JP2016183608A JP2018049714A (en) 2016-09-21 2016-09-21 Laser driving light-source device

Publications (1)

Publication Number Publication Date
WO2017212710A1 true WO2017212710A1 (en) 2017-12-14

Family

ID=60577671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008429 WO2017212710A1 (en) 2016-06-06 2017-03-03 Laser-driving light source device

Country Status (1)

Country Link
WO (1) WO2017212710A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200557A1 (en) * 2020-03-31 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 Sensor module and case unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532829A (en) * 2006-03-31 2009-09-10 エナジェティック・テクノロジー・インコーポレーテッド Laser-driven light source
JP2010171159A (en) * 2009-01-22 2010-08-05 Ushio Inc Light source equipment and aligner including the same
JP2011119200A (en) * 2009-04-15 2011-06-16 Ushio Inc Laser-driven light source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532829A (en) * 2006-03-31 2009-09-10 エナジェティック・テクノロジー・インコーポレーテッド Laser-driven light source
JP2010171159A (en) * 2009-01-22 2010-08-05 Ushio Inc Light source equipment and aligner including the same
JP2011119200A (en) * 2009-04-15 2011-06-16 Ushio Inc Laser-driven light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200557A1 (en) * 2020-03-31 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 Sensor module and case unit

Similar Documents

Publication Publication Date Title
KR101432349B1 (en) Laser drive light source
JP6887388B2 (en) Electrodeless single CW laser driven xenon lamp
JP6707467B2 (en) Laser driven shield beam lamp
JP5322217B2 (en) Light source device
TWI469196B (en) Exposure device
CN108604531B (en) Laser driving lamp
JP5182958B2 (en) Light source device
US20190021158A1 (en) Laser-driven light source device
JP5346602B2 (en) Light source device and exposure apparatus provided with the light source device
JP2020505733A (en) Electrodeless single low power CW laser driven plasma lamp
JP2017220319A (en) Laser drive light source device
JP6978718B2 (en) Laser drive light source
WO2017212710A1 (en) Laser-driving light source device
JP6233616B2 (en) Laser drive lamp
JP2006351670A (en) Ultraviolet irradiation device
JP2017220439A (en) Laser-driving light source device
JP5142217B2 (en) Exposure equipment
JP6440102B2 (en) Laser drive lamp
WO2017212683A1 (en) Laser-driving light source device
JP5661169B2 (en) Light source device
JP2017216125A (en) Laser driven lamp
JP6390863B2 (en) Laser drive light source device
JP6776837B2 (en) Laser driven lamp
JP2018049714A (en) Laser driving light-source device
JP2017212061A (en) Laser drive lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809894

Country of ref document: EP

Kind code of ref document: A1