JPH06166953A - Surface-treatment of carbon fiber and treated carbon fiber - Google Patents
Surface-treatment of carbon fiber and treated carbon fiberInfo
- Publication number
- JPH06166953A JPH06166953A JP4339819A JP33981992A JPH06166953A JP H06166953 A JPH06166953 A JP H06166953A JP 4339819 A JP4339819 A JP 4339819A JP 33981992 A JP33981992 A JP 33981992A JP H06166953 A JPH06166953 A JP H06166953A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- electrolytic solution
- electrolytic
- felt
- electrolytic oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Inorganic Fibers (AREA)
- Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、マトリックスの補強材
として有用な炭素繊維の表面処理方法およびこの方法に
より得られた炭素繊維に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber surface treatment method useful as a matrix reinforcing material and a carbon fiber obtained by this method.
【0002】[0002]
【従来の技術】炭素繊維は、機械的強度、耐熱性、導電
性などに優れているため、プラスチック、コンクリート
などのマトリックスの補強材として使用されている。炭
素繊維を補強材として使用する場合、炭素繊維の強度を
有効に発現させるためには、炭素繊維に官能基を導入
し、マトリックスとの親和性を高めることが必要であ
る。BACKGROUND OF THE INVENTION Carbon fibers are used as a reinforcing material for matrices such as plastics and concrete because they are excellent in mechanical strength, heat resistance and conductivity. When carbon fiber is used as a reinforcing material, it is necessary to introduce a functional group into the carbon fiber to enhance the affinity with the matrix in order to effectively develop the strength of the carbon fiber.
【0003】炭素繊維に官能基を導入する方法として、
(1)炭素繊維を硝酸や硫酸などの酸化剤で処理する方
法、および(2)炭素繊維フェルトを電解槽に浸漬し、
浸漬状態でロール状などの一対の電極間を通して電解酸
化する方法が知られている。As a method of introducing a functional group into carbon fiber,
(1) a method of treating carbon fiber with an oxidizing agent such as nitric acid or sulfuric acid, and (2) immersing the carbon fiber felt in an electrolytic bath,
A method is known in which electrolytic oxidation is performed by passing between a pair of electrodes in a roll shape or the like in an immersion state.
【0004】しかし、前者の方法(1)では、強い酸化
剤を使用するため、作業性が低下するだけでなく、処理
効率が低く、大量処理には適さない。また、後者の方法
(2)では、電極と炭素繊維フェルトとの接触抵抗が大
きい。そのため、炭素繊維よりも電極が電解酸化され、
通電量を大きくしても炭素繊維を均一かつ効率よく酸化
処理することが困難である。すなわち、陽極に近接する
炭素繊維は電解酸化されるものの、陰極側の炭素繊維は
殆ど酸化されない。However, in the former method (1), since a strong oxidizing agent is used, not only the workability is lowered, but also the processing efficiency is low and it is not suitable for large-scale processing. In the latter method (2), the contact resistance between the electrode and the carbon fiber felt is large. Therefore, the electrode is electrolytically oxidized rather than carbon fiber,
It is difficult to uniformly and efficiently oxidize carbon fibers even if the amount of electricity is increased. That is, the carbon fibers near the anode are electrolytically oxidized, but the carbon fibers on the cathode side are hardly oxidized.
【0005】[0005]
【発明が解決しようとする課題】従って、本発明の目的
は、炭素繊維を均一かつ効率よく電解酸化できる炭素繊
維の表面処理方法を提供することにある。SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide a carbon fiber surface treatment method capable of uniformly and efficiently electrolytically oxidizing carbon fibers.
【0006】本発明の他の目的は、表面活性が高く、各
種マトリックスを補強する上で有用な炭素繊維を提供す
ることにある。Another object of the present invention is to provide a carbon fiber having a high surface activity and useful for reinforcing various matrices.
【0007】[0007]
【発明の構成】本発明者らは、炭素繊維の電解酸化方法
について鋭意検討の結果、炭素繊維を電解液に浸漬し、
過剰な電解液を除去した湿潤状態の炭素繊維集合体を電
解酸化に供すると、表面に存在する電解液により、炭素
繊維が均一かつ効率よく電解酸化されることを見いだ
し、本発明を完成した。DETAILED DESCRIPTION OF THE INVENTION As a result of intensive studies on the method of electrolytic oxidation of carbon fiber, the present inventors immersed the carbon fiber in an electrolytic solution,
When the wet carbon fiber aggregate from which the excess electrolytic solution has been removed is subjected to electrolytic oxidation, it was found that the electrolytic solution present on the surface causes the carbon fibers to be uniformly and efficiently electrolytically oxidized, thereby completing the present invention.
