JPH061686A - Production of compound semiconductor crystal - Google Patents

Production of compound semiconductor crystal

Info

Publication number
JPH061686A
JPH061686A JP16478892A JP16478892A JPH061686A JP H061686 A JPH061686 A JP H061686A JP 16478892 A JP16478892 A JP 16478892A JP 16478892 A JP16478892 A JP 16478892A JP H061686 A JPH061686 A JP H061686A
Authority
JP
Japan
Prior art keywords
single crystal
volume
seed crystal
boat
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16478892A
Other languages
Japanese (ja)
Inventor
Toru Kurihara
徹 栗原
Shoji Nakamori
昌治 中森
Shinji Yabuki
伸司 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP16478892A priority Critical patent/JPH061686A/en
Publication of JPH061686A publication Critical patent/JPH061686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To stably maintain a good solid-liq. interface shape by making the volume of a seed crystal used in production equal to or larger than the volume of the shoulder of a single crystal to be produced. CONSTITUTION:A quartz boat contg. a seed crystal 1 with the volume made equal to or larger than the volume of the shoulder 2 of a single crystal to be produced and a group III material is placed on one end of a quartz glass reaction tube, a group V material is placed on the other end, and the tube is vacuum-sealed. The tube is set in a tandem electric furnace, the boat side is kept at >=1200 deg.C and the group V material side at about 600 deg.C, and GaAs is synthesized. The high-temp. side is heated while keeping the low-temp. side at a constant temp. so that the seeded part is heated to the m.p. of GaAs and the boat main body to a high temp., hence a part of the seed crystal 1 is melted, and then the whole body is solidified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体単結晶の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor single crystal.

【0002】[0002]

【従来の技術】横型ボート法に用いられる種結晶は通
常、断面積(10〜20×10〜20)mm2 、長さ約
50mm程度のものであり、断面積は製造しようとする
単結晶のそれの10%程度になる。
2. Description of the Related Art A seed crystal used in a horizontal boat method usually has a cross-sectional area of (10-20 × 10-20) mm 2 and a length of about 50 mm. It will be about 10% of that.

【0003】横型ボート法の1つである温度傾斜法によ
る単結晶製造を例にとると、種結晶および原料多結晶を
載置した石英ボートは、石英アンプルに密封された状態
で、長手方向に一定の温度傾斜を持つように設定された
電気炉の中で単結晶製造が行われる。この温度傾斜は石
英ボートの種結晶部からボート後端部に向かって徐徐に
温度が高くなる温度分布となっており、化合物半導体単
結晶例えばGaAs単結晶製造の種付け時においては種
結晶の原料側端面が1238℃になるように温度設定さ
れ、GaAs融液が種結晶に接した状態から上述の温度
傾斜を保ちながら温度を徐徐に下げていくことにより、
融液が種結晶側から固化しGaAs単結晶が成長する。
Taking, for example, the production of a single crystal by a temperature gradient method which is one of the horizontal boat methods, a quartz boat on which a seed crystal and a raw material polycrystal are placed is longitudinally sealed in a quartz ampoule. Single crystal production is performed in an electric furnace set to have a constant temperature gradient. This temperature gradient has a temperature distribution in which the temperature gradually increases from the seed crystal part of the quartz boat toward the rear end of the boat, and when seeding in the production of a compound semiconductor single crystal such as GaAs single crystal, the raw material side of the seed crystal is used. By setting the temperature so that the end face becomes 1238 ° C. and gradually lowering the temperature while maintaining the above-mentioned temperature gradient from the state where the GaAs melt is in contact with the seed crystal,
The melt solidifies from the seed crystal side and a GaAs single crystal grows.

【0004】単結晶成長過程においては融液が固化する
際に発生する凝固熱(融解熱)が固液界面付近に留まる
ことなく固液界面の外周方向および固化した単結晶内部
に速やかに放熱されなければならない。固液界面の形状
を良好(融液側に凸形状であるのがよい)に保つために
は、各方向への放熱がバランスよく行われることが必要
である。主な放熱として固液界面外周方向の放熱と、固
化した単結晶内部への放熱とがあり、外周方向への放熱
は単結晶成長開始から終了までの各成長過程でほぼ一定
であるが、固化した単結晶内部への放熱は成長が進み、
単結晶体積が大きくなるにしたがって大きくなる。
In the process of growing a single crystal, the heat of solidification (heat of fusion) generated when the melt solidifies is not radiated to the vicinity of the solid-liquid interface and is rapidly radiated to the outer peripheral direction of the solid-liquid interface and to the inside of the solidified single crystal. There must be. In order to maintain the shape of the solid-liquid interface in a good state (it is preferable that the shape is convex on the melt side), it is necessary to dissipate heat in each direction in a well-balanced manner. The main heat dissipation is heat dissipation in the outer peripheral direction of the solid-liquid interface and heat dissipation into the solidified single crystal, and heat dissipation in the outer peripheral direction is almost constant in each growth process from the start to the end of single crystal growth, but solidification The heat dissipation to the inside of the single crystal that has grown
It increases as the single crystal volume increases.

