JPH06167605A - Optical element - Google Patents

Optical element

Info

Publication number
JPH06167605A
JPH06167605A JP31857792A JP31857792A JPH06167605A JP H06167605 A JPH06167605 A JP H06167605A JP 31857792 A JP31857792 A JP 31857792A JP 31857792 A JP31857792 A JP 31857792A JP H06167605 A JPH06167605 A JP H06167605A
Authority
JP
Japan
Prior art keywords
element material
curved
thickness
monochromator
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31857792A
Other languages
Japanese (ja)
Inventor
Yasuhiro Wasa
泰宏 和佐
Kojin Furukawa
行人 古川
Takuya Kusaka
卓也 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31857792A priority Critical patent/JPH06167605A/en
Publication of JPH06167605A publication Critical patent/JPH06167605A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical element which has excellent light convergence characteristics and obtains the uniformity of the wavelength of reflected rays. CONSTITUTION:A flat plate type element material M3 which is fixed at its one end side is held in a curved state by applying a force F3 to the other end side of the element material M3 in a direction wherein the material M3 deflects, and the thickness of the element material M3 is gradually decreased from the one end side to the other end side so that a crystal monochromator A3 which causes optical reflection on the concave surface side of the curved element material M3 forms part of an elliptic curved surface on the concave surface side of the element material M3. Consequently, the optical element which has the excellent light convergence characteristics and obtains the uniformity of the wavelength of the reflected rays is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学素子に係り,例えば
X線の集光や単色化に用いられるミラーやモノクロメー
タ等の楕円曲面を有する光学素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element, and more particularly, to an optical element having an elliptic curved surface such as a mirror or a monochromator used for condensing X-rays or monochromatization.

【0002】[0002]

【従来の技術】X線を用いて試料の分析を行うには,点
光源とみなされるX線源から発生した発散するX線を試
料に集光させたり,単色化させる必要がある。そのため
に用いられる光学素子の中にミラーやモノクロメータ等
の楕円曲面を有する光学素子がある。これら楕円曲面を
有する光学素子は単独でX線源から発生したX線を再び
一点に集光させることができるという特徴を有する。ま
た,楕円曲面のモノクロメータで単色化する場合には,
平面モノクロメータで単色化するのに比べてより広い範
囲の波長のX線を取り出せる特徴をも有する。即ち,モ
ノクロメータでは,入射角度がブラックの回折条件を満
たす波長だけが反射されるが,モノクロメータの表面が
湾曲していると入射角が連続的に変化するために結果と
して広い範囲の波長のX線が反射されるのである。楕円
曲面を形成する方法には,削り出しによって形成する方
法と,平板状の素子材料を機械的に湾曲させて楕円曲面
にする方法とがある。ただし,結晶モノクロメータの場
合は表面の結晶面指数を統一する必要があるために,通
常後者の方法が用いられる。また,ミラーの場合も楕円
の曲率半径が大きい場合には加工が困難であるため後者
の方法が用いられる。以下,変形させて楕円曲面にする
方法を適用した場合の結晶モノクロメータの構成及びそ
の動作について図2〜図6を参照して説明する。
2. Description of the Related Art In order to analyze a sample using X-rays, it is necessary to collect divergent X-rays generated from an X-ray source, which is regarded as a point light source, on the sample or to make the sample monochromatic. Among the optical elements used for that purpose, there is an optical element having an elliptic curved surface such as a mirror or a monochromator. The optical element having these elliptic curved surfaces has a feature that the X-ray generated from the X-ray source can be focused on a single point again. In addition, when using a monochromator with an elliptic curve,
It also has a feature that X-rays of a wider range of wavelengths can be extracted as compared with the case of monochromaticization with a flat monochromator. That is, in the monochromator, only wavelengths whose incident angle satisfies the diffraction condition of black are reflected, but when the surface of the monochromator is curved, the incident angle continuously changes, and as a result, a wide range of wavelengths is obtained. X-rays are reflected. Methods of forming an elliptic curved surface include a method of forming by elaboration and a method of mechanically bending a flat plate-shaped element material into an elliptic curved surface. However, in the case of a crystal monochromator, the latter method is usually used because it is necessary to unify the crystal plane indices of the surface. Also, in the case of a mirror, the latter method is used because processing is difficult when the radius of curvature of the ellipse is large. Hereinafter, the structure and operation of the crystal monochromator when the method of deforming it into an elliptic curved surface is applied will be described with reference to FIGS.