【0008】すなわち、本発明の表面処理方法では、電
解液を湿潤状態で含む炭素繊維を電解酸化する。また、
本発明の炭素繊維は、前記方法により表面処理された炭
素繊維であって、ESCAで測定した場合、C1Sピーク
中に占める、炭素繊維表面のCOO基の濃度が、4〜1
5%である。That is, in the surface treatment method of the present invention, carbon fibers containing the electrolytic solution in a wet state are electrolytically oxidized. Also,
The carbon fiber of the present invention is a carbon fiber surface-treated by the above-mentioned method, and when measured by ESCA, the concentration of COO groups on the carbon fiber surface in the C1S peak is 4 to 1
5%.
【0009】以下、必要に応じて添付図面を参照しつ
つ、本発明を詳細に説明する。The present invention will now be described in detail with reference to the accompanying drawings as needed.
【0010】炭素繊維としては、例えば、ポリアクリロ
ニトリル系、レーヨン系、フェノール樹脂系、ピッチ系
などの炭素繊維が挙げられる。炭素繊維は一種又は二種
以上使用できる。炭素繊維の繊維径は、特に制限されな
いが、例えば、5〜30μm程度である。Examples of carbon fibers include polyacrylonitrile-based, rayon-based, phenol resin-based, pitch-based carbon fibers and the like. One kind or two or more kinds of carbon fibers can be used. The fiber diameter of the carbon fiber is not particularly limited, but is, for example, about 5 to 30 μm.
【0011】処理効率を高めるため、炭素繊維は、炭素
繊維集合体、好ましくは織布、特にフェルトとして使用
される。織布や炭素繊維フェルトを用いると、連続的に
電解酸化処理できる利点がある。炭素繊維集合体の嵩密
度は、電解液の均一な含浸が損われない範囲であれば特
に制限されず、例えば、0.01〜0.2g/cm3、
好ましくは0.03〜0.1g/cm3 程度である。ま
た、炭素繊維集合体の厚みは、通常、1〜20mm、好
ましくは3〜10mm程度である。To increase processing efficiency, carbon fibers are used as carbon fiber aggregates, preferably woven fabrics, especially felts. The use of woven cloth or carbon fiber felt has an advantage that electrolytic oxidation can be continuously performed. The bulk density of the carbon fiber aggregate is not particularly limited as long as the uniform impregnation of the electrolytic solution is not impaired, and for example, 0.01 to 0.2 g / cm 3 ,
It is preferably about 0.03 to 0.1 g / cm 3 . The thickness of the carbon fiber aggregate is usually 1 to 20 mm, preferably 3 to 10 mm.
【0012】そして、電解液を湿潤状態で含む炭素繊維
集合体を、電解酸化に供する。前記電解液としては、例
えば、過塩素酸、硝酸、硫酸、リン酸、クロム酸、重ク
ロム酸などの無機酸;水酸化カリウム、水酸化ナトリウ
ムなどの無機アルカリ;硫酸ナトリウム、硝酸ナトリウ
ムなどの無機塩を含む水溶液が例示される。好ましい電
解液には、硝酸などの無機酸の水溶液が含まれる。Then, the carbon fiber aggregate containing the electrolytic solution in a wet state is subjected to electrolytic oxidation. Examples of the electrolytic solution include inorganic acids such as perchloric acid, nitric acid, sulfuric acid, phosphoric acid, chromic acid, and dichromic acid; inorganic alkalis such as potassium hydroxide and sodium hydroxide; inorganic salts such as sodium sulfate and sodium nitrate. An aqueous solution containing a salt is exemplified. Preferred electrolytes include aqueous solutions of inorganic acids such as nitric acid.
【0013】電解液の濃度は、処理効率が損われない範
囲であればよく、例えば、0.1〜10M、好ましくは
0.3〜5M程度である。なお、無機酸を用いる場合、
無機酸は、濃度0.1〜2M程度で使用する場合が多
い。The concentration of the electrolytic solution may be in the range that does not impair the treatment efficiency, and is, for example, 0.1 to 10 M, preferably 0.3 to 5 M. When using an inorganic acid,
The inorganic acid is often used at a concentration of about 0.1 to 2M.
【0014】本発明の方法は、前記電解液により湿潤し
た炭素繊維集合体、すなわち半乾燥状態の炭素繊維集合
体を用いる点に特色がある。電解液で湿潤した炭素繊維
集合体を用いると、炭素繊維の表面に電解液が存在し、
電極と炭素繊維集合体との接触抵抗が大きくても、炭素
繊維表面で電極反応を生じさせることができる。The method of the present invention is characterized in that the carbon fiber aggregate wetted with the electrolytic solution, that is, the carbon fiber aggregate in a semi-dried state is used. When using a carbon fiber aggregate wet with an electrolytic solution, the electrolytic solution is present on the surface of the carbon fiber,
Even if the contact resistance between the electrode and the carbon fiber aggregate is large, an electrode reaction can be caused on the surface of the carbon fiber.