【0005】[0005]

【発明が解決しようとする課題】単結晶の大型化を進め
るなかで固液界面の面積も広くなり、その分大きくなる
凝固熱を放熱しなければならない。ところが従来の種結
晶を用いた単結晶成長では成長開始直後のまだ固化した
体積の小さい領域における単結晶中への放熱が不十分で
あり、この領域での固液界面形状が凹形状となってしま
うことが問題となっている。
As the size of single crystals is increased, the area of the solid-liquid interface also becomes wider, and the heat of solidification, which increases accordingly, must be radiated. However, in conventional single crystal growth using a seed crystal, heat dissipation into the single crystal in the solidified small volume region immediately after the start of growth is insufficient, and the solid-liquid interface shape in this region becomes concave. It has become a problem to shut it down.

【0006】本発明は以上の点に鑑みなされたものであ
り、安定して良好な固液界面形状を保つことを可能とし
た化合物半導体単結晶の製造方法を提供することを目的
とするものである。
The present invention has been made in view of the above points, and an object thereof is to provide a method for producing a compound semiconductor single crystal capable of stably maintaining a good solid-liquid interface shape. is there.

【0007】[0007]

【課題を解決するための手段】上記目的は、製造時に使
用する種結晶の体積を、製造しようとする単結晶の肩部
の体積と同等以上にすることにより、達成される。
The above object is achieved by making the volume of the seed crystal used during the production equal to or more than the volume of the shoulder portion of the single crystal to be produced.

【0008】[0008]

【作用】上記手段を設けたので、単結晶成長開始領域で
の単結晶内部への放熱量が大きくなる。
Since the above-mentioned means is provided, the amount of heat radiated to the inside of the single crystal in the single crystal growth start region becomes large.

【0009】[0009]

【実施例】次に本発明を実施例により具体的に説明す
る。
EXAMPLES Next, the present invention will be specifically described by way of examples.

【0010】〔実施例 1〕図1には本発明の一実施例
が示されている。横型ボート法による化合物半導体単結
晶例えばGaAs単結晶の製造方法で、本実施例では製
造時に使用する種結晶1の体積を、製造しようとする単
結晶の肩部2の体積と同等以上にした。このようにする
ことにより、単結晶成長開始領域での単結晶内部への放
熱量が大きくなって、安定して良好な固液界面形状を保
つことを可能とした化合物半導体単結晶の製造方法を得
ることができる。
[Embodiment 1] FIG. 1 shows an embodiment of the present invention. In the method of manufacturing a compound semiconductor single crystal such as a GaAs single crystal by the lateral boat method, in this embodiment, the volume of the seed crystal 1 used at the time of manufacturing was made equal to or more than the volume of the shoulder 2 of the single crystal to be manufactured. By doing so, the amount of heat radiated to the inside of the single crystal in the single crystal growth start region is increased, and a method for producing a compound semiconductor single crystal capable of stably maintaining a good solid-liquid interface shape is provided. Obtainable.

【0011】すなわち単結晶肩部2の体積が約14cm
3 となるGaAs単結晶の製造を幅1.5×高さ1.5
×長さ11cm3 の種結晶1を用いて行った。
That is, the volume of the single crystal shoulder portion 2 is about 14 cm.
3 become wide 1.5 × the production of GaAs single crystal height 1.5
× Seed crystal 1 having a length of 11 cm 3 was used.

【0012】種結晶1と原料のGa2900g、更にn
形の導電性結晶を得るための添加物としてSi800m
gを入れた石英ボートを、石英ガラス製反応管の一端に
載置し、他端にAs3200gを載置した後、この石英
ガラス製反応管を真空封止する。
Seed crystal 1 and Ga of 2900 g as a raw material, and n
800m as an additive for obtaining conductive crystals of the shape
A quartz boat containing g is placed on one end of a quartz glass reaction tube, and As3200 g is placed on the other end, and then the quartz glass reaction tube is vacuum-sealed.

【0013】この反応管を二連式電気炉内に設置し、ボ
ート側(高温炉)を1200℃以上にAs側(低温炉)
を約600℃に保つ。そしてGaAs合成反応終了後、
低温炉の温度を一定に保ったまま、高温炉の温度を更に
昇温し、シード付け部分をGaAsの融点1238℃
に、ボート本体側をより高い温度になるような温度勾配
(約1deg/cm)を持つように電気炉を調整する。
This reaction tube was installed in a dual electric furnace, and the boat side (high temperature furnace) was heated to 1200 ° C. or higher and the As side (low temperature furnace).
To about 600 ° C. And after the GaAs synthesis reaction,
While keeping the temperature of the low temperature furnace constant, the temperature of the high temperature furnace is further raised, and the seeded portion has a melting point of GaAs of 1238 ° C.
In addition, the electric furnace is adjusted so as to have a temperature gradient (about 1 deg / cm) so that the boat body side has a higher temperature.