【0003】図2は結晶モノクロメータを組み込んだX
線吸収特性測定装置の概略構成を示す模式図,図3は結
晶モノクロメータの湾曲曲線を示すグラフ,図5は従来
の結晶モノクロメータの第1例A1 における使用状態で
の形状を示す平面図(a)及び側面図(b),図6は従
来の結晶モノクロメータの第2例A2 における使用状態
での形状を示す平面図(a)及び側面図(b)である。
図5(a),(b)に示す如く,従来の結晶モノクロメ
ータの第1例A1 は,一端側を固定した平板状の素子材
料M1 の他端側に,素子材料M1 を撓ませる方向の力F
1 を加えることにより素子材料M1 を湾曲させた状態に
保持し,湾曲させた素子材料M1 の凹面側にて光学的反
射を行うものである。この素子材料M1の湾曲前の形状
は直方体(幅,厚み共に一定)である。この結晶モノク
ロメータA1 は,例えばX線吸収特性を測定する測定装
置Bに組み込んだ場合,以下のように動作する。
FIG. 2 shows an X incorporating a crystal monochromator.
Schematic diagram showing a schematic configuration of a linear absorption characteristic measurement apparatus, a plan view FIG. 3 showing a shape in the use state in the first example A 1 of the crystal graph showing the curvature curve of the monochromator, 5 conventional monochromator 6A and 6B are a plan view and a side view, respectively, showing the shape of the conventional crystal monochromator in the second example A 2 in use.
As shown in FIGS. 5A and 5B, in the first example A 1 of the conventional crystal monochromator, the element material M 1 is bent on the other end side of the flat plate-shaped element material M 1 whose one end side is fixed. Force F in all directions
By adding 1 , the element material M 1 is held in a curved state, and optical reflection is performed on the concave surface side of the curved element material M 1 . The element material M 1 has a rectangular parallelepiped shape (both width and thickness are constant) before bending. The crystal monochromator A 1 operates as follows when incorporated in a measuring device B for measuring X-ray absorption characteristics, for example.

【0004】図2に示す如く,楕円5の一焦点P1 に配
置したX線管1で発生させたX線を楕円曲面の一部に変
形させた結晶モノクロメータ2(A1 )で光学的反射を
行う際に,単色化すると同時に集光する。集光されたX
線は楕円5の他の焦点P2 に配置した試料3に照射され
る。照射された試料3を透過したX線は,波長に応じて
異なった発散角で位置分解能をもつ検出器4に入射され
る。検出器4では,試料3がある時とない時とのX線強
度をそれぞれ測定し,両者の比から試料3のX線吸収特
性を測定する。この時,検出器4の異なる位置には異な
る波長のX線が入射されるので,波長の関数としてX線
吸収特性を測定できる。この装置Bでまず問題となるの
が,試料3面での集光特性である。試料3上で一点に集
光させるためには,結晶モノクロメータA1 の湾曲曲面
は正確に楕円状に変形していることが必要である。しか
し,この結晶モノクロメータA1 では図3の実線で示す
ように,湾曲曲面は正確に楕円状にならない。このた
め,集光条件が満たされず,X線を一点に集光すること
ができない。この問題点を解決しようとして,図6
(a),(b)に示すように三角柱状の素子材料M2
湾曲させる方法がある(高エネルギ物理学研究所 サマ
ースクールテキストOHO '88, IV-16)。この結晶モノク
ロメータA2 の場合には,湾曲曲面は正確に楕円状にな
る。その基本的な原理を以下略述する。
As shown in FIG. 2, an X-ray generated by an X-ray tube 1 placed at one focal point P 1 of an ellipse 5 is optically converted by a crystal monochromator 2 (A 1 ) which is transformed into a part of an elliptic curved surface. When the light is reflected, it is converted into a single color and condensed at the same time. Focused X
The line illuminates the sample 3 located at another focus P 2 of the ellipse 5. The X-rays that have passed through the irradiated sample 3 are incident on the detector 4 having a positional resolution with a divergence angle that differs depending on the wavelength. The detector 4 measures the X-ray intensity with and without the sample 3 and measures the X-ray absorption characteristics of the sample 3 from the ratio of the two. At this time, since X-rays of different wavelengths are incident on different positions of the detector 4, the X-ray absorption characteristics can be measured as a function of wavelength. The first problem with this device B is the light condensing property on the surface of the sample 3. In order to focus light on one point on the sample 3, the curved curved surface of the crystal monochromator A 1 needs to be accurately deformed into an ellipse. However, in this crystal monochromator A 1 , the curved curved surface is not exactly elliptical as shown by the solid line in FIG. Therefore, the focusing condition is not satisfied, and the X-ray cannot be focused at one point. In order to solve this problem,
As shown in (a) and (b), there is a method of bending a triangular columnar element material M 2 (Summer School Textbook, High Energy Physics Institute, OHO '88, IV-16). In the case of this crystal monochromator A 2 , the curved curved surface is exactly elliptical. The basic principle will be briefly described below.