【0015】湿潤した炭素繊維集合体は、電解液に浸漬
した炭素繊維集合体を、例えば、絞りローラ、乾燥、遠
心分離などの慣用の除去手段に供し、過剰な電解液を除
去することにより得ることができる。また、炭素繊維集
合体の湿潤度は、乾燥度、回転速度や遠心分離時間など
を調整することによりコントロールできる。なお、炭素
繊維集合体の湿潤度は、電解液の噴霧量により調整して
もよい。The wet carbon fiber aggregate is obtained by subjecting the carbon fiber aggregate soaked in the electrolytic solution to a conventional removing means such as squeezing roller, drying, and centrifugal separation to remove excess electrolytic solution. be able to. The wettability of the carbon fiber aggregate can be controlled by adjusting the dryness, the rotation speed, the centrifugation time, and the like. The wettability of the carbon fiber aggregate may be adjusted by adjusting the spray amount of the electrolytic solution.
【0016】炭素繊維集合体に含まれる電解液の量は、
炭素繊維集合体の嵩密度などにより変化するが、通常、
炭素繊維集合体の50〜1500重量%、好ましくは7
5〜1250重量%程度である。電解質の量が上記範囲
を外れると、炭素繊維の表面を均一に電解酸化処理する
のが困難となり易い。The amount of the electrolytic solution contained in the carbon fiber aggregate is
Although it varies depending on the bulk density of the carbon fiber aggregate, etc.,
50 to 1500% by weight of the carbon fiber aggregate, preferably 7
It is about 5 to 1250% by weight. When the amount of the electrolyte is out of the above range, it becomes difficult to uniformly perform the electrolytic oxidation treatment on the surface of the carbon fiber.
【0017】炭素繊維集合体の電解酸化は、慣用の陽極
酸化法に従って行なうことができる。例えば、陽極と陰
極とを備えた陽極酸化装置において、陽極と湿潤状態の
炭素繊維集合体とを接触させ、炭素繊維集合体と陰極と
の間に、多孔質絶縁スペーサを介在させ、両極に電圧を
印加すればよい。陽極酸化は、バッチ方式で行なっても
よく、連続的に行なってもよい。The electrolytic oxidation of the carbon fiber aggregate can be carried out according to a conventional anodic oxidation method. For example, in an anodizing device including an anode and a cathode, the anode and the carbon fiber aggregate in a wet state are brought into contact with each other, a porous insulating spacer is interposed between the carbon fiber aggregate and the cathode, and a voltage is applied to both electrodes. Should be applied. The anodization may be performed in a batch system or continuously.
【0018】図1は本発明の方法を説明するための電解
酸化装置の一例を示す概略断面図である。この例では、
電解液を湿潤状態で含む炭素繊維フェルト1が、陽極2
と陰極3との間に挾持されている。また、炭素繊維フェ
ルト1と陰極3との間には多孔質絶縁スペーサ4が介在
している。FIG. 1 is a schematic sectional view showing an example of an electrolytic oxidation apparatus for explaining the method of the present invention. In this example,
The carbon fiber felt 1 containing the electrolytic solution in a wet state is used as the anode 2
It is sandwiched between the cathode and the cathode 3. Further, a porous insulating spacer 4 is interposed between the carbon fiber felt 1 and the cathode 3.
【0019】図2は本発明の方法を説明するための電解
酸化装置の他の例を示す概略断面図である。この装置
は、電解液を貯溜する貯溜槽15と、この貯溜槽15の
電解液に浸漬された炭素繊維フエルト11から過剰な電
解液を除去するための一対の絞りローラとを備えてい
る。前記一対の絞りローラのうち一方のローラは陽極1
2として構成され、他方のローラは陰極13として構成
されている。また陰極13を構成するローラの表面に
は、多孔質絶縁層14が形成されている。FIG. 2 is a schematic sectional view showing another example of the electrolytic oxidation apparatus for explaining the method of the present invention. This apparatus includes a storage tank 15 for storing the electrolytic solution, and a pair of squeezing rollers for removing an excessive electrolytic solution from the carbon fiber felt 11 immersed in the electrolytic solution in the storage tank 15. One of the pair of aperture rollers is the anode 1
2 and the other roller is the cathode 13. A porous insulating layer 14 is formed on the surface of the roller that constitutes the cathode 13.
【0020】なお、多孔質絶縁スペーサや多孔質絶縁層
は、電気絶縁性材料、例えば、紙、織布、不織布、多孔
質プラスチック、多孔質セラミックスなどで形成でき
る。The porous insulating spacer and the porous insulating layer can be formed of an electrically insulating material such as paper, woven cloth, non-woven cloth, porous plastic and porous ceramics.
【0021】連続的に陽極酸化する場合、絞りローラで
過剰な電解液を除去した後、一対の電極間に湿潤した炭
素繊維集合体を通してもよい。また、陽極酸化に際して
は、複数対の電極間に湿潤した炭素繊維集合体を通して
もよい。In the case of continuous anodic oxidation, excess electrolytic solution may be removed with a squeezing roller, and then a wet carbon fiber aggregate may be passed between a pair of electrodes. In addition, upon anodization, a wet carbon fiber aggregate may be passed between a plurality of pairs of electrodes.