【0014】このようにして種結晶1の一部を溶かした
後、上述の温度勾配を保持したまま1deg/hで降温
し全体を固化させた後、電気炉内のボート設置部の温度
勾配がゼロになるように再び電気炉の設定を調整した
後、100deg/hで室温まで冷却し単結晶を取り出
す。このような方法により重量約6000gのGaAs
単結晶が得られた。
After melting a part of the seed crystal 1 in this way and then cooling the temperature at 1 deg / h while keeping the above temperature gradient to solidify the whole, the temperature gradient of the boat installation part in the electric furnace is changed. After adjusting the setting of the electric furnace again to zero, it is cooled to room temperature at 100 deg / h and the single crystal is taken out. With this method, the weight of GaAs is about 6000 g.
A single crystal was obtained.

【0015】得られた単結晶のストリューションを観察
した結果、単結晶成長開始から終了まで固液界面形状は
融液側に凸形状となっており、良好であることを確認し
た。このように本実施例によれば、大型の単結晶の製造
において安定して良好な固液界面形状を保つことが可能
となり、製造される単結晶の品質および歩留まりを大幅
に向上させることができた。
As a result of observing the distortion of the obtained single crystal, it was confirmed that the solid-liquid interface shape was convex toward the melt side from the start to the end of single crystal growth, which was good. Thus, according to this example, it is possible to stably maintain a good solid-liquid interface shape in the production of a large single crystal, and it is possible to significantly improve the quality and yield of the produced single crystal. It was

【0016】[0016]

【発明の効果】上述のように本発明は、製造時に使用す
る種結晶の体積を、製造しようとする単結晶の肩部の体
積と同等以上にしたので、単結晶成長開始領域での単結
晶内部への放熱量が大きくなって、安定して良好な固液
界面形状を保つことを可能とした化合物半導体単結晶の
製造方法を得ることができる。
As described above, according to the present invention, the volume of the seed crystal used at the time of production is made equal to or more than the volume of the shoulder portion of the single crystal to be produced. It is possible to obtain a method for producing a compound semiconductor single crystal in which the amount of heat radiated to the inside is increased and a stable solid-liquid interface shape can be stably maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化合物半導体単結晶の製造方法の一実
施例による種結晶および単結晶肩部の斜視図である。
FIG. 1 is a perspective view of a seed crystal and a shoulder portion of a single crystal according to an embodiment of a method for producing a compound semiconductor single crystal of the present invention.

【符号の説明】[Explanation of symbols]

1 種結晶 2 単結晶肩部 1 seed crystal 2 single crystal shoulder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】横型ボート法による化合物半導体単結晶の
製造方法において、前記製造時に使用する種結晶の体積
が、製造しようとする単結晶の肩部の体積と同等以上に
されていることを特徴とする化合物半導体単結晶の製造
方法。
1. A method for producing a compound semiconductor single crystal by a horizontal boat method, wherein the volume of the seed crystal used in the production is equal to or more than the volume of the shoulder portion of the single crystal to be produced. And a method for producing a compound semiconductor single crystal.
JP16478892A 1992-06-23 1992-06-23 Production of compound semiconductor crystal Pending JPH061686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16478892A JPH061686A (en) 1992-06-23 1992-06-23 Production of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16478892A JPH061686A (en) 1992-06-23 1992-06-23 Production of compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH061686A true JPH061686A (en) 1994-01-11

Family

ID=15799958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16478892A Pending JPH061686A (en) 1992-06-23 1992-06-23 Production of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH061686A (en)

Similar Documents

Publication Publication Date Title
EP1114884B1 (en) Process for producing compound semiconductor single crystal
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
JPH061686A (en) Production of compound semiconductor crystal
JPH1087392A (en) Production of compound semiconductor single crystal
JP2007045640A (en) Forming method of semiconductor bulk crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JPH11302094A (en) Production of compound semiconductor single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JP4576571B2 (en) Method for producing solid solution
JP3700397B2 (en) Method for producing compound semiconductor crystal
JPH054900A (en) Production of gallium arsenide single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JP3633212B2 (en) Single crystal growth method
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JPH0449185Y2 (en)
JP2773441B2 (en) Method for producing GaAs single crystal
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JPH07291781A (en) Method for growing single crystal
JPH0357078B2 (en)
JP3647964B2 (en) Single crystal substrate manufacturing method and apparatus
JPH03193688A (en) Production of single crystal of compound semiconductor
JPH05139884A (en) Production of single crystal
JPH07206598A (en) Device for producing cd1-x-ymnxhgyte single crystal