【0005】まず,楕円の方程式は,周知の如く次式で
表される。 (x2 /a2 )+(y2 /b2 )=1 ・・・(1) ここで,aはx方向の軸長の1/2,bはy方向の軸長
の1/2である。次に,上記(1)式のyをxの関数と
して表し,かつy(0)=0となるように座標系を取り
直すと次式のようになる。 y=(b2 −x2 2 /a2 1/2 −b ・・・(2) これが図3上の楕円曲線である。素子材料M2 の一端
(x=0)を固定し(即ち,変位と傾きとを0とす
る),他端(x=L)に外力Fを加えたときの素子材料
2 の変位yは以下の(3),(4)式で与えられる。 d2 y/dx2 =12F・(L−x)/{E・b(x)・h(x)3 } ・・・(3) y(0)=dy/dx(0)=0 ・・・(4) ここで,Eは素子材料M2 のヤング率,b(x)は幅,
h(x)は厚さである。結晶モノクロメータA2
は,,幅b(x)を次式のように直線的に変化させ,か
つ厚さh(x)を一定にしたものである。 b(x)=Cb・(L−x)/L ・・・(5) ここで,Cbは定数である。これを,上記(3)式に代
入し,(4)式の初期条件で解くと(2)式で表される
楕円曲面となる。従って,結晶モノクロメータA2 によ
れば正確な楕円曲面が得られるため集光条件を満足する
光学素子を得ることができた。
First, the equation of the ellipse is expressed by the following equation, as is well known. (X 2 / a 2 ) + (y 2 / b 2 ) = 1 (1) where a is 1/2 the axial length in the x direction and b is 1/2 the axial length in the y direction. is there. Next, y in the above equation (1) is expressed as a function of x, and the coordinate system is re-arranged so that y (0) = 0. y = (b 2 -x 2 b 2 / a 2) 1/2 -b ··· (2) which is elliptical curve on FIG. The displacement y of the element material M 2 when one end (x = 0) of the element material M 2 is fixed (that is, the displacement and the inclination are 0) and an external force F is applied to the other end (x = L) is It is given by the following equations (3) and (4). d 2 y / dx 2 = 12F · (L-x) / {E · b (x) · h (x) 3} ··· (3) y (0) = dy / dx (0) = 0 ·· (4) where E is the Young's modulus of the element material M 2 , b (x) is the width,
h (x) is the thickness. In the crystal monochromator A 2 , the width b (x) is linearly changed as in the following equation and the thickness h (x) is constant. b (x) = Cb · (L−x) / L (5) Here, Cb is a constant. By substituting this into the above equation (3) and solving it with the initial conditions of equation (4), an elliptic curved surface represented by equation (2) is obtained. Therefore, according to the crystal monochromator A 2 , an accurate elliptic curved surface can be obtained, so that an optical element satisfying the condensing condition can be obtained.

【0006】[0006]