【0022】なお、電極材料としては、慣用の電極、例
えば、白金電極、鉛電極、炭素電極、Fe3 O4 電極、
La0.5 Ba0.5 CoO3 電極、La0.8 Sr0.2 Mn
O3電極、β−MnO2 電極、SrFeO3 電極、Co
3 O4 でコーティングされた鉄電極、FeCo2 O4 で
コーティングされたプラチナ電極、IrO2 でコーティ
ングされたチタン電極、NiOでコーティングされたニ
ッケル電極、NiCo2 O4 でコーティングされたニッ
ケル電極、PdOでコーティングされたチタン電極、P
tO2 でコーティングされたチタン電極、Rh2 O3 で
コーティングされたチタン電極、RuO2 でコーティン
グされたチタン電極、PbO2 でコーティングされた炭
素電極、Sb含有ネサガラス電極などが例示される。As the electrode material, conventional electrodes such as platinum electrode, lead electrode, carbon electrode, Fe 3 O 4 electrode,
La 0.5 Ba 0.5 CoO 3 electrode, La 0.8 Sr 0.2 Mn
O 3 electrode, β-MnO 2 electrode, SrFeO 3 electrode, Co
3 O 4 coated iron electrode, FeCo 2 O 4 coated platinum electrode, IrO 2 coated titanium electrode, NiO coated nickel electrode, NiCo 2 O 4 coated nickel electrode, PdO Titanium electrode coated with P, P
Examples thereof include a titanium electrode coated with tO 2 , a titanium electrode coated with Rh 2 O 3 , a titanium electrode coated with RuO 2 , a carbon electrode coated with PbO 2 , and a Sb-containing Nesa glass electrode.
【0023】炭素繊維集合体の陽極酸化は、例えば、電
流50〜1000mA、好ましくは100〜500mA
程度、炭素繊維1g当りの通電量100〜5000クー
ロン、好ましくは250〜4000クーロン程度で行な
うことができる。The anodic oxidation of the carbon fiber aggregate is carried out, for example, with a current of 50 to 1000 mA, preferably 100 to 500 mA.
The amount of electricity applied per gram of carbon fiber is 100 to 5000 coulombs, preferably 250 to 4000 coulombs.
【0024】本発明の方法によると、炭素繊維の表面を
均一かつ効率よく電解酸化することができ、表面活性お
よび親水性の高い炭素繊維が得られる。特に、本発明の
方法では、炭素に対する酸素の割合O/CがESCA
(Electron spectroscopy forchemical analysis )に
よる観察でさほど変らないにも拘らず、従来の電解酸化
法に比べて、カルボキシル基(COO基)の生成量が多
いという特徴がある。すなわち、C1Sピーク中に占める
ESCAによるCOO基の濃度の割合が約1.5%の炭
素繊維を従来の電解酸化法に供すると、COO基の割合
が3.5%程度となるのに対して、本発明の方法による
と、通電量を半減させてもCOO基の濃度を4〜15
%、好ましくは5〜10%程度にまで増大させることが
できる。また、従来の電解酸化法では、未処理の炭素繊
維に比べてカルボニル基(C=O基)の生成が増大する
のに対して、本発明の方法では、カルボニル基の量が低
減する傾向がある。According to the method of the present invention, the surface of carbon fibers can be uniformly and efficiently electrolytically oxidized, and carbon fibers having high surface activity and hydrophilicity can be obtained. Particularly, in the method of the present invention, the ratio of oxygen to carbon O / C is ESCA.
Despite the fact that the observation by (Electron spectroscopy for chemical analysis) does not change so much, it is characterized in that the production amount of carboxyl groups (COO groups) is large compared to the conventional electrolytic oxidation method. That is, when carbon fiber having a COO group concentration ratio of ESCA in the C1S peak of about 1.5% is subjected to a conventional electrolytic oxidation method, the COO group ratio becomes about 3.5%. According to the method of the present invention, the concentration of COO groups is 4 to 15 even if the amount of electricity is reduced by half.
%, Preferably 5 to 10%. Further, in the conventional electrolytic oxidation method, the production of carbonyl groups (C = O groups) is increased as compared with untreated carbon fibers, whereas in the method of the present invention, the amount of carbonyl groups tends to be reduced. is there.
【0025】また、得られた炭素繊維の親水性をグリセ
リンに対する接触角により評価すると、未処理の炭素繊
維の接触角は50〜60゜、従来の電解酸化法により処
理した炭素繊維の接触角は35〜37゜程度である。こ
れに対して、本発明の方法により処理した炭素繊維の接
触角は、10〜25゜、好ましくは10〜20゜程度で
あり、官能基の濃度および親水性が極めて高い。When the hydrophilicity of the obtained carbon fiber was evaluated by the contact angle with glycerin, the contact angle of untreated carbon fiber was 50 to 60 °, and the contact angle of carbon fiber treated by the conventional electrolytic oxidation method was It is about 35 to 37 °. On the other hand, the contact angle of the carbon fiber treated by the method of the present invention is about 10 to 25 °, preferably about 10 to 20 °, and the concentration of functional groups and hydrophilicity are extremely high.