【発明が解決しようとする課題】上記したような従来の
光学素子の内,結晶モノクロメータA2 は,A1 では困
難であった集光条件を満足させて良好な集光特性を有す
るものとすることができる。しかし,この結晶モノクロ
メータA2 をA1 の代りに組み込んだX線吸収特性測定
装置では,波長の均一性が得られないという新たな問題
を生じる。即ち,波長の均一性を得るためには,波長に
よるX線強度の分布が一様である所謂白色光源の場合,
結晶モノクロメータA2 の反射面積の均一性が要求され
るが,結晶モノクロメータA2 の反射面形状は図6
(a)に示すような三角形であり,この要求を満足しな
い。このため,上記問題を生じるのである。本発明はこ
のような従来の技術における課題を解決するために,光
学素子を改良し,良好な集光特性を有し,かつ波長の均
一性が得られる光学素子を提供することを目的とするも
のである。
Among the conventional optical elements as described above, the crystal monochromator A 2 is said to have good light condensing characteristics by satisfying the light condensing condition which is difficult for A 1. can do. However, the X-ray absorption characteristic measuring device in which the crystal monochromator A 2 is incorporated instead of A 1 causes a new problem that the wavelength uniformity cannot be obtained. That is, in order to obtain wavelength uniformity, in the case of a so-called white light source in which the distribution of X-ray intensity according to wavelength is uniform,
The uniformity of the reflection area of the crystal monochromator A 2 is required, but the reflection surface shape of the crystal monochromator A 2 is shown in FIG.
It is a triangle as shown in (a) and does not satisfy this requirement. Therefore, the above problem occurs. SUMMARY OF THE INVENTION In order to solve the problems in the conventional technique, the present invention aims to provide an optical element that improves the optical element, has good light-collecting characteristics, and is capable of obtaining wavelength uniformity. It is a thing.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は,一端側を固定した平板状の素子材料の他端
側に該素子材料を撓ませる方向の力を加えることにより
上記素子材料を湾曲させた状態に保持し,上記湾曲させ
た素子材料の凹面側にて光学的反射を行う光学素子にお
いて,上記素子材料の凹面側が楕円曲面の一部を形成す
るように該素子材料の厚みを上記一端側から他端側に向
けて漸減させてなることを特徴とする光学素子として構
成されている。更には,h(x)=C・{(L−x)/
b(x)}n ,ただし,0.1≦n≦0.5 ここに,h(x):位置xにおける素子材料の厚み b(x):位置xにおける素子材料の幅 L :素子材料の長さ x :素子材料の長さ方向の位置 C :定数 とした光学素子である。
In order to achieve the above object, the present invention provides the above-mentioned element by applying a force in the direction of bending the element material to the other end of a flat plate-like element material having one end fixed. In an optical element that holds a material in a curved state and performs optical reflection on the concave side of the curved element material, the concave side of the element material forms a part of an elliptical curved surface. The optical element is characterized in that the thickness is gradually reduced from the one end side to the other end side. Furthermore, h (x) = C · {(L−x) /
b (x)} n , where 0.1 ≦ n ≦ 0.5, where h (x): thickness of element material at position x b (x): width of element material at position x L: of element material Length x: an optical element having a position in the length direction of the element material C: a constant.

【0008】[0008]

【作用】本発明によれば,一端側を固定した平板状の素
子材料の他端側に該素子材料を撓ませる方向の力を加え
ることにより上記素子材料を湾曲させた状態に保持し,
上記湾曲させた素子材料の凹面側にて光学的反射を行う
光学素子の,上記素子材料の凹面側が楕円曲面の一部を
形成するように該素子材料の厚みを上記一端側から他端
側に向けて漸減させる。従って,上記光学的反射面を正
確な楕円曲面に保ったまま,反射面積の均一性を確保す
ることができる。その結果,良好な集光特性を有し,か
つ波長の均一性が得られる光学素子を得ることができ
る。
According to the present invention, a force is applied to the other end of a flat plate-shaped element material having one end fixed to keep the element material in a curved state,
The thickness of the element material is changed from the one end side to the other end side so that the concave side of the element material forms a part of an elliptic curved surface of the optical element which performs optical reflection on the concave side of the curved element material. Gradually reduce toward. Therefore, it is possible to secure the uniformity of the reflection area while keeping the optical reflection surface as an accurate elliptic curved surface. As a result, it is possible to obtain an optical element that has good light condensing characteristics and can obtain wavelength uniformity.

【0009】[0009]

【実施例】以下,添付図面を参照して,本発明を具体化
した実施例につき説明し,本発明の理解に供する。尚,
以下の実施例は本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る結晶モノクロメータ
3 の使用状態での形状を示す平面図(a)及び側面図
(b),図2は結晶モノクロメータを組み込んだX線吸
収特性測定装置の概略構成を示す模式図(従来例と共
用),図3は結晶モノクロメータの湾曲曲線を示すグラ
フ(従来例と共用),図4は結晶モノクロメータの集光
特性を示すグラフである。図1に示す如く,本実施例に
係る結晶モノクロメータA3 は,一端側を固定した平板
状の素子材料M3 の他端側に,素子材料M3 を撓ませる
方向の力F3 を加えることにより素子材料M3 を湾曲さ
せた状態に保持し,湾曲させた素子材料M 3 の凹面側に
て光学的反射を行う点で従来例と同様である。しかし,
本実施例では素子材料M3 の凹面側が楕円曲面の一部を
形成するように素子材料M3 の厚みを上記一端側から他
端面に向けて漸減させた点で従来例と異なる。
Embodiments of the present invention will now be described with reference to the accompanying drawings.
The examples will be described to provide an understanding of the present invention. still,
The following example is an example embodying the present invention.
It does not limit the technical scope of Ming. here
1 is a crystal monochromator according to an embodiment of the present invention.
A3Plan view (a) and side view showing the shape in the use state of
(B), Figure 2 shows X-ray absorption with a crystal monochromator.
Schematic diagram showing the schematic structure of the collection characteristics measuring device
Fig. 3 is a graph showing the curve of the crystal monochromator.
F (shared with conventional example), Fig. 4 shows focusing of crystal monochromator
It is a graph which shows a characteristic. As shown in FIG.
Crystal monochromator A3Is a flat plate with one end fixed
Element material M3On the other end side of the element material M3Bend
Directional force F3By adding the element material M3Curved
The element material M which is held in a bent state and curved 3On the concave side of
This is the same as the conventional example in that optical reflection is performed. However,
In this embodiment, the element material M3The concave side of
Element material M to be formed3From the one end side to the other
This is different from the conventional example in that it is gradually reduced toward the end face.

【0010】以下,本発明の基本的な原理について略述
する。素子材料M3 の一端(x=0)を固定し(変位と
傾きとを0とする),他端(x=L)に外力F3 を加え
たときの素子材料M3 の変位yは,前述したのと同様に
次式で与えられる。 d2 y/dx2 =12F・(L−x)/{E・b(x)・h(x)3 } ・・・(3) y(0)=dy/dx(0)=0 ・・・(4) 本発明は,機械変形形状が楕円曲面の一部になるように
厚さh(x)を連続的に変化させるものである。この厚
さh(x)の変化のさせ方を次式で与える。 h(x)3 ・b(x)=C・(L−x) ・・・(6) ここで,Cは定数である。幅b(x)が一定の時には,
厚さh(x)は次式で表される。 h(x)=C′・(L−x)1/3 ・・・(7) ここで,C′は定数である。上記(6)式を(3)式に
代入して(4)式の初期条件で解くと,前述の(2)式
が解となり楕円曲面の変形が得られる。上記(7)式は
いわば理想的な厚さ形状である。さらに,われわれが種
々のh(x)曲線を検討した結果, h(x)=C・{(L−x)/b(x)}n ・・・(8) ただし,0.1≦n≦0.5 幅b(x)が一定の時には, h(x)=C′・(L−x)n ・・・(9) の厚さ形状にした場合においても楕円曲面に十分近い湾
曲形状が得られることがわかった。
The basic principle of the present invention will be briefly described below. The displacement y of the element material M 3 when one end (x = 0) of the element material M 3 is fixed (displacement and inclination are 0) and an external force F 3 is applied to the other end (x = L) is Similar to the above, it is given by the following equation. d 2 y / dx 2 = 12F · (L-x) / {E · b (x) · h (x) 3} ··· (3) y (0) = dy / dx (0) = 0 ·· (4) In the present invention, the thickness h (x) is continuously changed so that the mechanically deformed shape becomes a part of the elliptic curved surface. The method of changing the thickness h (x) is given by the following equation. h (x) 3 · b (x) = C · (L−x) (6) Here, C is a constant. When the width b (x) is constant,
The thickness h (x) is expressed by the following equation. h (x) = C ′ · (L−x) 1/3 (7) Here, C ′ is a constant. By substituting the equation (6) into the equation (3) and solving it with the initial condition of the equation (4), the above equation (2) becomes a solution and the deformation of the elliptic curved surface is obtained. The above equation (7) is, so to speak, an ideal thickness shape. Furthermore, as a result of examining various h (x) curves, h (x) = C · {(L−x) / b (x)} n (8) where 0.1 ≦ n ≦ 0.5 When the width b (x) is constant, even if the thickness is h (x) = C ′ · (L−x) n ... It turned out to be obtained.