【0026】このように、本発明の方法により得られた
炭素繊維は従来の炭素繊維に比べて表面活性、濡れ性が
高い。そのため、炭素繊維は、種々のマトリックスの補
強材として有用である。補強材として使用する場合、前
記炭素繊維は、長繊維、短繊維のいずれであってもよ
く、ストランド状であってもよい。また、格子状などの
適当な形状に編成してもよい。As described above, the carbon fiber obtained by the method of the present invention has higher surface activity and wettability than the conventional carbon fiber. Therefore, carbon fiber is useful as a reinforcing material for various matrices. When used as a reinforcing material, the carbon fibers may be long fibers or short fibers, or may be in the form of strands. Further, it may be knitted into an appropriate shape such as a lattice shape.
【0027】マトリックスとしては、例えば、ポリプロ
ピレン、ポリカーボネート、アクリロニトリル−ブタジ
エン−スチレン共重合体、ポリブチレンテレフタレー
ト、ナイロン、フッ素樹脂などの熱可塑性樹脂;エポキ
シ樹脂、不飽和ポリエステル、ビニルエステル樹脂、ポ
リイミドなどの熱硬化性樹脂などのプラスチック;炭素
材;アルミナなどのセラミックス;アルミニウムなどの
金属などが挙げられる。Examples of the matrix include thermoplastic resins such as polypropylene, polycarbonate, acrylonitrile-butadiene-styrene copolymer, polybutylene terephthalate, nylon and fluororesin; epoxy resin, unsaturated polyester, vinyl ester resin and polyimide. Examples include plastics such as thermosetting resins; carbon materials; ceramics such as alumina; metals such as aluminum.
【0028】前記マトリックスと炭素繊維との割合は適
当に選択できるが、通常、マトリックス/炭素繊維=9
9〜40/1〜60(重量部)、好ましくは92〜65
/8〜35(重量部)程度である。The ratio of the matrix to the carbon fiber can be appropriately selected, but usually matrix / carbon fiber = 9.
9-40 / 1-60 (parts by weight), preferably 92-65
It is about / 8 to 35 (parts by weight).
【0029】本発明の炭素繊維は、表面活性および親水
性が高いので、特にコンクリート複合材に好適に使用さ
れる。コンクリート複合材は、通常、前記炭素繊維、セ
メント、骨材及び水を含むセメントモルタルを用いて形
成できる。セメントの種類は特に制限されず慣用のセメ
ント、例えば、ポルトランドセメント、早強ポルトラン
ドセメント、超早強ポルトランドセメント、アルミナセ
メント、急硬性セメントなどの自硬性セメント;高炉セ
メントなどの水硬性セメント;混合セメントなどの種々
のセメントが使用できる。これらのセメントのなかで早
強ポルトランドセメントなどが繁用される。Since the carbon fiber of the present invention has high surface activity and hydrophilicity, it is particularly suitable for use as a concrete composite material. A concrete composite material can be usually formed by using cement mortar containing the carbon fiber, cement, aggregate and water. The type of cement is not particularly limited, and conventional cements, for example, self-hardening cements such as Portland cement, early-strength Portland cement, ultra-early-strength Portland cement, alumina cement, and rapid hardening cement; hydraulic cement such as blast furnace cement; mixed cement Various cements such as can be used. Among these cements, early strength Portland cement is often used.
【0030】骨材としては、例えば、砕砂、通常のコン
クリート砂、ケイ砂、人工軽量骨材などが挙げられる。
骨材は、コンクリート複合材の緻密性を損わない範囲で
粗骨材を含んでいてもよい。骨材の使用量は、前記セメ
ント100重量部に対して50〜300重量部程度であ
る。Examples of aggregates include crushed sand, ordinary concrete sand, silica sand, and artificial lightweight aggregates.
The aggregate may include coarse aggregate within a range that does not impair the denseness of the concrete composite material. The amount of aggregate used is about 50 to 300 parts by weight per 100 parts by weight of the cement.
【0031】モルタルにおける炭素繊維の含有量は、単
位容積当り0.5〜5容積%、特に1〜3容積%程度で
ある。また、水の含有量は、セメント100重量部に対
して25〜50重量部程度である。The content of carbon fiber in the mortar is about 0.5 to 5% by volume, especially about 1 to 3% by volume, per unit volume. The water content is about 25 to 50 parts by weight with respect to 100 parts by weight of cement.
【0032】セメントモルタルは、膨脹材、収縮低減
剤、鉱物質微粉末、減水剤、凝結遅延剤、硬化促進剤、
凝固剤、増粘剤、発泡剤、防水剤、弾性付与剤、防錆
剤、着色剤などを含有していてもよい。Cement mortar includes expansion agents, shrinkage-reducing agents, fine mineral powders, water-reducing agents, setting retarders, hardening accelerators,
It may contain a coagulant, a thickener, a foaming agent, a waterproofing agent, an elasticity imparting agent, a rust preventive, a coloring agent and the like.
【0033】コンクリート複合材は、前記モルタルを所
定の型枠に打設し、硬化させることにより得ることがで
きる。前記モルタルの養生方法は特に制限されず、例え
ば、オートクレーブ養生、蒸気養生のいずれであっても
よい。The concrete composite material can be obtained by placing the mortar in a predetermined mold and curing it. The method for curing the mortar is not particularly limited, and may be either autoclave curing or steam curing, for example.
【0034】[0034]
【発明の効果】本発明の炭素繊維の表面処理方法によれ
ば、電解液を湿潤状態で含む炭素繊維集合体を陽極酸化
するという簡単な操作で、炭素繊維を均一かつ効率よく
陽極酸化でき、表面活性および親水性の高い炭素繊維を
効率よく得ることができる。According to the surface treatment method of carbon fiber of the present invention, the carbon fiber can be uniformly and efficiently anodized by a simple operation of anodizing the carbon fiber aggregate containing the electrolytic solution in a wet state, It is possible to efficiently obtain carbon fibers having high surface activity and hydrophilicity.
【0035】本発明の炭素繊維によれば、表面活性、親
水性が高いので、プラスチックやコンクリートなどの各
種マトリックスに高い補強性を付与できる。Since the carbon fiber of the present invention has high surface activity and hydrophilicity, it can impart high reinforcement to various matrices such as plastic and concrete.
【0036】[0036]
【実施例】以下に、実施例に基づいて本発明をより詳細
に説明する。EXAMPLES The present invention will be described in more detail based on the following examples.
【0037】実施例1 ピッチ系炭素繊維[(株)ドナック製、商品名S−22
3]のフェルト(厚さ7mm、目付300g/m2 、嵩
密度0.05g/cm3 )を、1M硝酸水溶液からなる
電解液に浸漬して含浸させ、過剰な電解液を除去し、電
解液含量900重量%の炭素繊維フェルトを得た。Example 1 Pitch-based carbon fiber [manufactured by Donac Co., trade name S-22
3] Felt (thickness 7 mm, basis weight 300 g / m 2 , bulk density 0.05 g / cm 3 ) is immersed in an electrolytic solution consisting of a 1 M nitric acid aqueous solution to impregnate it, and the excess electrolytic solution is removed. A carbon fiber felt having a content of 900% by weight was obtained.
【0038】次いで、図1に示す電解酸化装置におい
て、前記炭素繊維フェルト1と陽極2とを接触させ、炭
素繊維フェルト1と陰極3との間に濾紙4を介在させ、
保持具で両極を保持し、電極間距離を一定に保った。な
お、電極として、白金族金属酸化物がコーティングされ
た平板状チタン電極(90mm×90mm)を用いた。Next, in the electrolytic oxidation apparatus shown in FIG. 1, the carbon fiber felt 1 and the anode 2 are brought into contact with each other, and the filter paper 4 is interposed between the carbon fiber felt 1 and the cathode 3.
Both electrodes were held by a holder to keep the distance between the electrodes constant. A flat plate-shaped titanium electrode (90 mm × 90 mm) coated with a platinum group metal oxide was used as the electrode.
【0039】そして、炭素繊維フェルト1g当り200
mA(電圧1.7V)、通電量2000クーロンの条件
で、定電流法により電解酸化を行ない、水洗し、真空乾
燥することにより、表面処理された炭素繊維フェルトを
得た。200 g / g of carbon fiber felt
A surface-treated carbon fiber felt was obtained by performing electrolytic oxidation by a constant current method, washing with water, and vacuum drying under the conditions of mA (voltage 1.7 V) and energization 2000 coulomb.
【0040】実施例2 炭素繊維フェルト1g当り200mA、通電量3000
クーロンの条件で、定電流法により電解酸化を行なう以
外、実施例1と同様にして、表面処理された炭素繊維フ
ェルトを得た。Example 2 200 mA per 1 g of carbon fiber felt, 3000 electric current
A surface-treated carbon fiber felt was obtained in the same manner as in Example 1 except that electrolytic oxidation was performed by a constant current method under Coulomb conditions.
【0041】比較例 実施例1で用いた炭素繊維フェルトを、図1に示す電解
酸化装置の陽極2とを接触させ、炭素繊維フェルトと陰
極3との間に濾紙4を介在させ、両極を保持した。な
お、電極として、実施例1と同じく白金族金属酸化物が
コーティングされた平板状チタン電極を用いた。Comparative Example The carbon fiber felt used in Example 1 was brought into contact with the anode 2 of the electrolytic oxidation apparatus shown in FIG. 1, a filter paper 4 was interposed between the carbon fiber felt and the cathode 3, and both electrodes were held. did. As the electrode, a plate-shaped titanium electrode coated with a platinum group metal oxide was used as in Example 1.