【0011】以下,この基本原理を用いた結晶モノクロ
メータA3 についてさらに具体的に述べる。まず,図1
に示すような幅b(x)が25mm(一定)で,長さL
が100mm,厚さh(x)が上記(7)式に従う形状
のシリコン結晶を用意する。厚さh(x)は固定端(x
=0)では5mmで先端になるほど細くなる。ところ
で,モノクロメータの場合は,X線反射面の格子面間隔
をそろえておく必要がある。このため,素子材料M3
厚さをh(x)になるように加工する場合,X線反射面
は平面にしておき,反対側を切削する。この先端(x=
L)に約10.7kgfの外力F3 を加えて撓ませる。
このとき,先端は約2.2mm撓むことになり,結晶の
湾曲形状は図3に示す楕円曲線と一致する。このときの
楕円の1/2長径aは350mm,1/2短径bは50
mmである。この湾曲状態に素子材料M3を保持するこ
とによりX線反射面を形成し,ここで反射するX線を,
図2の試料3上の一点に集光させることができる。以上
は,厚さh(x)が上記(7)式によって表される理想
的な場合である。次に,上記(9)式におけるn=0.
1およびn=0.5の場合の湾曲曲線をそれぞれ図3上
に点線で示す。図3より,いずれの場合も,従来例A1
の直方体(幅,厚さ共に一定)の湾曲曲線よりも楕円曲
線に近いことがわかる。パラメータnを変えたときのX
線の集光特性を図4に示す。この集光特性として図2に
おける焦点P2 での焦点ズレ量をとった。これは結晶モ
ノクロメータ2(A3 )の各点で反射されたX線が試料
3上を通過する位置のズレである。図4においてn=0
の点は幅,厚さ共に一定の従来例A1 の直方体の特性で
あり,本発明が主張する0.1≦n≦0.5の範囲にお
いては,上記(9)式で表される湾曲曲線の方が従来例
1 の特性よりも良好な集光特性を示すことがわかる。
もし,光源が白色光でなく波長強度分布を持つならば,
それに併せて結晶モノクロメータの幅b(x)を調整し
て,反射される波長強度が一定になるようにすることが
できる。その場合,結晶の厚さ分布h(x)は上記
(8)式を満たすように調整しなければならない(理想
的には上記(6)式を満たすように調整しなければなら
ない)。 以上のように本発明によれば,光学的反射面
を正確な楕円曲面に保ったまま,反射面積の均一性を確
保することができる。
The crystal monochromator A 3 using this basic principle will be described in more detail below. First, Figure 1
The width b (x) is 25 mm (constant) and the length L is
Is 100 mm, and the thickness h (x) is a silicon crystal having a shape according to the above formula (7). Thickness h (x) is fixed end (x
= 0), it becomes 5 mm and becomes thinner toward the tip. By the way, in the case of a monochromator, it is necessary to align the lattice plane intervals of the X-ray reflecting surface. Therefore, when processing the element material M 3 to have a thickness of h (x), the X-ray reflecting surface is made flat and the opposite side is cut. This tip (x =
L) is applied with an external force F 3 of about 10.7 kgf to bend it.
At this time, the tip is bent by about 2.2 mm, and the curved shape of the crystal matches the elliptic curve shown in FIG. At this time, the half major axis a of the ellipse is 350 mm and the half minor axis b is 50 mm.
mm. By holding the element material M 3 in this curved state, an X-ray reflection surface is formed, and the X-rays reflected here are
The light can be focused on one point on the sample 3 in FIG. The above is an ideal case where the thickness h (x) is represented by the above equation (7). Next, in the equation (9), n = 0.
Curved curves for 1 and n = 0.5 are shown by dotted lines in FIG. 3, respectively. From FIG. 3, in any case, the conventional example A 1
It can be seen that it is closer to an elliptic curve than a rectangular parallelepiped (width and thickness are constant) curved curve. X when the parameter n is changed
The light condensing characteristics of the line are shown in FIG. As the condensing characteristics took defocus amount of the focus P 2 in FIG. This is a shift in the position where the X-ray reflected at each point of the crystal monochromator 2 (A 3 ) passes on the sample 3. In FIG. 4, n = 0
The point is the characteristic of the rectangular parallelepiped of Conventional Example A 1 in which both width and thickness are constant. It can be seen that the curved line shows a better condensing characteristic than the characteristic of the conventional example A 1 .
If the light source has a wavelength intensity distribution instead of white light,
In addition, the width b (x) of the crystal monochromator can be adjusted so that the reflected wavelength intensity becomes constant. In that case, the crystal thickness distribution h (x) must be adjusted so as to satisfy the above expression (8) (ideally it should be adjusted so as to satisfy the above expression (6)). As described above, according to the present invention, it is possible to secure the uniformity of the reflection area while keeping the optical reflection surface as an accurate elliptic curved surface.