【0042】そして、前記電解酸化装置を、1M硝酸水
溶液からなる電解液を貯溜する電解槽に浸漬し、炭素繊
維フェルト1g当り200mA(電圧1.5V)、通電
量2000クーロンの条件で、定電流法により電解酸化
を行ない、水洗し、真空乾燥することにより、表面処理
された炭素繊維フェルトを得た。Then, the electrolytic oxidizer was immersed in an electrolytic bath for storing an electrolytic solution consisting of a 1M nitric acid aqueous solution, and a constant current was applied under the conditions of 200 mA per 1 g of carbon fiber felt (voltage 1.5 V) and an electric current of 2000 coulomb. The surface-treated carbon fiber felt was obtained by performing electrolytic oxidation by the method, washing with water, and vacuum drying.
【0043】実施例1,2及び比較例で得られた炭素繊
維フェルトの表面をESCAで観察したところ、表に示
す結果を得た。なお、対照として未処理の炭素繊維につ
いても同様に観察した。When the surfaces of the carbon fiber felts obtained in Examples 1 and 2 and Comparative Example were observed by ESCA, the results shown in the table were obtained. As a control, the untreated carbon fiber was also observed.
【0044】さらに炭素繊維にグリセリンを滴下し、液
滴の写真を撮り、炭素繊維とグリセリンとの接触角を測
定したところ、表に示す結果を得た。Further, glycerin was dropped on the carbon fiber, a photograph of the droplet was taken, and the contact angle between the carbon fiber and glycerin was measured. The results shown in the table were obtained.
【0045】[0045]
【表1】 表より、電解液を湿潤させて炭素繊維集合体を電解酸化
に供すると、効率よく酸化処理することができる。な
お、実施例1及び2で得られた炭素繊維について、電解
酸化による炭素繊維表面の損傷度を、SEM(Scanning
electron microscope)で調べたところ、炭素繊維表面
の損傷は認められなかった。[Table 1] From the table, it is possible to efficiently perform the oxidation treatment by moistening the electrolytic solution and subjecting the carbon fiber aggregate to electrolytic oxidation. For the carbon fibers obtained in Examples 1 and 2, the degree of damage on the carbon fiber surface due to electrolytic oxidation was measured by SEM (Scanning
When examined with an electron microscope), no damage was found on the carbon fiber surface.
【図1】図1は本発明の方法を説明するための電解酸化
装置の一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of an electrolytic oxidation apparatus for explaining a method of the present invention.
【図2】図2は本発明の方法を説明するための電解酸化
装置の他の例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing another example of the electrolytic oxidation device for explaining the method of the present invention.
1,11…炭素繊維フェルト 2,12…陽極 3,13…陰極 4…多孔質絶縁スペーサ 14…多孔質絶縁層 1, 11 ... Carbon fiber felt 2, 12 ... Anode 3, 13 ... Cathode 4 ... Porous insulating spacer 14 ... Porous insulating layer
Claims (2)
を電解酸化する炭素繊維の表面処理方法。1. A surface treatment method for carbon fibers, which comprises electrolytically oxidizing a carbon fiber aggregate containing an electrolytic solution in a wet state.
素繊維であって、ESCAで測定した場合、C1Sピーク
中に占める、炭素繊維表面のCOO基の濃度が、4〜1
5%である炭素繊維。2. The carbon fiber surface-treated by the method of claim 1, wherein the concentration of COO groups on the surface of the carbon fiber in the C1S peak is 4 to 1 when measured by ESCA.
5% carbon fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4339819A JPH06166953A (en) | 1992-11-25 | 1992-11-25 | Surface-treatment of carbon fiber and treated carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4339819A JPH06166953A (en) | 1992-11-25 | 1992-11-25 | Surface-treatment of carbon fiber and treated carbon fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06166953A true JPH06166953A (en) | 1994-06-14 |
Family
ID=18331122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4339819A Pending JPH06166953A (en) | 1992-11-25 | 1992-11-25 | Surface-treatment of carbon fiber and treated carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06166953A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100263837B1 (en) * | 1997-12-11 | 2000-11-01 | 후란쓰 이스링거 | Process for oxidizaing a surface of the fine carbon fibril |
JP2008069492A (en) * | 2006-09-15 | 2008-03-27 | Japan Science & Technology Agency | Method for producing activated carbon nonwoven fabric |
WO2010000424A3 (en) * | 2008-07-03 | 2010-12-29 | Bayer Materialscience Ag | A highly efficient gas phase method for modification and functionalization of carbon nanofibres with nitric acid vapour |
CN102641522A (en) * | 2012-04-13 | 2012-08-22 | 辽宁工业大学 | Method for preparing medical three-dimensional gradient netlike carbon fiber/ hydroxyapatite (HA)/ medical stone composite material |
JP2013104034A (en) * | 2011-11-16 | 2013-05-30 | Toray Ind Inc | Fiber-reinforced composite material and method for producing fiber-reinforced composite material |
JP2017210581A (en) * | 2016-05-27 | 2017-11-30 | 王子ホールディングス株式会社 | Base material for fiber-reinforced plastic molded body, fiber-reinforced plastic molded body, and method for producing base material for fiber-reinforced plastic molded body |
CN113502662A (en) * | 2021-08-09 | 2021-10-15 | 陕西天策新材料科技有限公司 | Surface treatment method of asphalt-based graphite carbon fiber |
CN116987315A (en) * | 2023-07-04 | 2023-11-03 | 中国海洋大学 | Porous carbon fiber composite material and preparation method and application thereof |
-
1992
- 1992-11-25 JP JP4339819A patent/JPH06166953A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100263837B1 (en) * | 1997-12-11 | 2000-11-01 | 후란쓰 이스링거 | Process for oxidizaing a surface of the fine carbon fibril |
JP2008069492A (en) * | 2006-09-15 | 2008-03-27 | Japan Science & Technology Agency | Method for producing activated carbon nonwoven fabric |
WO2010000424A3 (en) * | 2008-07-03 | 2010-12-29 | Bayer Materialscience Ag | A highly efficient gas phase method for modification and functionalization of carbon nanofibres with nitric acid vapour |
JP2013104034A (en) * | 2011-11-16 | 2013-05-30 | Toray Ind Inc | Fiber-reinforced composite material and method for producing fiber-reinforced composite material |
CN102641522A (en) * | 2012-04-13 | 2012-08-22 | 辽宁工业大学 | Method for preparing medical three-dimensional gradient netlike carbon fiber/ hydroxyapatite (HA)/ medical stone composite material |
JP2017210581A (en) * | 2016-05-27 | 2017-11-30 | 王子ホールディングス株式会社 | Base material for fiber-reinforced plastic molded body, fiber-reinforced plastic molded body, and method for producing base material for fiber-reinforced plastic molded body |
CN113502662A (en) * | 2021-08-09 | 2021-10-15 | 陕西天策新材料科技有限公司 | Surface treatment method of asphalt-based graphite carbon fiber |
CN116987315A (en) * | 2023-07-04 | 2023-11-03 | 中国海洋大学 | Porous carbon fiber composite material and preparation method and application thereof |
CN116987315B (en) * | 2023-07-04 | 2024-08-30 | 中国海洋大学 | Porous carbon fiber composite material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1090289A (en) | Process for electrolytic graining of aluminum sheet | |
US4704196A (en) | Process for surface treatment of carbon fiber | |
JPS6262185B2 (en) | ||
CN107819137A (en) | A kind of soft graphite bipolar plates and preparation method thereof | |
DE3305355A1 (en) | Process for anodically oxidising aluminium with pulsed current and its use as a printing plate base material | |
CN105484012B (en) | A kind of polyacrylonitrile carbon fiber surface treatment method and device | |
JPH06166953A (en) | Surface-treatment of carbon fiber and treated carbon fiber | |
PT2788542T (en) | Carbon fibre for composite materials with enhanced conductivity | |
JP2755431B2 (en) | Carbon fiber reinforced carbon composite material | |
Chen et al. | Sustainable recycling of intact carbon fibres from end-of-service-life composites | |
Fitzer et al. | Anodic oxidation of high modulus carbon fibres in sulphuric acid | |
JPH06166954A (en) | Production of hydrophilic carbon fiber and carbon fiber produced thereby | |
JPH0544154A (en) | Surface treatment of carbon fiber | |
KR100309196B1 (en) | Metallization of nonconductive substrate | |
KR101284479B1 (en) | Plating method of Acrylonitrile-Butadiene-Styrene copolymer using manganate salt as etchant | |
JP3409920B2 (en) | Lead dioxide electrode for electrolysis and method for producing the same | |
JPH0247141A (en) | Preparation of porous polyimide membrane | |
EP0409235B1 (en) | Process for the surface treatment of carbon fiber strands | |
KR890005015B1 (en) | Surface treatment method of carbon fiber | |
Hage et al. | Modification of the carbon fiber surface with a copper coating for composite materials with epoxy | |
Sheth et al. | Analysis of molar flux and current density in the electrodialytic separation of sulfuric acid from spent liquor using an anion exchange membrane | |
Ślosarczyk et al. | Influence of expanded graphite coming from the electrochemical oxidation of phenol on cement-polymer matrix | |
JP5455408B2 (en) | Polyacrylonitrile-based carbon fiber and method for producing the same | |
Theodoridou et al. | Electrochemical oxidation of PAN-and pitch-based carbon fibers and deposition of palladium on the obtained materials | |
JPS62149964A (en) | Production of ultrahigh strength carbon fiber |