【0012】その結果,良好な集光特性を有し,かつ反
射線の波長の均一性が得られる光学素子を得ることがで
きる。特に,モノクロメータでは反射波の波長の均一性
が得られることにより,分析装置に応用する場合,高精
度分析が可能となるため,その効果が顕著なものとな
る。また,ある種の結晶は堅くて脆いので図1のように
厚さh(x)を変化させて加工することが困難な場合も
有り得る。その場合は結晶の厚さは薄く一定にして加工
し,剛性の高い他の材料(たとえばステンレス)の厚さ
を図1の様に加工したのち両者を接着剤で貼り合わせ,
その後に湾曲させる方法を採用しても良い。このよう
に,素子材料M3 として幅広い選択範囲をもたせること
もできる。尚,上記実施例では光学素子として結晶モノ
クロメータを例示したが,実使用に際してはミラー等の
他の光学素子に適用しても何ら支障はない。
As a result, it is possible to obtain an optical element having a good light-collecting characteristic and a uniform wavelength of the reflection line. In particular, since the monochromator can obtain the wavelength uniformity of the reflected wave, when applied to an analyzer, high precision analysis becomes possible, and the effect becomes remarkable. Further, since some crystals are hard and brittle, it may be difficult to process them by changing the thickness h (x) as shown in FIG. In that case, the thickness of the crystal is made thin and constant, and the thickness of another material with high rigidity (for example, stainless steel) is processed as shown in Fig. 1, and then both are bonded with an adhesive.
A method of bending after that may be adopted. In this way, it is possible to have a wide selection range as the element material M 3 . Although the crystal monochromator is exemplified as the optical element in the above embodiment, it may be applied to other optical elements such as a mirror in actual use without any problem.

【0013】[0013]

【発明の効果】本発明に係る光学素子は,上記したよう
に構成されているため,光学的反射面を正確な楕円曲面
に保ったまま,反射面積の均一性を確保することができ
る。その結果,良好な集光特性を有し,かつ反射線の波
長の均一性が得られる光学素子を得ることができる。特
に,モノクロメータでは反射波の波長の均一性が得られ
ることにより,分析装置に応用する場合には高精度分析
が可能となり,その効果が顕著なものとなる。また,剛
性の高い材料を素子材料に貼り合わせることにより,堅
くて脆い素子材料をも使用可能となるため,素子材料と
して幅広い選択範囲をもたせることもできる。
Since the optical element according to the present invention is configured as described above, it is possible to secure the uniformity of the reflection area while keeping the optical reflection surface as an accurate elliptic curved surface. As a result, it is possible to obtain an optical element having good light condensing characteristics and obtaining the uniformity of the wavelength of the reflection line. In particular, since the monochromator can obtain the wavelength uniformity of the reflected wave, it becomes possible to perform highly accurate analysis when applied to an analyzer, and the effect becomes remarkable. Further, by bonding a material having high rigidity to the element material, it is possible to use a hard and brittle element material, so that a wide selection range can be given as the element material.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る結晶モノクロメータ
3 の使用状態での形状を示す平面図(a)及び側面図
(b)。
FIG. 1 is a plan view (a) and a side view (b) showing a shape of a crystal monochromator A 3 according to an embodiment of the present invention in use.

【図2】 結晶モノクロメータを組み込んだX線吸収特
性測定装置の概略構成を示す模式図(従来例と共用)。
FIG. 2 is a schematic diagram showing a schematic configuration of an X-ray absorption characteristic measuring device incorporating a crystal monochromator (shared with a conventional example).

【図3】 結晶モノクロメータの湾曲曲線を示すグラフ
(従来例と共用)。
FIG. 3 is a graph showing a curve of a crystal monochromator (shared with a conventional example).

【図4】 結晶モノクロメータの集光特性を示すグラ
フ。
FIG. 4 is a graph showing the condensing characteristics of a crystal monochromator.

【図5】 従来の結晶モノクロメータの第1例A1 にお
ける使用状態での形状を示す平面図(a)及び側面図
(b)。
FIG. 5 is a plan view (a) and a side view (b) showing a shape of a conventional crystal monochromator in a first example A 1 in use.

【図6】 従来の結晶モノクロメータの第2例A2 にお
ける使用状態での形状を示す平面図(a)及び側面図
(b)。
FIG. 6 is a plan view (a) and a side view (b) showing a shape of a conventional crystal monochromator in a used state of a second example A 2 .

【符号の説明】[Explanation of symbols]

3 …結晶モノクロメータ(光学素子に相当) M3 …素子材料 F3 …力A 3 ... Crystal monochromator (equivalent to optical element) M 3 ... Element material F 3 ... Force

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一端側を固定した平板状の素子材料の他
端側に該素子材料を撓ませる方向の力を加えることによ
り上記素子材料を湾曲させた状態に保持し,上記湾曲さ
せた素子材料の凹面側にて光学的反射を行う光学素子に
おいて,上記素子材料の凹面側が楕円曲面の一部を形成
するように該素子材料の厚みを上記一端側から他端側に
向けて漸減させてなることを特徴とする光学素子。
1. A flat element material having one end fixed to the other end of the element material by applying a force in a direction of bending the element material to hold the element material in a curved state, and the curved element. In an optical element that performs optical reflection on the concave side of the material, the thickness of the element material is gradually reduced from the one end side to the other end side so that the concave side of the element material forms a part of an elliptic curved surface. An optical element characterized in that
【請求項2】 上記素子材料の厚みを h(x)=C・{(L−x)/b(x)}n ,ただし,
0.1≦n≦0.5 ここに,h(x):位置xにおける素子材料の厚み b(x):位置xにおける素子材料の幅 L :素子材料の長さ x :素子材料の長さ方向の位置 C :定数 とした請求項1記載の光学素子。
2. The thickness of the element material is h (x) = C · {(L−x) / b (x)} n , where
0.1 ≦ n ≦ 0.5 where h (x): thickness of element material at position x b (x): width of element material at position x L: length of element material x: length of element material The optical element according to claim 1, wherein the position C in the direction is a constant.
JP31857792A 1992-11-27 1992-11-27 Optical element Pending JPH06167605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31857792A JPH06167605A (en) 1992-11-27 1992-11-27 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31857792A JPH06167605A (en) 1992-11-27 1992-11-27 Optical element

Publications (1)

Publication Number Publication Date
JPH06167605A true JPH06167605A (en) 1994-06-14

Family

ID=18100690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31857792A Pending JPH06167605A (en) 1992-11-27 1992-11-27 Optical element

Country Status (1)

Country Link
JP (1) JPH06167605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014894A (en) * 2001-06-27 2003-01-15 Rigaku Corp X-ray spectroscopic method and x-ray spectroscopic device
JP2008528959A (en) * 2005-01-21 2008-07-31 コミサリヤ・ア・レネルジ・アトミク X-ray monochromator or neutron monochromator
JP2010117369A (en) * 2010-02-21 2010-05-27 Rigaku Corp X-ray spectroscopic analysis method and x-ray spectroscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014894A (en) * 2001-06-27 2003-01-15 Rigaku Corp X-ray spectroscopic method and x-ray spectroscopic device
JP4657506B2 (en) * 2001-06-27 2011-03-23 株式会社リガク X-ray spectroscopy method and X-ray spectrometer
JP2008528959A (en) * 2005-01-21 2008-07-31 コミサリヤ・ア・レネルジ・アトミク X-ray monochromator or neutron monochromator
JP2010117369A (en) * 2010-02-21 2010-05-27 Rigaku Corp X-ray spectroscopic analysis method and x-ray spectroscope

Similar Documents

Publication Publication Date Title
US5016267A (en) Instrumentation for conditioning X-ray or neutron beams
US4440468A (en) Planar waveguide bragg lens and its utilization
US20020080916A1 (en) Multilayer optics with adjustable working wavelength
US3439163A (en) X-ray crystal monochromator with a reflecting surface that conforms to part of a logarithmic spiral
JPS6020139A (en) X-ray analyzer and manufacture of crystal for monochromator used for said device
US5089915A (en) Fabrication of aspheric surfaces through controlled deformation of the figure of spherical reflective surfaces
US4611883A (en) Two-dimensional optics element for correcting aberrations
JP5173435B2 (en) X-ray monochromator or neutron monochromator
US6863409B2 (en) Apparatus for generating parallel beam with high flux
JPH06167605A (en) Optical element
US8130902B2 (en) High-resolution, active-optic X-ray fluorescence analyzer
Franks et al. Developments in optically focusing reflectors for small-angle x-ray scattering cameras
Underwood et al. Bent glass optics
Förster et al. New crystal spectrograph designs and their application to plasma diagnostics
JP4160124B2 (en) X-ray spectrometer having an analyzer crystal having a partially varying and partially constant radius of curvature
EP0163743B1 (en) Monochromator
Signorato et al. Performance of the SPring-8 modular piezoelectric bimorph mirror prototype
Freund et al. Performances of various types of benders for sagittally focusing crystals on ESRF synchrotron beamlines
RU2248559C1 (en) Focusing monochromator
JP4190142B2 (en) X-ray monochromator
JP3923151B2 (en) X-ray concentrator
JP7343111B2 (en) Opposing X-ray composite mirror
AU612985B2 (en) Instrumentation for conditioning x-ray or neutron beams
JP2666871B2 (en) X-ray monochromator
JP3978710B2 (en) X-ray diffraction measurement apparatus and X-ray diffraction measurement method